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Mitigating the risks faced by large-scale computational science. 
 

D. E. Post, Los Alamos National Laboratory 
Keynote Address for the Second Workshop on Productivity and Performance in High-End 
Computing (P-PHEC), 11th Intl. Symposium on High-Performance Computer Architecture 

(HPCA-2005) San Francisco, CA, February 13, 2005 
 

Large-scale computational science faces at least three major risks: the “Performance 
Risk”—the risk that the power of high performance computers will not continue to grow 
exponentially, the “Programming Risk”—the risk that it will become too difficult to develop 
useful programs for these highly complex high performance computers, and the “Prediction 
Risk”—the risk that the large-scale computer simulations and applications we develop to exploit 
this new computer power will not provide reliable and credible results. 

Larger scale computers are being developed by many vendors. While the exponential 
increase in single processor speed has begun to saturate, massive parallelization, faster 
interconnects and new architectures are sustaining the growth of computer power. Computers 
with processing powers of over 40 Tera-Flop/s now exist, 300 Tera-Flop/s computers are 
planned for 2006-2007, and Peta-Flop/s class computers are being designed for 2010. Platform 
architectures are proliferating: LINUX-based commodity clusters, Vector architectures and 
proprietary clusters of shared memory processor nodes with and without rapid interconnects. 
Although there is some risk that one or more of these approaches will fail, it is almost certain 
that more than one will be successful. 

The increased complexity of computer architectures that is largely responsible for much 
of the growth in computer power is the major cause of the Programming Risk. Developing high 
performance computer applications for these platforms requires attention to data communication 
among the processors and shared memory nodes, almost at the level of assembly language. 
Debugging, data visualization and analysis, and performance optimization are difficult. The 
software tools are generally immature and often short-lived. The typical code employs many 
different languages (Fortran, C, C++, Python, PERL, Unix Scripts, etc. ). The high performance 
computing community must continue to develop better tools and methods for code development 
and performance optimization, and improved computational mathematical algorithms 
appropriate for the new computer architectures. 

Computational science has the promise of making major contributions to science and 
society by enabling us to solve many highly complex and non-linear problems with an 
unprecedented degree of realism and fidelity. The Prediction Risk is that these large-scale, very 
complicated applications will not give correct and reliable answers to the questions they are 
designed to address. Many present codes have too many defects, and many of the codes are 
based on models that are either incomplete or inaccurate representations of the real world. Case 
studies of many such codes indicate that much more attention must be paid to sound software 
project management. These studies also show that present methods for verification and 
validation are inadequate, and that improved methods are urgently needed. 

The DARPA High Productivity Computing Systems Program is designed to help 
minimize these risks and reduce the time to solution by exploring a number of approaches for the 
development of a Peta-flop/s class computer, by developing tools and benchmarks for high 
performance computers, and by conducting case studies of existing high performance computer 
applications to characterize those projects and develop the “lessons learned”. 
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INFLUENCE OF WORKLOAD CHARACTERIZATION ON DoD HIGH 

PERFORMANCE COMPUTING MODERNIZATION PROGRAM 
ACQUISITIONS 

    
   
   
  
 

    
Abstract 

 
Each year the DoD High Performance Computing 

Program (HPCMP) conducts a mathematically 
rigorous assessment of bid systems with workload being 
at the cornerstone of its analysis.  Workload 
characterization is a principal consideration in 
determining (1) which benchmarking codes are 
included in the HPCMP suite, (2) what test cases are 
constructed for each code (in terms of general size, 
since the problem size is fixed for each test case), (3) 
what attributes are incorporated for each test case (e.g., 
memory, I/O, and relative compute-time requirements), 
and (4) what percentage of the HPCMP workload is 
assigned to each test case (to be treated as a target 
metric for price per performance optimization).  This 
paper provides an in-depth discussion on how workload 
characterization influences each of these 
determinations. 

 
 

1. Introduction. 
 
Over a period of five years, the HPCMP has crafted 

its annual acquisition process to objectively and 
mathematically assess bid systems.  The process begins 
with the careful selection of application codes to 
represent the program’s ten Computation Technology 
Areas (CTAs):  Computational Structural Mechanics 
(CSM), Computational Fluid Dynamics (CFD), 
Computational Chemistry and Materials Science (CCM), 
Computational Electromagnetics and Acoustics (CEA), 
Climate, Weather, and Ocean Modeling and Simulation 
(CWO), Signal/Image Processing (SIP), Forces 
Modeling and Simulation/C4I (FMS), Environmental 
Quality Modeling and Simulation (EQM), 
Computational Electronics and Nanoelectronics (CEN), 
and Integrated Modeling and Test Environments (IMT).  
Next, input decks are constructed to create representative 
test cases in terms of parallel environment size, memory 
density (i.e., amount of memory used per processor), I/O 
intensity, and overall time-to-solution.  Typically, a 

standard and large test case are generated for each code 
such that the standard test case can be solved in 30 
minutes using a small number of processors (e.g., 64) 
and the large test case can be solved in one hour using a 
large number of processors (e.g., 384), both using the 
DoD’s standard system, which is determined annually. 

The application test cases along with a set of 
synthetic probes are sent to vendors for execution on 
each bid system (or a similar system, assuming the 
vendor is willing to provide binding forecasts for the bid 
system).  Application test case and synthetic results are 
then submitted to the HPCMP for assessment.  Individual 
application test case scores and an overall synthetic score 
are calculated per system.  Non-recurring (i.e., capital 
investment) and recurring (i.e., maintenance, power, and 
specialized administration) costs are also submitted to 
the HPCMP for inclusion in a price per performance 
assessment.  The underlying mathematical model takes 
into account application and synthetic scores for both the 
bid systems and the HPCMP systems in production, bid 
prices, and a carefully forecasted workload distribution 
among application test cases, culminating in a linear 
programming problem that often possesses a unique and 
optimal solution (i.e., an identification of what systems 
to buy along with a description of how work should be 
distributed among bid and production systems such that 
the overall workload distribution is satisfied within a 
certain tolerance).  The workload distribution is a 
mapping of recorded usage (past), granted system 
allocation (present), and submitted user requirements 
(future) onto the set of application test cases, and is 
deduced by circumspectly accounting for the CTA and 
problem size characterization of each data source (past, 
present, and future).  

Two objective recommendations are then prepared 
for decision makers – one based on price per 
performance results and the other based on pure 
performance.  The former assumes work will be 
distributed among bid and production systems according 
to the results of the mathematical model (i.e., the 
distribution of work can vary dramatically from system 
to system as long as the overall distribution of work 

Roy L. Campbell, Jr. 
U.S. Army Research Laboratory 

rcampbell@arl.army.mil 

Larry P. Davis 
DoD HPC Modernization Program Office 

larryd@hpcmo.hpc.mil 
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coincides with the target workload distribution within a 
given tolerance).  The latter assumes work will be 
distributed across each bid and production system strictly 
according to the target workload distribution (i.e., the 
distribution of work is exactly the same for each system).   

Therefore, an accurate understanding of the 
workload is paramount to the annual HPCMP acquisition 
assessment, as the careful (1) selection of codes, (2) 
development of test cases, and  (3) deduction of target 
application test case percentages are critical to the 
production of accurate and objective acquisition 
recommendations.  
 

2. Determination of Codes. 
 

CTA leaders and annual requirements surveys 
provide an initial list of codes (Table 1) that are 
representative of work being performed within each 
computational discipline.   Then, a survey of the top 100 
projects (in terms of CPU-hours) is conducted to 
determine how relevant each identified code is to the 
HPCMP workload.  (A survey response summary is 
provided in Table 2.)  Relevance is determined in two 
ways.  First, a list of all codes reported by the top 100 is 
compiled and ranked according to a percentage of the 
total expended CPU-hours reported (Table 3).  Second, a 
best-fit mapping of the reported codes onto those in the 
initial list is conducted.  Codes in the initial list are then 
ranked according to a mapped percentage of the total 
expended CPU hours reported (Table 4).  Finally, the 
initial list is pruned based on the results of these two 
methods to yield seven or eight of the most 
representative codes (Table 5). 
 
Table 1:  Initial list of codes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

Table 2:  Response rate to top 100 projects survey. 
 

 
 
Table 3:  Actual use ranking.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Table 4:  Representative use ranking.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Based on the information in Tables 3 and 4, one 

might concluded that the initial set of ten codes should 
be reduced by removing AERO (FDL3DI), SWITCH, 
ALEGRA, and/or WRF; however, of these four, only one 
was removed – ALEGRA.  AERO is a serial (i.e., a 
single processor) code and, therefore, was spared since a 
notable portion of the HPCMP workload uses only one 
processor.   (Serial examples include grid generation, 
pre/post-processing of input/output data, single processor 

57.7% 
(46,844,992)

Total FY-03 
Hours

100% (5)Top 5
90% (9)Top 10

70% (14)Top 20
42% (42)Top 100

RESPONSESET
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(46,844,992)
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interactive sessions, and multiple single processor 
executions launched within a parallel environment).  
SWITCH survived since it was the only CEA code in the 
list.  WRF was retained since its future use within the 
CWO community was highly likely.  Therefore, only one 
code of the bottom four was actually cut – ALEGRA.   

Since the target size of the suite is seven to eight 
codes, NAMD was examined next.  Given that the 
chemistry area within CCM contains two major thrusts – 
molecular dynamics (NAMD) and quantum chemistry 
(GAMESS), both NAMD and GAMESS were compared 
for relative relevance.  Since, at the time, very little 
molecular dynamics work was being performed within 
the program, NAMD was removed, although it is 
expected that NAMD will be reinstated in subsequent 
suites.  Table 5 lists the codes selected for the final 
benchmarking suite. 

 
Table 5:  New benchmarking suite.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

3. Determination of Application Test 
Cases. 

 
To determine what application test case sizes should 

be considered, the job records for an entire fiscal year are 
classified according to the system fraction used by each 
job.  For each system sixteenth, the number of GFLOP/s-
years (Equation 1) is accumulated, and a percentage of 
the total usage is calculated, yielding a histogram of 
usage versus job size in terms of system fraction.   

 
)1(_/ yearsrateninstructiospeedyearssGFLOP TNPPU ⋅⋅⋅=−

 
where 
 

• UGFLOP/s-years=usage in GFLOP/s-years 
• Pspeed=processor speed 
• Pinstruction_rate=number of instructions per cycle  
• N=number of processors used by job 
• T=time-to-solution of job in years 
 

For fiscal year 2003, the usage characterization (Figure 
1) demonstrated a bi-modal behavior that lead the 
HPCMP to adopt (or actually reconfirm) a policy of 
having a large and standard test case for each 
benchmarking code, in general. 
  

 
 

 
 
 
 
 
 
 
 
 

 
Figure 1:  FY-03 usage versus system fraction. 

 
Only two codes were granted exceptions to the rule.  
AERO, a serial code, was not conducive to building a 
large test case, and WRF proved to be an exceptionally 
challenging code, so for sake of time, only a small test 
case was developed. 

Based on the location of the two major peaks in 
Figure 1, the target times for each standard and large test 
case correspond to the time-to-solution for one-sixteenth 
and one-fourth of the standard DoD system, respectively.  
This general rule is, of course, not applied to AERO. 

 
4. Determination of Application Test 

Case Weights. 
 
The utilization for the previous year, allocation for 

the current year, and requirements for the upcoming year 
are deduced per CTA.  Then, a linear combination of the 
three is carefully mapped onto each application test case, 
yielding a target percentage of the workload for each.  
Since current and future workload characterizations 
contain proprietary data, only the past year’s usage data 
is provided below (Figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  FY-03 usage in GFLOP/s-years per CTA. 
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Five CTAs (CCM, CEA, CFD, CSM, and CWO) 
dominate the plot above, hence the selection of codes in 
Table 5 that cover only these five computational 
disciplines.  Three CTAs (CFD, CSM, and CWO) 
individually correspond to more than 15% of the 
HPCMP workload, hence the selection of multiple codes 
for each: CFD – AERO, AVUS, and OVERFLOW-2; 
CSM – CTH and GAMESS; and CWO – HYCOM and 
WRF. 
 

5. Conclusions.    
 
Given the multitude of high-end computing (HEC) 

attributes (e.g., bandwidths and latencies of the memory, 
communication, and I/O substructures, instruction 
retirement rate, register set structure, and processor 
speed), a sound assessment of bid systems requires a 
careful and accurate assessment of the targeted 
workload, since the ranking of systems with respect to 
these attributes varies dramatically per application.  The 
HPCMP has, therefore, placed workload characterization 
at the cornerstone of its annual acquisition process. 

 
6. Future Work.    
 
To increase the accuracy of the HPCMP’s workload 

characterization, automated job profiling tools (i.e., 
background software that automatically captures key 
attributes of each executed job) are being investigated.   
Work performed by the National Energy Scientific 
Computing Center is currently being reviewed as a 
potential source for this automation. 

 
7. References. 
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Abstract

A major challenge to achieving widespread use of soft-
ware component technology in scientific computing is an
effective migration strategy for existing, or legacy, source
code. This paper describes initial work and challenges in
automating the identification and generation of components
using the ROSE compiler infrastructure and the Babel lan-
guage interoperability tool. Babel enables calling inter-
faces expressed in the Scientific Interface Definition Lan-
guage (SIDL) to be implemented in, and called from, an
arbitrary combination of supported languages. ROSE is
used to build specialized source-to-source translators that
(1) extract a SIDL interface specification from information
implicit in existing C++ source code and (2) transform Ba-
bel’s output to include dispatches to the legacy code.

1 Introduction

Contemporary multi-disciplinary, multi-scale, multi-
physics simulations are increasingly becoming large, com-
posite applications consisting of new and existing compo-
nents implemented in different programming languages by
disparate teams. These factors present several challenges to
developers of such systems that, if dealt with manually, are
time-consuming and error prone. This paper addresses an
automation technology for the extraction and implementa-

tion of components within the context of a component ar-
chitecture tailored for scientific computing.

Component technology is industry’s answer to at least
two of the three major concerns plaguing large-scale com-
ponentization efforts; namely, interoperability of software
written in different languages, interoperability of software
running on different platforms, and maintenance and evo-
lution of large composite systems with multiple third party
dependencies. Component architectures from industry in-
clude CORBA [3], Microsoft COM [14], and Sun’s Enter-
prise Java Beans (EJB) [5]. These architectures establish
the framework in which compliant components interact. For
instance, EJB assumes all components are implemented in
Java (or JNI), thereby leaving the language interoperabil-
ity issue to component developers to address. Unlike com-
mercial applications, large scale numerical simulations have
additional constraints unique to the scientific computing do-
main such as high performance, a wide variety of often one-
of-a-kind computing platforms, and a need to migrate a sub-
stantial body of code to a new programming paradigm.

The Common Component Architecture (CCA) Fo-
rum [1] is working to deliver component technology suit-
able for large scale numerical simulations. Babel provides
the Scientific Interface Definition Language (SIDL) and
associated language interoperability tools that undergirds
CCA-compliant frameworks. Current best practice for mi-
grating legacy source code to CCA components does not re-
quire modifying existing code but may involve substantially
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rethinking the interfaces and writing additional code by
hand that bridges Babel’s language bindings to the legacy
code.

In this paper we address the automated generation of
the bridging code between C/C++ libraries and their CCA-
compliant component wrappers. The work employs the
ROSE compiler tools to build specialized translators that
use a library’s header files to generate the SIDL file and
bridging code required by the CCA framework. Such an
automated approach is critical to converting legacy codes
to components in sufficient numbers to achieve the econ-
omy of scale that makes component technology so effective
in other domains. Currently our work is limited to C and
C++ libraries. Our ongoing work includes adding a FOR-
TRAN90 frontend to the ROSE infrastructure, which will
enable us to apply similar techniques to convert FORTRAN
libraries to components in the future.

The major technical challenges of automatically map-
ping libraries to SIDL code come from two aspects. First,
to allow all-to-all interoperability among its supported lan-
guages, Babel defines SIDL with a narrow intermediate
type-system and inheritance model. The ROSE translators
thus must extract the necessary (often implicit) information
embedded in the library and map the C/C++ type system
into one expressible in a proper SIDL file. Second, pro-
gramming in the CCA component model has a more event-
driven and less imperative feel than traditional program-
ming due to its focus on services. For instance, a CCA
component rarely explicitly creates all the lower-level com-
ponents it depends on to function. Instead, it typically reg-
isters what capabilities it provides and which capabilities it
depends on to the CCA framework in response to an event,
which usually takes the form of a creation request, but can
also be a connection or disconnection request. Then the
CCA component typically is inactive until one of its pro-
vided capabilities is invoked.

Our present work has addressed the first challenge by
translating C++ types into equivalent SIDL types when pos-
sible, and conservatively using theopaquetype in SIDL (in-
dicating no information is known about the type) if no suit-
able translation is available. The work to address the second
challenge is still ongoing. Specifically, our future work will
include techniques to automatically cluster global functions
and classes into different components (our current imple-
mentation simply places all global types in a library into a
single component). Further, we will automate the gener-
ation of CCA components, which are independent units of
composition that implement thegov.cca.Component inter-
face. More details are provided in Section 3.4.

Although C and C++ are only two of the modern lan-
guages supported by Babel and CCA, the their type system
represents one of the most complex and comprehensive type
systems in existing statically-typed languages. For exam-

ple, generating SIDL specifications for a C/C++ library re-
quires the translation of overloaded functions and operators,
classes with multiple inheritance, C++ templates, function
pointers, and variable number of arguments, many of which
can be ignored when translating smaller languages such as
Java and FORTRAN, which do not have multiple inheri-
tance or C++ templates. We thus expect that many tech-
niques we develop for translating C/C++ libraries to CCA
components will similarly apply to Java and FORTRAN as
well. Further, much of the design principles we developed
are language independent, and can apply in general to all
modern programming languages.

2 Infrastructure

Our component generation infrastructure includes both
ROSE [21, 24] and Babel [16]. ROSE is a compiler infras-
tructure that offers mechanisms for analyzing C++ source
code and for building source-to-source translators, which
in this paper are used to process library code and gen-
erate component implementations. Babel is an Interface
Definition Language (IDL)-based language interoperability
tool akin to CORBA but tailored for the scientific com-
puting community. In the following two sections we de-
scribe ROSE mechanisms in simplifying the development
of translators and Babel capabilities in aiding the genera-
tion of components.

2.1 ROSE

The ROSE infrastructure allows building source-to-
source translators by offering a front-end for parsing C++
code and generating an Abstract Syntax Tree (AST), a mid-
end for restructuring the AST representation of the source
code, and a back-end to unparse C++ source code from the
AST.

We use the Edison Design Group (EDG) C++ front-end
[2] to parse C++ programs. After invoking the EDG parser
on an input C++ program, we then translate the C-style
EDG internal representation of the program into an object-
oriented abstract syntax tree (AST), Sage III, which we have
developed as a revision of the Sage II [13] intermediate rep-
resentation. Current work includes collaboration with Rice
to add F90 support to ROSE through use of the Open64
compiler infrastructure.

The mid-end supports restructuring of the Sage III AST.
The programmer can add code to the AST by specifying a
source string using C++ syntax, or by manually construct-
ing subtrees of the AST. A program transformation consists
of any required program analysis and a series of AST re-
structuring operations each of which specifies a location in
the AST where a code fragment should be inserted, deleted,
or replaced.
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The back-end unparses the AST and generates C++
source code. Header files can either be unparsed where
they are included in source files, or#include directives
can be generated for the header files. This feature is impor-
tant when transforming user-defined data types, for exam-
ple, when adding compiler-generated methods.

2.2 Babel

Compared with other IDL technologies, Babel/SIDL has
several features critical for scientific computing such as in-
trinsic support for dynamically allocated, arbitrarily strided
multidimensional arrays and complex numbers. It also sup-
ports overloading method names. Whereas CORBA em-
phasized remote method invocation, Babel emphasizes fast,
in-process language interoperability [12]. Babel also has
extensive FORTRAN 77/90/95 support, even allowing Ba-
bel arrays to be manipulated as native FORTRAN 90 ar-
rays [16]. The Babel team is currently developing remote
method invocation (RMI) capabilities.

Babel includes two parts: the code generator and the run-
time library. The code generator parses SIDL and gener-
ates client and/or server bindings in C, C++, FORTRAN 77,
FORTRAN 90, Python, and Java. The runtime library con-
tains base classes of the object model which are themselves
defined in SIDL and additionally, bits and pieces needed to
enhance portability and support interoperability.

IDLs are fundamentally different than typical program-
ming languages. IDLs define types without providing code
to implement them. Often, IDL resembles stripped down
C++ header files. In SIDL (scientific IDL), users can define
new types (classes and interfaces), name operations on their
types, specify arguments of their operations, and designate
different scopes to avoid symbol name collision. Unlike
C++, each argument is explicitly annotated asin , out , or
inout to indicate whether data is being passed as an in-
put, produced as an output, or used as input and output for
the operation. SIDL has only declarative statements and no
mechanism for defining states or algorithms.

Babel’s main purpose is to enable scientific library de-
signers to make their code language independent and thus
reach a broader audience [18].Babelizingan existing li-
brary typically involves writing a SIDL interface specifica-
tion, running the Babel code generator to generate imple-
mentation bindings (calledImplsfor short) in the same lan-
guage as the library, and hand coding the empty Impls to
dispatch to the existing software. Though Babelizing code
requires manual programming, customers find it easier than
generating a single language wrapper by hand. Some even
welcome the opportunity to craft a modern object-oriented
interface over their legacy procedural code.

More details about Babel-generated Impls are needed for
discussion in later sections. Recall that implementation de-

tails of software are intentionally inexpressible in SIDL.
Therefore, when Babel first generates Impls, the bodies of
the methods, member functions, subroutines, or procedures
(depending on what programming language Babel’s gener-
ating Impls for) are empty. The library developer needs to
fill in the Impls with an actual implementation or code to
dispatch their existing code. Since Impls are generated code
that contain hand-edited fragments, these fragments are lo-
cated insplicer blocks. Contents of splicer blocks are pre-
served across multiple runs of Babel as SIDL specifications
evolve. Automatically generating contents for the splicer
blocks is one of the challenges for this joint work.

3 Automated Code Generation, Transforma-
tions, and Analysis

The processing steps for automatically translating a li-
brary into components are summarized in Figure 1. Essen-
tially, the steps are

1. SIDL and C++ implementation information extraction.
This step involves using ROSE Translator T1 to pro-
cess thelibrary exampleto generate SIDL code and
Non-SIDL C++ Informationfor ROSE Translator T2.

2. Stub and Impl generation.
Babel is called using the SIDL file from step 1 to gen-
erate all stubs for clients in all supported languages as
well as the corresponding C++Impl files with empty
splicer blocks.

3. Implementation bridge generation.
The ROSE Translator T2 is called usingNon-SIDL
C++ Informationand the C++Impl files from step 2 to
insert dispatching code into the initially emptysplicer
blocks.

To simplify the process each of these steps can be fully con-
tained within a single program.

The input to the ROSE Translator T1 in Figure 1 includes
two objects: a target library and a simplelibrary example
program. Thelibrary exampleprogram is constructed by
hand and must include all the header files required to de-
fine the target library’s implementation. Only the library’s
header files must be seen, although more sophisticated anal-
ysis is possible by processing the entire library as described
in Section 3.3. Thelibrary exampleprogram can be as sim-
ple as a one line file that includes a single header file. For
example, a file containing the line#include <A++.h>
is a sufficientlibrary exampleprogram for processing the
A++ library.

Given the target library and an example program, the
ROSE Translator T1 generates two outputs: SIDL interface
files and Non-SIDL C++ information. The SIDL interface
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Figure 1. Component Generation Process with ROSE-Babel infrastructure. Circles represent (gener-
ated) files and arrows show the data-flow of these files. The dashed lines show that the translators T1
and T2 use the ROSE infrastructure. The library is not modified and becomes part of the generated
component.

files are later used as inputs to Babel, which then generates
components specifications and Impl files with empty splicer
blocks. In greater detail, the ROSE Translator T1 performs
the following substeps of step 1:

1.a. Constructing AST.
The AST at this point represents all library declara-
tions. Only classes, structs, functions and member
functions are of particular interest, but the AST also
contains all comments, pragmas, variables, typedefs,
etc.

1.b. Collecting information about classes and functions

Class definitions. Builds the list of library classes,
each of which is translated into SIDL classes.

Member functions. This step builds a list of all mem-
ber functions, each of which is put into its associ-
ated SIDL class previously constructed (preced-
ing step).

Non-member functions. Builds a list of all non-
member function, each of which is put into a

SIDL class called “Global”.

1.c. GeneratingNon-SIDL C++ Information
A file containing the list of#include directives is
generated. The file is specified on the command-line as
library specific data to be read by the ROSE Translator
T2.

The above steps preserve the original structure of the
library. The generated SIDL code does not re-organize
the library other than presenting a list of global functions,
classes, and member functions. To add more structures to
the generated code, the following information can be used:
directory and filename information, function name prefix
information, pragmas in the library headers to specify map-
ping of functions to SIDL interface classes, and an alterna-
tive external annotation mechanism for specifying the map-
ping of functions to SIDL interface classes. These heuristics
are part of our ongoing research.

The ROSE Translator T2 requires two inputs: the Impl
files from Babel and the non-SIDL C++ information from
ROSE Translator T1. Since the SIDL language doesn’t
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permit the specification of#include directives, the non-
SIDL information includes the list of#include directives
present in the library example program processed by T1.
These directives are required for declaring the library inter-
face in the new Impl files generated by The ROSE Transla-
tor T2, which performs the following substeps of step 3:

3.a. Inserting the list of#include directives into the Impl
file’s appropriate splicer block.

3.b. Inserting code to map each input parameter of each
Impl function to the appropriate parameter of the li-
brary’s function call.

3.c. Inserting library function calls into the appropriate
Impl function’s splicer block.

Through library annotations or analysis, we can exploit
SIDL specific features that are not present in C++ (e.g.,
specification of side-effects to function parameters viain ,
out , andinout ), see Section 3.3. A third ROSE Transla-
tor could automate analysis of the library, using side-effect
analysis to verify the correctness of parameter annotations
or to use an in or out specification in lieu of the default in-
out. This narrower specification of parameters enables sub-
sequent compiler optimization.

3.1 Generation of SIDL

Because the set of C++ features is much larger than those
present in SIDL, mapping from C++ to SIDL requires some
complex translation. Much information could be lost in this
process, although it could conceivably be saved in theNon-
SIDL C++ Informationand used within the marshaling of
function parameters between the Impl functions (generated
by Babel) and the target library’s function calls. The follow-
ing issues have been considered in the existing translation
of C++ code to SIDL:

C++ overloaded functions. Additional information is re-
quired within SIDL to support overloaded operators.

C++ overloaded operators.All overloaded operators are
given unique names within the generation of SIDL.
These names are mapped back to the respective over-
loaded operators within the transformation of the Impl
files.

C++ function pointers. These are handled using a SIDL
opaque. Some function pointers will be replaced by a
SIDL interface.

Multiple inheritance. SIDL supports only single inheri-
tance for classes and multiple inheritance of interfaces
(similar to Java and Objective C). Through a level of

indirection (supported in the interface parameter mar-
shaling), multiple inheritance models in C++ can be
reduced to single inheritance models appropriate for
representation in SIDL.

C++ templates. There is no C++-like templating mecha-
nism available as part of the SIDL interface. How-
ever, each template instantiated internally in the tar-
get library is represented as atemplate-instantiation
class within ROSE, which can be translated to any
non-template class within SIDL. This permits the use
of templates within C++ libraries so long as they are
instantiated over a closed set of parameterized types.
This detail requires that thelibrary exampleprogram
triggers instantiate (uses) all templates.

SIDL support for arrays. SIDL supports arrays of spe-
cific types, but functions passing pointers to data and
an integer describing its length can skip the use of the
SIDL array abstractions. This avoids a translation am-
biguity.

Variable arguments. C++ methods with variable numbers
of arguments, using the ellipsis. . . in their declaration
must be converted to a method with a SIDL array con-
taining a generic argument base class.

SIDL’s opaque type is necessary for low level routines
with application programming interfaces (APIs) that require
address pointers. For example, an opaque would have to
be used for the ANSI C routinesignal which requires
a function pointer as an argument because our tool cannot
change the underlying implementation to use a functor ap-
proach. A routine such as ANSI C’smalloc , would need
to use opaque as a return value. Certain device drivers might
also require particular addresses as arguments.

3.2 Transformation of Impl files

Babel generates both stubs for other languages to call
and Impl files to invoke the implementation of the library
functions. Instead of generating new Impl files, which is
handled by Babel, we transform the Impl files generated by
Babel by inserting calls to the associated library functions
and marshaling all parameters.

3.3 Library Analysis

An optional step is to process the target library imple-
mentation and analyze each function in the library to deter-
mine the side-effects upon their parameters. The side-effect
analysis has been implemented as a result of collaborations
with Cornell and will permit a verification of (in , out , and
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inout ) annotations and or the generation of such annota-
tions. The correct classification of interface function pa-
rameters is mostly a performance issue. The current con-
servative default classification is to classify all function pa-
rameters asinout . An additional processing step using
ROSE could automate much of the classification of func-
tion parameters. In some cases, lack of sufficient program
analysis, in particular pointer alias analysis, may require the
process be semi-automatic rather than fully automatic. For
example, side-effect analysis could signal that a potential
alias between a locally-modified variable v and a parameter
p prevents declaring p as an in parameter rather than inout.
This ambiguity could be resolved by an annotation, spec-
ified through ROSE’s annotation language, which declares
that v does not alias p.

3.4 Future Extension: CCA Componentization

The CCA component framework has two require-
ments: componentsand ports. A component is an in-
dependent unit of composition that must implement the
gov.cca.Component interface. Ports are capabilities,
or services, of a component that must be specified in SIDL
as extensions ofgov.cca.Port .

Our translator will need to generate a set of classes im-
plementinggov.cca.Component . This interface has
one method,setServices , that must notify the frame-
work about which ports the component can provide (known
asprovides ports) and which ports the component requires
(known asuses ports). Identifying the mapping from the
original set of C++ classes to SIDL classes implementing
gov.cca.Component is a major challenge. In some
cases, it might be best to treat each concrete C++ class as a
component, and in other cases, the whole multi-class library
should be considered a single component.

Our translator will also need to generate a set of ports
based on the C++ classes in the original API. The first step
will be to create a port for each C++ class involved. De-
termining better methods for choosing which C++ classes
should be included in each type of port will need to be ex-
plored. Provides portsare basically services provided to
the library’s user; hence, they can be gleaned from the inter-
faces of a class. However, auses portindicates services pro-
vided by the component’s client that are needed by the com-
ponent. Designating something as auses portof a compo-
nent means that the component needs exactly one instance
of the port corresponding to the initial C++ class, which is
very challenging to determine from the C++ header files.
The underlying code may be able to handle zero through
many instances.

4 Related Work

Our aim is to automate the generation of components
from legacy scientific applications. This process includes
two phases: extracting component interfaces and producing
implementations that bind the interface specifications with
the original software.

A number of research efforts have aimed at extracting
components from existing software. Specifically, many
clustering techniques [19, 20, 15] have been developed to
analyze the function calls within a library system and to
identify reusable components within the library. We cur-
rently focus on making all individual classes in a library
reusable. Our work can be combined with the clustering
techniques to provide better component interfaces for li-
braries. Beck and Eichmann [10] have also explored the
extraction of interfaces from source code. They have fo-
cused on reducing the interfaces (and code) to only those
methods that are actually needed by a user. Their solu-
tion is language-specific; whereas we focus on extracting
language-neutral specifications and automating the library
bindings.

To automate the second phase of generating components,
Babel provides the translation from the interface specifica-
tion to implementation stubs. Our work then generates dis-
patching code that fills in these stubs. Prior efforts have
developed several systems that support automatic bridging
of pairs of different languages. For example, SWIG [6, 9],
a wrapper and interface generator, supports automatic bind-
ings between C/C++ and common scripting languages such
as Tcl, Python and Perl. In contrast, we leverage Babel’s
intermediate representation, so component developers do
not have to be concerned with providing a point-to-point
mapping for their users. Furthermore, Babel’s RPC-like
mechanism will enable future remote access to the libraries
wrapped by our infrastructure. Chasm [22, 23], another
point-to-point adapter generator, employs static compiler
analysis to automatically connect C++ applications to FOR-
TRAN 90 libraries. Our work, on the other hand, automates
the connection of C++ libraries with applications written in
a variety of scientific computing programming languages.
By leveraging SIDL, which has been adopted as the spec-
ification language for scientific components by the Com-
mon Component Architecture Forum [1, 8], we enable the
automatic generation of CCA-compliant components from
existing libraries.

Similar to our work, Rational Rose [4], a commercial
general-purpose graphical modeling tool, supports round-
trip engineering from user applications to both CORBA
and COM specifications [11, 17] using the Unified Model-
ing Language (UML) [7] as the intermediate representation.
Our work, on the other hand, does not require the transla-
tion from yet another intermediate language. By virtue of
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using Babel/SIDL, we also have an intermediate layer that
is tailored for scientific computing.

5 Conclusions and Future Work

This paper presents work on the automated generation of
components. The work is incomplete presently but shows
both the automation of the SIDL description and the con-
nection of the generated code (from SIDL) back to the li-
brary. Both pieces are essential to automate the connection
to an arbitrary library. To enable automatic generation of
CCA components, additional analysis and transformations
of the resulting SIDL objects is necessary to properly de-
fine and designate ports and implement the CCA required
setServices() method.

All known “automatic” language wrapping tools require
some degree of hints, pragmas, structured comments, or the
like just to enable a one way connection from the calling
language to the existing code. To “automatically” Babelize
an existing C++ code is even more challenging, but offers
more capabilities if successful. Taking the entire body of
Babelized code and packaging it up as a component actually
involves analysis of how the code is used and creation of
new functions in the interface. The ultimate goal is to break
any large existing code up into useful constituent CCA com-
ponents.

Although the current ROSE infrastructure is limited to
C and C++, the essential motivations are language indepen-
dent. Analogous reverse mappings of FORTRAN to SIDL
would require FORTRAN-specific analysis and techniques.

Specific details to C and C++ are addressed separately.
It is conceivable that all C++ language feature could be
mapped to SIDL without extension, but with some library
specific translation support. Still, such tools could be made
easy to build in the future, perhaps even automatically gen-
erated.
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Abstract 
 
    The complex architectures of HEC systems present 
difficult challenges for performance optimization of 
scientific applications.  Tools are needed that collect 
and present relevant information on application 
performance in a scalable manner so as to enable 
developers to easily identify and determine the causes 
of performance bottlenecks.  This paper describes 
KOJAK, a suite of performance analysis tools that 
collect and analyze runtime data from high 
performance applications.  Performance data are 
collected automatically using a combination of source 
code annotaions or binary instrumentation and 
hardware counters.  The analysis tools use pattern 
recognition to convert the raw performance data into 
information about performance bottlenecks relevant to 
developers.  Such automated approaches to 
performance instrumentation and analysis promise to 
increase programmer productivity and reduce time to 
solution by reducing both development and execution 
time.   
 
 
1. Introduction 
 
    High performance computing is playing an 
increasingly critical role in advanced scientific research 
as simulation and computation are becoming widely used 
to augment and/or replace physical experiments.  
However, the gap between peak and achieved 
performance for scientific applications running on high-
end computing (HEC) systems has grown considerably in 
recent years.  The complex architectures and deep 
memory hierarchies of HEC systems present difficult 
______________________________________________ 
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challenges for performance optimization of scientific 
applications.  Tools are needed that collect and present 
relevant information on application performance in a 
scalable manner so as to enable developers to easily 
identify and determine the  causes of performance 
bottlenecks.  According to the Report of the High-End 
Computing Revitalization Task Force (HECRTF) [1], the 
single most important metric for high-end system 
performance is time to solution for the scientific 
applications of interest.  Time to solution includes not 
only execution time, but also development time.  
Portable, easy-to-use, effective performance tools aim to 
reduce both development and execution time.   
   In order to collect performance data, the application 
must be instrumented in some manner.  To be most 
useful for performance tuning, the data should be 
collected at routine or even basic block or loop 
granularity.  For developers of large-scale applications to 
implement this level of instrumentation manually is too 
time-consuming and thus not feasible.  Automated 
instrumentation techniques are needed that can collect 
the relevant data with a minimum of effort. 
   Developers of scientific applications for HEC systems 
are not necessarily experts in high performance 
computing architectures and performance analysis.  For 
this reason, performance data at the level of un-
interpreted hardware counter data or communication 
statistics or traces may not be useful to these developers.  
Higher level abstractions that identify various types of 
performance problems, such as inefficient use of the 
memory hierarchy or excessive synchronization delay for 
example, and that map these problems to the relevant 
application source code, will be much more useful and 
allow performance tuning to be done with much less time 
and effort. 
   The amount of performance data collected for 
______________________________________________
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European IST working group APART under Contract 
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applications running on HEC systems can be 
overwhelming.   While analysis of event tracing has 
proved to be a superior technique to identify performance 
problems at a high level of abstraction, it usually suffers 
from scalability problems associated with trace-file size.   
Even collecting detailed profiling data for large numbers 
of processes can be unwieldy.  Current display tools are 
limited in their representation of large-scale performance 
data.   
   This paper describes our efforts at addressing the above 
problems as part of the KOJAK project [2,3].   
 
2.  Automated Instrumentation 

   Figure 1 gives an overview of KOJAK's architecture 
and its components. The KOJAK analysis process is 
composed of two parts: a semi-automatic multi-level 
instrumentation of the user application followed by an 
automatic analysis of the generated performance data.  
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Figure 1.  KOJAK Architecture 

 
   The event traces generated by EPILOG capture MPI 
point-to-point and collective communication as well as 
OpenMP parallelism change, parallel constructs, and 
synchronization.  In addition, data from hardware 
counters accessed using the PAPI library [4,5] can be 
recorded in the event traces.  To make measurements 
with the EPILOG system, the user’s application must be 
instrumented at specific important points, or events, to 
activate EPILOG library calls.  Events of interest include 
sending and receiving messages, user function entries 
and exits, entering and exiting OpenMP regions, and 
synchronization operations such as acquiring and 
releasing locks.  Automated instrumentation is supported 
by compiler instrumentation on the following platforms: 

- Linux clusters using the PGI compilers 

- Hitachi SR-8000 
- Sun Solaris (Sun Fortran90 compilers only) 
- NEC SX 

The instrumentation of user function entries and exits on 
the above systems is based on undocumented and 
unsupported compiler options.  Discussions are underway 
with additional vendors to provide similar 
instrumentation hooks.  Ideally these compiler 
instrumentation hooks will become fully supported in the 
future.  On the above systems, all necessary 
instrumentation of user functions, MPI functions, and 
OpenMP constructs is handled by the “kinst” command.  
In the commands to build the application (e.g., in a 
makefile), the user need only precede all compile and 
link commands with “kinst”.  For example, instead of the 
command 
   % mpif90 myprog1.f90 myprog2.f90 –o myprog 
the command 
   % kinst mpif90 myprog1.f90 myprog2.f90 –o myprog 
would be executed. 
   For platforms on which compiler instrumentation using 
kinst is not supported, the users may manually 
instrument the desired functions and regions of their 
application by inserting POMP instrumentation 
directives and then using the “kinst-pomp” command in 
the same way as described above for “kinst”.  POMP 
instrumentation directives are supported for Fortran and 
C/C++ and are replaced by the necessary instrumentation 
calls by our source-to-source transformation tool OPARI 
[6].  In the case of OpenMP programs, OPARI also 
automatically instruments all OpenMP constructs and 
OpenMP run-time library calls by inserting calls to the 
POMP monitoring API [7].   An advantage of using 
POMP instrumentation directives is that the 
instrumentation is ignored during normal compilation.  
An INST BEGIN/INST END pair can be used to mark 
any user-defined sequence of statements, again with a 
single argument giving a name for the code region.  At 
least the main program function must be instrumented in 
this way, and in addition, an INST INIT directive must 
be inserted as the first executable statement of the main 
program.     
   While fairly straightforward, such manual 
instrumentation of a large program is time-consuming 
and has an adverse effect on time to solution.  In 
addition, the manual instrumentation must be redone 
with every new version of the program   Fortunately, the 
TAU performance analysis system [8] provides an 
automated source code instrumentation mechanism that 
can be used with the EPILOG library.  TAU is a cross-
platform tool that supports a wide variety of HEC 
platforms.  To use TAU’s automated source code 
instrumentation, the user should first configure and build 
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TAU with the desired options.  To use EPILOG, TAU 
should be configured with the –TRACE and –epilog 
options.  Then only two changes need to be made to the 
application makefile.  First, a makefile stub with the 
necessary TAU definitions, which was created when the 
appropriate library was built, should be included.  Then 
the user need only precede all compile and link 
commands with $(TAU_COMPILER).   All MPI 
functions, user functions, and OpenMP constructs will 
then be instrumented with EPILOG library calls.   TAU 
also uses KOJAK’s OPARI system [6] to automatically 
instrument OpenMP constructs.  Although TAU 
currently supports automated source code 
instrumentation only down to the routine level for non-
OpenMP codes, there are plans to extend the automated 
instrumentation capability to the basic block and loop 
level. 
   An alternative to source code instrumentation is to use 
automatic binary instrumentation.  KOJAK supports 
binary instrumentation on IBM systems where the 
optional DPCL (Dynamic Probe Class Library) package 
[9] has been installed.  The user need only precede 
compile and link commands with “kinst-dpcl” and 
launch the resulting program using the “elg-dpcl” 
command.  TAU supports binary instrumentation using 
the Dyninst[10,11] library.  The tau_run tool 
dynamically loads the specified TAU instrumentation 
library and instruments the application at runtime.  All 
user and MPI functions are instrumented.   
   If EPILOG has been built with hardware counter 
support enabled, then hardware counter data can be 
recorded as part of the event records.  To request the 
measurement of certain counters, the user must set the 
environment variable ELG_METRICS to a colon-
separated list of counter names.  EPILOG uses the PAPI 
library [4,5] to access the hardware counters.  All of the 
PAPI standard metrics are supported for data collection 
although not all are currently supported for automated 
analysis. 
    Any of the instrumentation methods described above 
will cause an EPILOG trace file to be produced when the 
application is run.  The per-process trace files generated 
during the execution will be automatically merged into a 
single trace file when execution ends.  The resulting 
trace file can be analyzed using KOJAK’s automated 
performance analysis as explained below. 
 
3. Automated Performance Analysis 

   Large-scale applications running on HEC systems can 
produce extremely large trace files.  Visualization tools 
such as Vampir and Intel Trace Analyzer [12], Jumpshot 
[13], and Paraver [14] can provide a graphical view of 

the state changes and message passing activity 
represented in the trace file, as well as provide statistical 
summaries of communication behavior.  However, it is 
difficult and time-consuming for even expert users to 
identify performance problems from such a view or from 
large amounts of statistical data.  Spending large 
amounts of time analyzing performance data manually 
has a negative effect on time to solution.  KOJAK’s 
EXPERT tool is an automatic trace analyzer that 
attempts to identify specific performance problems.  
Internally, EXPERT represents performance problems in 
the form of execution patterns that model inefficient 
behavior.    These patterns are used during the analysis 
process to recognize and quantify inefficient behavior in 
the application.   
   The performance problems addressed by EXPERT 
include inefficient use of the parallel programming 
model and low CPU and memory performance.  
Internally patterns are specificed as C++ classes that 
provide callback methods to be called upon occurrence of 
specific event types in the event stream.  The pattern 
classes are organized in a specialization hierarchy, as 
shown in Figure 2.  There are two types of patterns: 1) 
simple profiling patterns based on how much time or 
some other metric (e.g., cache misses) is spent in certain 
MPI calls or code regions, and 2) patterns describing 
complex inefficiency situations usually described by 
multiple events – e.g., late sender in point-to-point 
communication or synchronization delay before all-to-all 
operations.   Recent work has taken advantage of the 
specialization relationships to obtain a significant speed 
improvement for EXPERT and to allow more compact 
pattern specifications [15].  Each pattern calculates a 
(call path, location) matrix containing the time spent on 
a specific behavior in a particular (call path, location) 
pair, where a location is a process or thread.  Thus, 
EXPERT maps the (performance problem, call path, 
location) space onto the time spent on a particular 
performance problem while the program was executing 
in a particular call path at a particular location. After the 
analysis has been finished, the mapping is written to a 
file and can be viewed using the CUBE display tool. 
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Figure 2.  EXPERT pattern specialization hierarchy 
 

   The CUBE display for a crystal growth simulation [16] 
run on eight processors of a Linux cluster is shown in 
Figure 3.  The display consists of three coupled tree 
browsers, representing the metric, the program, and the 
location dimensions from left to right.  The user can 
switch between a call tree and a flat profile view of the 
program dimension, with the default being the call-tree 
view.  The nodes in the metric tree represent 
performance metrics, the nodes in the call tree represent 
call paths, and the nodes in the system tree represent 
machines, nodes, processes, and threads.  A user can 
perform two types of actions: selecting a node or 
expanding/collapsing a node.   At any given time, there 
are two nodes selected, one in the metric tree and one in 
the call tree.  Each node is labeled with a severity value.  
A value shown in the metric tree represents the sum of a 
particular metric for the entire program, that is, across 
all call paths and all locations.  A value shown in the call 
tree represents the sum of the selected metric across all 
locations for a particular call path.  A value shown in the 
location tree represents the selected metric for the 
selected call path and a particular location.  All numbers 
may be displayed either as absolute values or as 
percentages.  To help identify metric/resource 
combinations with a high severity, values are ranked 
using colors.   The color legend shows a numeric scale 
mapping values to colors.  Note that all hierarchies in 
CUBE are inclusion hierarchies, meaning that a child 
node represents a subset of a parent node.  The severity 
value in CUBE follows the principle of single 
representation – that is, within a tree each fraction of the 
severity is displayed only once.  The purpose of this 
strategy is to have a particular problem appear only once 
in the tree and thus help identify it more quickly. 
 

Figure 3.   CUBE display showing metric, call tree, 
and location dimensions 

 
Performance optimization of parallel applications usually 
involves multiple experiments to compare the effects of 
different code versions, different execution 
configurations, or different input data.  In addition, 
hardware characteristics may limit the availability of 
certain performance data, such as hardware counter data, 
in a single run, requiring multiple experiments to obtain 
a full set of data.  A user may also wish to combine the 
results obtained using different monitoring tools that 
cannot be applied simultaneously.  Finally, results of 
analytical modeling or simulation may need to be 
compared with experimental data.  The traditional 
method of comparing different experiments is to put 
multiple single-experiment views side by side or to plot 
overlay diagrams.   Previous research on multi-
experiment analysis described in [17] uses an operator to 
calculate a list of resources showing significant 
discrepancies between different experiments.  However, 
this difference operator maps from its input space 
containing entire experiments into a smaller 
representation consisting of a list of resources.  A 
repeated application is not possible, and further 
processing would require a logic or display different from 
the one suitable for the original input data.  With our 
approach the output of multi-experiment analysis can be 
represented just like its input, allowing us to use the 
same set of tools to process and display it.  The CUBE 
performance algebra can be used to compare, integrate, 
and summarize performance data of message-passing 
and/or multithreaded applications from multiple 
experiments including results obtained from simulations 
and analytical modeling.  The algebra consists of a data 
model to represent the data in a platform-independent 
fashion plus arithmetic operations to subtract, merge, 
and average the data from multiple experiments.,  All 
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operations are closed in that their results are mapped into 
the same space, yielding an entire “derived” experiment 
including data and metadata.  Figure 4 shows the 
differences between two versions of a nano-particle 
simulation, with raised reliefs indicating performance 
improvements and sunken reliefs indicating performance 
degradations.  The differences are broken down along the 
various dimensions.  The CUBE performance algebra is 
described in further detail in [18]. 
 

 
 
Figure 4.  Intuitive display of differences between two 

code versions 
 
4. Scalability and Portability Issues 
 
     While analysis of event tracing has proved to be a 
superior technique to identify performance problems at a 
high level of abstraction, it usually suffers from 
scalability problems associated with trace-file size.  If the 
automated instrumentation techniques described in 
section 2 are applied non-discriminately, they can 
instrument all user and MPI functions and OpenMP 
constructs with trace library calls, resulting in a large 
amount of trace data being collected.  Although 
KOJAK’s approach of reducing the trace data to a 
higher-level, more compact representation using 
EXPERT results in a much smaller data file, the initial 
very large raw trace file can be problematic.  Fortunately 
TAU provides a filtering mechanism available to reduce 
the instrumentation.  An initial profiling run can be 
conducted to identify routines that are called a very large 
number of times and for which trace data do not 
contribute much useful information.  These routines can 
then be excluded from the automated instrumentation by 
specifying them in an exclude list.  The tau_reduce tool 
can be used to generate the exclusion list automatically, 
and work is underway to add this capability to KOJAK’s 

module that handles automatic user function 
instrumentation via compiler switches. 
   Even with careful filtering, large-scale applications can 
still produce very large trace files.  In view of present and 
future architectures consisting of thousands of processors 
and in view of applications running on all or at least a 
major fraction of the available CPUs, KOJAK’s current 
approach will become increasingly constrained by the 
potentially enormous size of the resulting event traces.   
The current approach of collecting a large trace file for 
an entire parallel program execution in a centralized 
location and then processing and reducing this single 
trace file, such as the approach used by the EXPERT 
trace analysis tool in KOJAK, will not scale to thousands 
of processors.  Although recent improvements have made 
an order of magnitude improvement in EXPERT’s 
efficiency [15], our future research in this area will focus 
on applying parallel and distributed processing 
approaches to the processing, reduction, and filtering of 
large-scale trace data.    
     KOJAK’s current CUBE display will be unwieldy for 
representing HEC systems with thousands of processors.  
We plan to develop a highly optimized version of the 
CUBE display that replaces the current tree 
representation of processes and threads with a much 
more scalable multi-dimensional topology display 
reflecting the virtual topology of the application and/or 
the physical topology of the machine. As an integral part 
of parallel programming deals with choosing the right 
virtual topology, that is, the mapping of processes and 
threads onto the problem domain, a topology display will 
not only be much more scalable but can also provide 
more intuitive guidance in analyzing the influence of 
physical or logical communication structures. 
    KOJAK is portable across a wide range of UNIX 
platforms including Linux on IA-32, IA-64, and 
Opteron; IBM POWER 3 and 4; SGI MIPS and IA-64; 
SUN Sparc; HP Alpha; Cray T3E and X1; IBM BG/L; 
NEC SX; and 
Hitachi SR8000.  Since the analysis performed by 
KOJAK is based on standardized characteristics of the 
programming models MPI and OpenMP, the platform-
dependent part of KOJAK's implementation is very 
small. Porting KOJAK to a new platform requires 
essentially the provision of time-measurement routines, 
information on local file systems, and platform and node 
names. Portable access to hardware counters is achieved 
by using the PAPI library [4,5].  Portable source code 
instrumentation is achieved using PDToolkit and Opari 
[6].  Portable binary instrumentation is achieved using 
the Dyninst [11] and DPCL [9]. 
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5. Conclusions and Future Work 

     Automated approaches to performance 
instrumentation and analysis promise to increase 
programmer productivity and reduce time to solution by 
reducing both development time and execution time.  
Performance tuning is often a neglected part of 
application development because the amount of effort 
invested does not yield an adequate return in reduction of 
execution time.  By automatically and accurately 
pinpointing the most severe performance problems, the 
amount of effort can be reduced while achieving greater 
performance gains.   
     Although some significant results have been obtained 
already, the pattern analysis used by EXPERT could be 
considerably improved.  We have only begun to scratch 
the surface on the specification of patterns based on 
hardware counter data and on correlating these data with 
other events and with program data structures.   The 
pattern search could also be made more accurate by 
applying it at the loop level.  Scientific applications 
frequently contain computationally intensive nested loop 
structures, the tuning of which is critical to achieving 
good performance.  We expect the combination of 
automated instrumentation at the loop level and the 
specification of patterns for analyzing nested loop 
performance to provide a powerful mechanism for 
achieving substantial performance gains with a 
minimum of effort. 
     To be most useful to a developer in tuning an 
application, information about cache and memory 
behavior should be presented in a way that relates it to 
program data structures at the source code level.  
KOJAK’s EXPERT analyzer and CUBE display tool 
support post-mortem analysis of trace and/or profile data 
with a display that allows the user to interactively 
explore a similar three-dimensional performance space 
with the metric, call tree, and location dimensions 
displayed by coupled tree browsers.  In order to enable 
performance analysis to focus specifically on memory 
hierarchy performance as it relates to data structures used 
by an application, we plan to extend the search space to 
include an explicit data structure dimension.  This 
dimension will include various levels of data structures 
that may be distributed across multiple memories in a 
parallel system.  Explicit representation of this 
dimension will better specification of patterns that 
represent inefficient memory system performance, as 
well as hyper-linking detected memory performance 
problems to entities in the other dimensions of the 
performance search space, such as the specific call path 
that is generating the particular memory performance 
problem. 

     Future HEC systems may require the use of new 
parallel programming paradigms.  We have prototyped 
an extension of the KOJAK toolset that is able to 
instrument, record, and analyze MPI-2 one-sided 
communication and synchronization features.  This work 
can be extended easily to handle vendor-specific one-
sided communication such as SHMEM or LAPI.  Work 
is also underway to analyze Co-Array Fortran [19] 
applications using KOJAK. 
     In Section 4, we have already mentioned planned 
future work on improving the scalability of trace-based 
automated performance analysis. 
     Our claim that automated performance analysis can 
improve time to solution of scientific applications on 
HEC systems needs to be verified with experimental 
evidence.  The amount of effort actually involved in 
using the tools needs to be measured and the 
performance gains obtained quantified under controlled 
conditions.  We plan to investigate programmer 
productivity metrics and apply them to measure the 
effectiveness of the KOJAK approach. 
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Abstract

FG is a programming environment designed to reduce
the source code size and complexity of out-of-core programs
running on clusters. Our goals for FG are threefold: (1)
make these programs smaller, (2) make them faster, and (3)
reduce time-to-solution. In this paper, we focus on the first
metric: the efficacy of FG for reducing source code size
and complexity. We designed FG to fit programs, including
high-end computing (HEC) applications, for which hiding
latency is paramount to designing an efficient implemen-
tation. Specifically, we target out-of-core programs that fit
into a pipeline framework. We use as benchmarks three out-
of-core implementations: bit-matrix-multiply/complement
(BMMC) permutations, fast Fourier transform (FFT), and
columnsort. FG reduces source code size by approximately
14–26% for these programs. Moreover, we believe that the
code FG eliminates is the most difficult to write and debug.

1. Introduction

In this paper, we demonstrate that our programming en-
vironment, called ABCDEFG (FG for short) [9], reduces
source code size for out-of-core implementations of bit-
matrix-multiply/complement (BMMC) permutations, fast
Fourier transform (FFT), and columnsort. Replacing each
of these C and C* programs by a comparable program writ-
ten with FG saves 468, 1322, and 2004 lines of source code,
respectively. These reductions amount to percentage de-
creases of 14.6%, 17.4%, and 25.6% of the source-code
lines, respectively.

The high-end computing (HEC) applications on which
we focus are out-of-core programs running on clusters. In

∗Supported in part by DARPA Award W0133940 in collaboration with
IBM.

†Supported in part by DARPA Award W0133940 in collaboration with
IBM and in part by National Science Foundation Grant IIS-0326155 in
collaboration with the University of Connecticut.

an out-of-core program, the amount of data exceeds the ca-
pacity of main memory, and therefore data must reside on
disk. Performing disk I/O is a high-latency operation, and
so in order to achieve a high-performance implementation,
it is essential to hide latency in these programs. We take
two separate but related approaches to hide latency. First,
we must overlap work. Since we often use disk I/O and
interprocessor communication, we can overlap these two
types of operations with computation on the CPU. Second,
we must use buffers to access data. A buffer is simply a
block of memory; in our programs, we read into and write
from buffers in order to amortize the cost of transferring
data among levels of the memory hierarchy. The pairing
of writing asynchronous code to overlap work and using
buffers to access data effectively hides latency in HEC par-
allel programs. We call the code for creating asynchrony
and managing buffers glue.

Each of the three programs that we focus on in this pa-
per fits into a pipeline framework. For example, Figure 1
illustrates the pipeline structure we use for our implemen-
tation of out-of-core columnsort. The pipelines in each of
the three programs contain a stage that reads from disk, a
stage that writes to disk, a stage that performs interprocessor
communication, and one or more stages that perform com-
putation. To introduce asynchrony into our programs, we
overlap work by running the stages of each pipeline concur-
rently. Buffers travel from stage to stage; every stage may
be working on a distinct buffer simultaneously.

Every time a buffer travels the length of the pipeline, we
say that one round of execution has completed. Since we
are in an out-of-core setting, we expect that the number of
rounds demanded by a program far exceeds the number of
buffers that can fit in memory. Therefore, we must reuse
buffers after they travel the length of the pipeline. We use
a global pool for buffers; we store free buffers in the pool
after we initially allocate them, and we return each buffer to
the pool whenever it completes a round.

Hiding latency by way of creating asynchrony and man-
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4. permute1. read   3. communicate 2. sort 5. write

Figure 1: An implementation of out-of-core columnsort, represented as a pipeline. The first stage reads data from disk into a buffer. The second stage
performs a local sort. The third stage performs interprocessor communication. The fourth stage performs a local permutation. The final stage writes data
from the buffer to disk. The stages run concurrently so that, at any moment, each stage may be working on a distinct buffer.

aging buffers is a difficult task. Without FG, it means the
programmer must produce a considerable amount of glue in
addition to the code required to implement the algorithm.
We define as base code any code that is not the glue; es-
sentially, the base code is what the program would be with-
out any attempt to overlap. The base code does not change
significantly between FG and non-FG programs. With FG,
however, the programming environment makes it much eas-
ier to incorporate the glue, thus reducing the source code
size and complexity of out-of-core programs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses two former methods for writing pipeline-
structured programs: the ViC* system and C programming
with threads. Section 3 is a brief description of the FG pro-
gramming environment. Section 4 presents the three out-
of-core applications we use as benchmarks for comparing
FG and non-FG code. Section 5 analyzes the reductions in
code size and complexity that we have achieved with FG.
Finally, Section 6 offers some concluding remarks.

2. Previous approaches

In this section, we present two prior approaches that re-
searchers at Dartmouth have taken to writing out-of-core
programs that fit into a pipeline framework. ViC* [3] was
a software system, developed during the period 1992–2001,
that adapted C* programs for massive datasets. ViC* used
static scheduling to introduce asynchrony, overlapping I/O
with communication and computation. It was too difficult,
however, to overlap communication with computation in the
ViC* framework. Starting in 2001, we moved to program-
ming pipeline-structured out-of-core applications in C with
threads [1]. Threads use dynamic scheduling, and so we
were able to overlap all three of communication, compu-
tation, and I/O. The programmer was responsible for co-
ordinating all the actions associated with threads, however.
With both approaches, the programmer was responsible for
writing the code that managed buffers.

2.1. ViC*

ViC* was a compiler and run-time system, and it was
the focus of out-of-core programming at Dartmouth start-
ing in 1992. We implemented two significant out-of-core

programs in ViC*, namely bit-matrix-multiply/complement
(BMMC) permutations [5, 7] and fast Fourier transform
(FFT) [8].

ViC* overlapped only I/O with other operations, and it
used static scheduling to do so. That is, in order to enjoy
even the partial overlapping of asynchronous I/O, the pro-
grammer had to produce the code that scheduled the I/O
operations. Writing asynchronous I/O is far more complex
than writing synchronous I/O. Figure 2 illustrates a simpli-
fied example of using asynchronous and synchronous I/O
within an out-of-core permutation. The asynchronous ver-
sion is more efficient than the synchronous version, because
it uses a blocking wait to perform the in-core permutation
while waiting for the disk I/O to complete, whereas the syn-
chronous version first reads, then performs the in-core per-
mutation, then writes. It is clear, however, that the syn-
chronous version is much simpler to code.

Furthermore, in ViC*, the programmer was responsible
for all aspects of buffer management, a task made more
complicated by the presence of asynchronous I/O. The pro-
grammer had to allocate and deallocate buffers, store them
in a global pool, keep track of which buffers were free, and
recycle buffers that had traversed the entire pipeline. In ad-
dition to these primary buffers, the programmer was respon-
sible for allocating and maintaining secondary buffers, used
for in-core permutations. Although any permutation can be
done in-place, it is often simpler to use distinct source and
target buffers. With ViC*, the programmer had to allocate
designated secondary buffers to use as target buffers, ensure
that a particular one was free to use in a permutation, and,
after the permutation, release the secondary buffer so that it
could be used again.

2.2. Threaded programming

After the ViC* project, the focus of out-of-core comput-
ing at Dartmouth turned to writing C code using threads.
We used standard POSIX threads [10] to overlap I/O as
well as communication and computation, and so we were
able to take advantage of the dynamic scheduling inher-
ent in the pthreads package. With dynamic scheduling, any
thread that is ready can run when the CPU becomes avail-
able. Moving from ViC* to threads meant that overlapping
work for asynchrony no longer necessitated writing large
amounts of code for statically scheduled asynchronous I/O.
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b = 0
start read into buffer [b, 0]

while some read has not been started do
wait for read into buffer [b, 0]

if not first or second time through
then wait for write to complete from target buffer [b, 1]

if not working on the final buffer
then start read into buffer [1 − b, 0]

permute (in-core) from read buffer [b, 0] into target buffer [b, 1]

start write of target buffer [b, 1]

b = 1 − b
wait for writes to complete from target buffers [0, 1] and [1, 1]

(a)

while some read has not been started do
read into buffer 0
permute (in-core) from read buffer 0 into target buffer 1
write target buffer 1

(b)

Figure 2: An out-of-core permutation using asynchronous and synchronous I/O operations. (a) Using asynchronous I/O. While waiting for a read or write
to complete, we can begin the in-core permutation, but we must schedule it statically. (b) Using synchronous I/O. It is much simpler, but much less efficient,
than its asynchronous counterpart.

It introduced a different kind of glue, however—all the code
associated with spawning and coordinating the actions of
the threads. Also, the programmer’s burden in terms of
buffer management was no different than with ViC*.

We implemented an out-of-core version of Leighton’s
columnsort algorithm [11] using this approach [1, 2]. In the
threaded C code, we represented each stage of a pipeline
as a thread. Since threads run concurrently, it was up to
the programmer to ensure that they operated on buffers in
order. The programmer spawned threads and coordinated
among them using semaphores. Each stage had to wait for a
signal from its predecessor before operating on a particular
buffer; each stage also had to signal its successor after it fin-
ished working on the buffer. The structure of the pipeline,
therefore, was tied to the operations within threads. The
programmer had to write code to ensure that the threads sig-
naled each other appropriately.

As with ViC*, the programmer was entirely responsible
for buffer management in threaded code. The programmer
had to allocate, deallocate, and store buffers, and recycle
them from the global pool when necessary. Moreover, the
programmer had to allocate and store additional buffers for
stages whose work could not be done in place.

3. The FG environment

In this section, we present a simplified description of FG.
The central job of FG is to provide the glue for HEC appli-
cations that fit a pipeline structure. To create asynchrony,
FG represents each step of work as a pipeline stage and
maps it to a thread. FG also manages the buffers to amor-

tize the cost of transferring data among levels of the mem-
ory hierarchy. By shouldering both of these tasks, FG hides
latency in such programs.

FG uses pthreads to overlap work in the pipeline.
The programmer does not write any code associated with
pthreads but instead has the simpler task of creating FG-
defined objects. FG spawns all the threads, coordinates the
semaphores for communication among threads, and kills the
threads after the pipeline has completed. The programmer
maps one or more functions to each thread; these functions,
however, are completely synchronous. The programmer
need not take overlap into consideration when writing code
with FG. In fact, a programmer with only a rudimentary
knowledge of threads can easily produce threaded code in
FG.

FG also assumes all aspects of buffer management. It
allocates buffers at the start of execution and deallocates
them at the end. The programmer need only specify the
number and size of buffers. FG also recycles buffers ap-
propriately, so that the programmer need not write code to
establish or maintain a global pool of buffers. Moreover,
FG introduces a new kind of buffer that we call an auxiliary
buffer. An auxiliary buffer does not traverse the pipeline,
but is simply a block of memory that can be requested by
any stage. We have seen that it is sometimes necessary to
use a second buffer in a stage, such as one that performs a
permutation, and FG supplies auxiliary buffers for this pur-
pose. Finally, FG ensures that buffers traverse the pipeline
in sequential order. A stage does not have knowledge of its
successor and predecessor stages. Instead, each stage sim-
ply calls FG-supplied functions to accept buffers from its
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predecessor and convey buffers to its successor.
After writing simple, synchronous C or C++ stages, there

is little a programmer must do to put together an FG pro-
gram. FG provides a class to describe a thread, so that the
programmer need not interact directly with the pthreads in-
terface, as well as a class to describe a stage. Both of these
classes are easy to use. The programmer creates the FG-
defined stages and threads necessary for the pipeline. Then
the programmer simply assigns the appropriate functions to
the stages and maps each stage to a thread. All that is left
is to create the pipeline, another FG-provided class. We
will show in Section 5 that setting up and running the FG
pipeline is quite a bit simpler for the programmer than set-
ting up and running a pipeline with ViC* or with threads.

The preceding description does not tell the whole story
of FG. Its capabilities extend well beyond the linear
pipeline structures that our three benchmark applications fit.
Additional features of FG include multistage threads, mul-
tistage repeat, buffer swapping, macros, hard barriers, soft
barriers, and implicit threads. Additionally, programmers
can incorporate fork-join constructs and directed acyclic
graphs into an FG pipeline. FG also uses time-balance
strategies to reduce the execution time of a pipeline on the
fly. Although we touch on some of these features in Sec-
tion 5, the details are beyond the scope of this paper.

4. Benchmark applications

In this section, we present our benchmark applications:
out-of-core implementations of BMMC permutations, FFT,
and columnsort. We implemented the first two programs in
ViC* and the third in C code with threads; we implemented
all three in FG for comparison. In Section 5, we will show
the reductions in source code size and complexity that FG
affords for the three programs.

4.1. BMMC permutations

A BMMC permutation is specified by an n × n char-
acteristic matrix A whose entries are drawn from {0, 1}

and that is nonsingular over GF(2). That is, multiplica-
tion is replaced by logical-and, and addition is replaced by
exclusive-or. The following are examples of BMMC per-
mutations: matrix transpose when all dimensions are pow-
ers of 2, shuffle and unshuffle permutations, Gray-code per-
mutations, and bit-reversal permutations.

For our BMMC-permutation pipeline, the stages are as
follows: a read stage, a first permute stage, a communicate
stage, a second permute stage, and a write stage. The read
and write stages perform disk I/O. The communicate stage
performs interprocessor communication across the cluster.
The two permute stages work only within each node’s CPU

and local memory. We can overlap the five stages, there-
fore, because the CPU is idle during the read, write, and
communicate stages, and it is busy during the two permute
stages.

Let us explore the path of a buffer through this pipeline.
First, the read stage reads a portion of the data into the
buffer from disk. Each item i to be permuted initially be-
longs to some processor P(i) and has a destination proces-
sor P ′(i). The first permute stage rearranges the data on
each processor so that the items mapped to each target pro-
cessor are contiguous in local memory. The communicate
stage performs interprocessor communication so that each
item i moves from P(i) to P ′(i). The second permute stage
rearranges the data locally on each processor. Finally, the
write stage writes the data from buffer to disk.

4.2. FFT

The FFT is a computationally efficient algorithm for
computing the discrete Fourier transform of an N-element
vector. First, the input undergoes a bit-reversal permutation.
Then a butterfly graph of lg N stages is computed. (We use
lg N to mean log2 N .) In the sth stage of the butterfly graph,
elements whose indices are 2s apart participate in a butterfly
operation [6, Chapter 30].

Figure 3 illustrates our out-of-core FFT implementation.
We start with a bit-reversal permutation, for which we use
our out-of-core BMMC permutation pipeline as a subrou-
tine. Then there are lg N/ lg F superlevels, where F is
the buffer size. Each superlevel consists of N/F separate
“mini-butterflies” (on F elements and with depth lg F) fol-
lowed by a particular type of BMMC permutation on the
entire vector. Each pass of the FFT implementation, there-
fore, consists of a pipeline with a read stage, a mini-butterfly
stage, and a write stage, followed by a subroutine that per-
forms a BMMC permutation. See [8] for details.

4.3. Columnsort

We implemented an out-of-core version of Leighton’s
columnsort algorithm in C code with threads. Columnsort
sorts N items, which are treated as an r × s mesh. When
columnsort completes, the mesh is sorted in column-major
order. Columnsort proceeds in eight steps. Steps 1, 3, 5, and
7 are identical: they sort the columns of the mesh. Each of
the even-numbered steps performs some fixed permutation
on the mesh, but the fixed permutation differs from stage to
stage.

Our columnsort implementation makes four separate
passes over the data. Each pass performs two of the eight
steps of the columnsort algorithm. Each pass also includes
a read stage, a write stage, and a communicate stage. Fig-
ure 1 illustrates a pass of columnsort. It represents the gen-
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Figure 3: The structure of the out-of-core FFT algorithm. After a bit-reversal permutation, we perform lg N/ lg F superlevels. Each superlevel consists of
N/F mini-butterflies on F values, followed by a BMMC permutation on the entire vector.

Seconds: 8 GB/proc Code size
Program non-FG FG difference improvement non-FG FG difference improvement
BMMC 1844 570 1274 69.1% 3204 2736 468 14.6%
FFT 4245 1638 2607 61.4% 7612 6290 1322 17.4%
Columnsort 1893 1862 31 1.6% 7824 5820 2004 25.6%

Table 1: Running times and code size reductions for our three benchmark programs with and without FG. We show the running times, in seconds, and the
lines of source code. We also show quantitative differences and percentage improvements. Each time shown is the average of three runs.

eral structure of a pass, although the details of the stages
vary with each pass. In our columnsort implementation,
the buffer size is equal to the size of one column of the
input mesh; every time we read from or write to disk, we
transfer exactly one column. Let us explore the path of a
buffer through the pipeline. First, the read stage reads one
column of the input mesh from disk into the buffer. The
sort stage sorts each column. As with BMMC permutations,
each item i initially belongs to some processor P(i) and has
a destination processor P ′(i). Therefore, the communicate
stage transmits items among processors so that each item i
moves from P(i) to P ′(i). The permutation stage permutes
the data locally on each processor. Finally, the write stage
writes the data from the buffer to disk.

5. Reducing code size and complexity

In this section, we present the reductions in source code
size and complexity that FG affords. The authors have
shown previously [4] that using FG speeds the execution
time of the BMMC permutations, FFT, and columnsort im-
plementations. Table 1 summarizes the running times for
the three programs using 8 GB of data per processor on a
16-node cluster. Due to disk-space limitations, 8 GB per
processor was the largest problem size that we could test.

The authors presented more detailed running-time results
in [4], but the focus of the present paper is on code size and
not experimental results, and so it suffices to show a repre-
sentative problem size here.

Table 1 also summarizes the differences in source code
size between FG and non-FG programs. For BMMC per-
mutations, using FG reduces source code size by 468 lines,
or approximately 14%. For FFT, FG reduces source code
size by 1322 lines, or approximately 17%. Finally, for
columnsort, FG reduces source code size by 2004 lines, or
approximately 25%.

Where do these reductions come from? FG lessens the
size and complexity of source code in ViC* programs by
eliminating the need for writing asynchronous I/O code.
In threaded programing, FG eliminates the need for writ-
ing any code associated with the threads. Furthermore, FG
takes on all buffer management, a common component of
both ViC* and threaded programming.

For our benchmark programs, we separate the code into
two parts: glue and base code. Figure 4 illustrates the break-
down between glue and base code in FG and non-FG pro-
grams. In FG, the glue does not disappear completely. In-
stead, the glue is code that we use for setting up, running,
and dismantling pipelines, as well as for accepting and con-
veying buffers. As the figure shows, however, the glue in
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Figure 4: Lines of source code dedicated to glue and to base code for BMMC permutations, FFT, and columnsort, with and without FG. Without FG, the
BMMC permutation program uses 502 lines of code for glue, FFT uses 1249 lines, and columnsort uses 1861 lines. With FG, these programs require only
143, 212, and 220 lines of code for glue, respectively.

the FG programs accounts for substantially fewer lines of
code than in the non-FG programs.

With the two ViC* programs, the glue is devoted mostly
to asynchronous I/O and buffer management. As we show
in Figure 4, ViC* requires 502 lines of glue for BMMC
permutations and 1249 lines for FFT. These lines amount
to 15.59% of the total code for BMMC permutations and
16.41% for FFT. The corresponding FG programs, on the
other hand, need only 143 lines of glue for BMMC and 212
lines for FFT, respectively, 5.23% and 3.37% of the total
code.

With the threaded program, most of the code reduction
comes from setting up and coordinating the threads as well
as from managing buffers. In the threaded implementation
of columnsort, there is a considerable amount of code de-
voted to spawning threads and coordinating the concurrent
actions among them. Figure 4 shows that, in columnsort im-
plemented with threading, the glue accounts for 1861 lines
of code, which is 23.77% of the total. With FG, on the other
hand, the glue is reduced to setting up, running, and shutting
down the pipeline, which requires only 220 lines of code, or
3.78% of the total.

Reducing source code size is not the only benefit of FG;
it lessens the complexity of the code as well. We cannot
quantify this claim, but in our experience we have found
that the glue FG provides is particularly difficult to write
and debug. Without FG, the programmer must not only
implement the algorithm itself, but also write the code to
make the implementation run efficiently in an HEC envi-
ronment. With FG, the programmer writes little glue, and
the functions are straightforward and synchronous. In our
experience, the great majority of base code is far simpler to
write than the code to overlap operations. Writing the code

for buffer management is onerous as well. Furthermore, we
have found that it is especially difficult to debug the glue.
Particularly in the threaded programs, for which standard
debugging tools are not reliable, finding errors in the glue
often proves to be a substantial burden.

FG also allows for easy structural experimentation.
When writing HEC programs, a programmer often searches
for small changes to improve performance. Reducing run-
ning time by even a small percentage can be important, and
altering the structure of a pipeline can reduce running time.
For example, a programmer might map more than one stage
to a single thread—mapping a read stage and a write stage
to a single I/O thread since the two operations serialize at
the disk anyway. Without FG, replacing a one-to-one map-
ping of stages to threads by a many-to-many mapping en-
tails considerable time and effort. Figure 5 shows that, with
FG, it requires only a few lines of code to make the change.
Moreover, it is just as easy to revert to the former mapping if
the change does not prove effective. FG can simplify the use
of threads even further—it is possible to write a program in
FG without explicitly creating threads at all. A programmer
can simply create the stages of a pipeline, and FG creates a
one-to-one mapping from the stages to threads.

FG also has functionality to find performance improve-
ments. Since the best performance generally comes from
a time-balanced pipeline, FG monitors the progression of
buffers from stage to stage to determine whether any one
stage processes buffers more slowly or more quickly than
others. FG searches for any stage that becomes a bottleneck
stage—it has more buffers in its queue than other stages—
and replicates it in another thread. It also searches for any
stage that becomes a spewing stage—it processes buffers
more quickly than other stages—and lowers the priority of
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FG_pipeline_thread_helper io_thread = new FG_pipeline_thread_helper_info();
FG_pipeline_stage_helper

read_stage = new FG_pipeline_stage_helper_info(io_thread),
write_stage = new FG_pipeline_stage_helper_info(io_thread);

Figure 5: Mapping a read stage and write stage to one single I/O thread in FG. To split the stages between two threads, we would simply need to create one
new thread and make a one-to-one mapping—a change that would require about one additional line of code.

stage1->replicate();
stage2->lower_priority();

Figure 6: Using stage replication and thread priority adjustments in FG. These two lines of code can yield performance improvements of up to approximately
4%.

its thread. We have found that the speed gains from these
run-time techniques are modest—up to 4% at best. For such
a small gain, it may not be worth the time and effort to im-
plement them by hand. As Figure 6 shows, however, with
FG, it requires little effort on the part of the programmer.

6. Conclusion

We conclude with a discussion of related work and our
future plans for FG.

6.1. Related work

StreamIt [13] is a high-level language for stream pro-
grams that provides an abstraction for manipulating streams
of word-size entities. One of the goals of the project is to
simplify the programming of these streaming applications.
To enable simpler code, it represents an algorithm as a hier-
archical network of filters. It has a graphical editor to rep-
resent the hierarchy of components in a user-friendly way.
With the StreamIt graphical editor, the programmer initially
sees the top level components, and upon clicking on a com-
ponent, it expands into its subcomponents. Another click
causes the hierarchy to contract. FG and StreamIt share
some common structures, and both projects attempt to sim-
plify source code, but StreamIt is strictly for streaming ap-
plications.

StreamBit [12] is an optimizing compiler for StreamIt
that targets bit streaming applications such as cryptography.
It enables the programmer to produce a piece of code simply
by sketching it. A sketch is a partial specification of the full
implementation, and StreamBit derives the missing details.
StreamBit uses this sketching capability to improve produc-
tivity for transforming a functional specification (written by
a domain expert) to an optimization specification (written
by a system expert). The domain expert writes an algo-
rithm in a high-level domain-specific language, and the sys-
tem expert optimizes it for the specific system. Although

FG also simplifies programming, it does not use a sketch
of code as StreamBit does. Rather, the programmer writes
C or C++ code, and FG hides the complexity inherent in
making the code run efficiently.

6.2. Future work

We have shown in the past that FG speeds execution time
for the three benchmark programs presented here. In our fu-
ture work, we plan to conduct usability studies to investigate
FG’s third goal: reducing time-to-solution. We plan to hold
a programming case study with Dartmouth undergraduates
who are familiar with threads. Each of the subjects will re-
ceive the same threaded programming assignment. Half of
them will code with FG, and the other half will code with
threads explicitly. We will use this setup to measure the
time-to-solution for FG and non-FG programs.
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Abstract

This paper presents StreamIt and the StreamIt De-
velopment Tool. The development tool is an IDE de-
signed to improve the coding, debugging, and visualiza-
tion of streaming applications by exploiting the ability of
the StreamIt language to naturally represent streaming
codes as structured, hierarchical graphs. The StreamIt
Development Tool aims to emulate the best of tradi-
tional debuggers and IDEs while moving toward hierar-
chical visualization and debugging concepts specialized
for streaming applications. As such, it provides utilities
for stream graph examination, tracking of data flow be-
tween streams, and deterministic execution of parallel
streams. These features are in addition to more conven-
tional tools for creating and editing codes, integrated
compilers, setting breakpoints, watchpoints, and step-
by-step program execution.

A user study evaluating StreamIt and the development
tool was held at MIT during which participants were
given erroneous programs and asked to resolve the pro-
gramming errors. We compared the productivity of the
users when using the StreamIt Development Tool and its
graphical features to those who were restricted to line-
oriented debugging strategies, and we found that the
former produced ten more correct solutions compared
to the latter set of users. Furthermore, our data sug-
gests that the graphical tool chain helped to mitigate
user frustration and encouraged participants to invest
more time tracking and fixing programming errors.

1 Introduction

The last few years have witnessed the rebirth of su-
percomputing as computer scientists and engineers re-
alize that current monolithic architectures and conven-
tional von Neumann programming styles are at their lim-
its in terms of deliverable performance to the end-user.

Thus as architects, compiler engineers, and application
developers look into the future, there is a concerted ef-
fort to develop processors and programming paradigms
that can deliver significantly better performance, and
more so, to deliver high performance more productively.
This is especially important since the complexity of ap-
plications continues to increase, and compilers are more
heavily burdened with the extraction of parallelism and
the efficient mapping of computation to physical sub-
strate. What’s more is that the architectures of the fu-
ture will tend toward distributed resources in an effort to
manage the complexity of centralized architectures with
respect to power and wire delay. Thus, research labs
in industry and academia alike are investigating ideas
and methodologies to address the computing challenges
of the future with an eye toward delivering high perfor-
mance and to do so productively. This goal translates
to (i) relieving application developers from architecture
details and allowing for natural expression of applica-
tions,(ii) lessening the burden for heroic compilers that
extract parallelism,(iii) developing scalable architec-
tures that are powerful yet easier to verify and assemble.

The Computer Architecture Group at MIT has for the
last several years conducted research to address all of
the aforementioned objectives. This paper focuses on
the productivity of application developers. Specifically,
the paper will briefly describe StreamIt [11] a novel lan-
guage for the prevalent application class of stream com-
puting. StreamIt provides high-level stream abstractions
that improve programmer productivity and program ro-
bustness. The language is architecture independent, and
it features several characteristics (such as parameteriza-
tion and modularity) geared toward large scale program
development. Furthermore, this paper will also describe
a unique development environment that leverages the
language features to deliver a tool chain for the rapid
verification and debugging of StreamIt programs.

StreamIt represents a program as a hierarchical graph
of concurrent filters that operate on streams of data and
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communicate via FIFO queues. The language exposes
the parallelism and communication patterns that are in-
herent in many streaming programs which include soft-
ware radio, real-time encryption, network processing,
graphics, and multimedia editing consoles. Because of
the abundance of parallelism in such applications, they
are especially challenging to program, and worse, to de-
bug. This is due to the multitude of factors that an ap-
plication developer must consider when implementing a
streaming program, such as for example how to exploit
the parallelism on a target architecture. The marriage of
implementation to a specific processor results in both al-
gorithmic changes and code transformations that make
porting difficult—since the transformations depend on
the architecture details.

By contrast, application developers using StreamIt
focus on specifying the functional behavior of their pro-
grams and verify correctness using high level abstrac-
tions that result in clean and portable implementations.
The task of optimizing the code and efficiently mapping
it to target processors is left to the compiler which can
automate many powerful domain specific optimizations
to deliver high performance [5, 9]. This paper will not
discuss the StreamIt compiler technology; the interested
reader can visit the StreamIt web page [10] for more in-
formation on the topic.

In addition to the language and compiler effort, we
have engineered and developed a programming environ-
ment that graphically represents the hierarchical nature
of streaming codes with an eye toward the productivity
of the application engineer. The StreamIt Development
Tool (SDT) provides an elaborate prototyping and de-
bugging environment that can interpret and visually rep-
resent streaming computation. The key distinguishing
features of the SDT are its ability to track the flow of
data between streams, and the deterministic execution
of parallel streams. The latter leverages an intuitive con-
cept of time in StreamIt that is tied to the flow of data in
distributed programs. A significant portion of this paper
is dedicated to evaluating the SDT and its impact on pro-
grammer productivity. Toward quantifying productivity,
we organized a user study at MIT. The study involved
a number of students who were given a set of “buggy”
applications and asked to fix the codes according to cor-
responding functional specifications. Some of the study
participants were allowed to use the graphical debug-
ger and its distinguishing features, whereas others were
restricted to line-oriented debugging strategies. The re-
sults of our study provide evidence that the SDT was
instrumental in helping the users track down and repair
programming errors. The evidence is particularly strong
in cases where the applications were large, with many
streams and non trivial communication topologies.

As we analyzed the data from the user study, we made
a somewhat surprising observation. First, it was evident
that the SDT did not make users faster. In fact, the mean
time to solution (i.e., a program where all of the bugs
are fixed) was longer for participants using the graphical
debugger. Perhaps this is to be expected since the partic-
ipants did not have prior experience with the language or
the IDE, and indeed our post-study interviews and feed-
back support this theory. Second, the data suggested that
the power of the SDT is in mitigating the frustration fac-
tor of the participants, especially in the later portions of
the study. That is, the participants who were restricted
to line-oriented debugging strategies gave up more of-
ten, and did so sooner, compared to their counterparts
using the graphical debugger. This led us to conclude
that users tend to be more productive when they trust
the tools at their disposal. In other words, one might
believe their probability of success is reasonably high if
they are confident that the tools they are using are ade-
quate, and therefore they are more likely to invest their
time objectively.

In the following Section we describe the StreamIt
programming language, and in Section 3 we describe the
StreamIt development environment. Section 4 describes
our user study and reports our results and analysis. Sec-
tion 5 summarizes related work and Section 6 concludes
the paper.

2 The StreamIt Programming Language

StreamIt is an architecture-independent language for
streaming applications. It adopts the Cyclo-Static
Dataflow [1] model of computation which is a gener-
alization of Synchronous Dataflow [7]. StreamIt pro-
grams are represented as graphs where nodes represent
computation and edges represent FIFO-ordered commu-
nication of data over tapes.

The basic programmable unit in StreamIt is a filter.
Each filter contains a work function that executes atom-
ically, popping (i.e., reading) a fixed number of items
from the filter’s input tape and pushing (i.e., writing) a
fixed number of items to the filter’s output tape. A fil-
ter may also “peek” at a given index on its input tape
without consuming the item; this makes it simple to rep-
resent computation over a “sliding-window”. The push,
pop, and peek rates are declared as part of the work func-
tion, thereby enabling the compiler to construct a static
schedule of filter firings [6].

StreamIt provides three hierarchical structures for
composing filters into larger stream graphs (see Fig-
ure 1). Thepipelineconstruct composes streams in se-
quence, with the output of one connected to the input
of the next. Thesplitjoin construct distributes data to a
set of parallel streams, which are then joined together
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in a round robin fashion. Thefeedback loopprovides a
mechanism for introducing cycles in the graph. An ex-
ample of a pipeline appears in Figure 2. It contains a
single FIR (Finite Impulse Response) filter which could
be implemented as follows:

float->float filter FIR (int N, float[] weights)
{

work push 1 pop 1 peek N {
float sum = 0;
for (int i = 0; i < N; i++) {

sum += peek(i) * weights[i];
}
pop();
push(sum);

}
}

The filter can now serve as a module that is incor-
porated into stream graphs as necessary, for example as
part of an acoustic beam former. A filter is akin to a class
in object oriented programming with the work function
serving as the main method. A filter may also declare
a constructor function to initialize the filter state before
any other method is invoked. The implementation of the
work function in StreamIt obviates the need for explicit
buffer management. The application developer instead
focuses on the hierarchical assembly of the stream graph
and its communication topology.

3 Development Environment

The StreamIt Development Tool (SDT) features
many aspects of an IDE, including a text editor and a
debugger. For example, the SDT debugger supports line

and method breakpoints, watchpoints, program suspen-
sion, code stepping, variable inspection and value mod-
ification to list a few.

Moreover, the SDT offers features tailored to the
StreamIt language. The SDT graphically represents
StreamIt programs, and preserves hierarchical informa-
tion to allow an application engineer to focus on the
parts of the stream program that are of interest. In addi-
tion, the SDT can track the flow of data between filters,
and most importantly, it provides a deterministic mech-
anism to debug parallel streams.

The SDT is implemented in Java as an Eclipse [3]
plug-in. The Eclipse universal tools platform is an ex-
tensible development environment. We leverage the
built-in user interfaces for editing and viewing files, the
resource management system, the documentation infras-
tructure, and the runtime support of launching, running
and debugging programs.

3.1 Hierarchical Graphs

As seen in Figure 3, a StreamIt program can be visu-
ally depicted as a hierarchical directed graph of streams,
with graph nodes representing streams and graph edges
representing tapes or channels. The containers are ren-
dered according to the code declarations, and the visu-
alization tools in the SDT allow the user to selectively
collapse and expand containers. This is useful in large
streams where the application developers are only inter-
ested in visualizing a particular subset, for example to
verify the interconnect topology of the graph. In Fig-
ure 3(a), we show a screen shot of the SDT for a simple
StreamIt program which consists of a filter that gener-
ates input data (IntSource ), a splitjoin (Echo ) that
operates on the data produced by the source and whose
data is in turn consumed by anAdder . Lastly, a filter
(IntPrinter ) reads and prints the computed values
to the screen. In Figure 3(b), the splitjoin is expanded
to reveal to parallel streams:Original andDelay .
The former is simply an identity filter, whereas the later
shifts its input data one position in time (i.e., at timet it
outputs data consumed at timet + 1. The splitter in this
example is a duplicate splitter, meaning that the input
stream is duplicated to all of its siblings. The joiner is a
roundrobin joiner which collects one data item from the
left stream followed by an item from the right stream.
This particular stream program simulates how echos are
added to sound waves.

3.2 Data Flow

An important distinguishing characteristic of the
SDT is its ability to track the flow of data between
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(a) Collapsed pipeline. (b) Expanded splitjoin.
(c) Example pipeline with data in tran-
sit.

Figure 3. Hierarchical stream graph views.

streams. This is illustrated in Figure 3(c) which shows
the data that is live between two filtersSource and
DropBit . This particular program generates a se-
quence of numbers at its source, and theDropBit filter
removes the third element of the sequence with every ex-
ecution of its main function. In the figure, the values 2,
3, and 4 are queued on the input tape toDropBit , and
from the expanded filter node, we can see that the filter
requires four queued data items before the work function
can execute (i.e., the declared pop rate is 4). The ex-
panded filter node also displays other information such
as the input and output types of the stream, as well as
profiling information that is useful for debugging.

The SDT also allows the user to highlight and au-
tomatically track data items as they propagate between
streams. The user can also modify values on a tape,
much like a conventional debugger allows users to mod-
ify variables and registers.

The flow of data is especially helpful in splitjoins
where sequential data streams are distributed to paral-
lel streams, and parallel streams assembled into a sin-
gle stream. The visualization allows the user to readily

verify that splitters and joiners implement the desired
functionality. Also, the visualization allows users to
quickly pinpoint unexpected outputs (e.g., a filter push-
ing NaN’s).

3.3 Debugging Parallel Streams

Perhaps the most important feature of the SDT is its
support for debugging parallel streams. In StreamIt, the
streams in a splitjoin are independent, and can execute
when their corresponding data are queued. Thus, the
SDT can execute parallel streams in a deterministic or-
der using a single program counter and machine state;
this is in contrast to a multi-threaded program where a
user has to cope with multiple program counters and a
scheduling order that may appear non-deterministic and
subject to the host operating system. Furthermore, by
exposing the flow of data and the communication in a
stream graph, StreamIt provides a natural way to reason
about time in a distributed system—thereby greatly sim-
plifying the task of debugging parallel streaming pro-
grams.
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The SDT also features a unique capability that al-
lows a user to set instance-breakpoints. This features
is useful in splitjoins with many parallel streams or in
long pipelines which contain multiple instances of a
single filter. As with conventional debuggers, the pro-
gram executes until the designated instance of a filter is
encountered—in which case control is transfered to the
user for further input.

4 Productivity Study

We designed and carried out a user study to assess the
extent the SDT helps in debugging StreamIt programs.
The goals were two fold. First, we aimed to identify dif-
ficulties in using the SDT and toward this end we used
questionnaires and automatic action logging. The sec-
ond goal was to gather data to support the hypothesis
that the SDT can improve a programmer’s ability to de-
bug StreamIt applications.

We provided participants with a set of “buggy”
StreamIt programs, along with verbal descriptions of the
programs. The participants were asked to find and fix
the errors and to record their experience using various
forms and questionnaires. The participants were divided
into different groups, some of which used the SDT and
its graphical debugging features whereas others did not.
Our results and analysis are reported in the following
sections.

4.1 Target Population

We solicited participants for the user study by ad-
vertising it to MIT students majoring in computer sci-
ence. We favored students who specialize in communi-
cations, signal processing, computer systems and archi-
tecture, and who are experienced in popular imperative
languages (e.g., C, C++, Java). The nature of study was
not explicitly divulged in our solicitation; this served to
prevent potential users from learning about StreamIt and
becoming familiar with the SDT prior to the study. The
participants were awarded a small monetary gift upon
completion of the study.

4.2 Methodology

Each participant in the user study was presented with
a set of documents that described the tasks of the study
and which served to record information from the partic-
ipants during the study. The documents were:

1. Pre-Study Questionnaire: This document was de-
signed to gather information on the participant’s

programming background and skill level. Ques-
tions such as year in school, major, degree be-
ing sought, area of computer science concentration,
relevant classes, language proficiency, application
development experience, and background in DSP,
IDE, and the SDT were asked.

2. StreamIt Language Tutorial: This written presenta-
tion was intended to give a cursory introduction to
the StreamIt language. It described and illustrated
the syntax and semantics of the StreamIt language.
Furthermore, example toy applications and tips on
the most common mistakes new StreamIt program-
mers are likely to make were included.

3. SDT Tutorial: Another written presentation, this
document was aimed at informing users of the es-
sential features of the SDT. The first part of the
tutorial described the functionality of the StreamIt
editor and debugger. The second part of the docu-
ment contained step-by-step instructions on how to
compile, run, and debug a sample application.

4. User Tasks: This document instructed users to de-
bug nine StreamIt applications in a specific order.
Each of the nine programs contained one or more
bugs. As the users moved from one program to the
next, they were asked to record their start and end
times, the debugging methods they used (e.g., code
inspection, print statements, graphical debugger),
and a short diagnosis of the program bugs they un-
covered.

5. Description of Applications and Code: This doc-
ument contained a description of each application
(numbered 1 through 9), a code listing, a sample
buggy output, and a sample correct output. The ap-
plications are summarized in Table 1.

6. Post-Study Questionnaire: This document was de-
signed to gather data pertaining to the participant’s
experience, such as the perceived difficulty of each
problem, a general description of how the user de-
bugged each application, user satisfaction, ability
to learn and recall various features of the SDT, etc.

In order to minimize biased effects on a program-
mer’s debugging ability, and to ensure internal validity,
users were grouped into four categories. All users were
asked to debug application 1 without the SDT’s graphi-
cal features. The participants were then asked to debug
application 2 using the SDT and its graphical features.
These “control” experiments served to create a baseline
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Table 1. Applications used in the productivity study.
1. Bit Twiddle Removes every third bit from a 96 bit stream.
2. Fib Generates a Fibonacci sequence using a feedback loop.
3. Echo Effect Simulates how echos are introduced into sound waves. Uses a splitjoin with two parallel

streams.
4. Merge Sort Implements a merge sort algorithm using 16 parallel streams.
5. Cornerturn Implements a matrix transpose using a splitjoin to exchange the rows and columns. Stresses

the visual tracking of data.
6. Echo Effect2 Alternate implementation of Echo Effect using a feedback loop.
7. Bubble Sort Implements a bubble sort algorithm. This is a conceptually difficult implementation that

stresses the visualization features of the debugger.
8. Bit Reverse Sorts a sequence of 16 consecutive numbers in bit-reversed order. This is an adaptation of

the bit-reversal stage in FFT.
9. Overflow A synthetic benchmark with a substantial number of hierarchies, filters, and parallel

streams. Stresses the visual tracking of data, and the instance breakpoint capabilities of
the debugger.

reference for meaningful comparison later on1. More-
over, the control applications were designed to bolster
the user’s confidence. Next, half of the users (group A)
were told to debug applications 3, 4, and 5 with the SDT
and 6, 7, and 8 without the SDT (i.e., using the graphical
features of the SDT then without the graphical features).
Meanwhile, the other half (group B) were told to debug
3, 4, and 5 without the SDT and 6, 7, and 8 with the
SDT. Due to this grouping structure, applications 3 and
6, 4 and 7, and 5 and 8 were designed to be of compa-
rable difficulty. For application 9, half of group A (A1)
and half of group B (B1) were asked to debug with the
SDT, while the other halves (A2 and B2) were asked to
debug without the SDT. Cross-sectioning the groups was
aimed at ensuring external validity.

The study was divided into three sessions over a
three-day period. We estimated that each session would
last for two hours (with 45 minutes spent on the tuto-
rials and the rest of the time dedicated to debugging),
but in reality the sessions spanned an average of four
hours. Many users were either unable or did not have
enough time to debug certain applications. Participants
were asked to complete the set of documents at their own
pace, and upon completion, they were individually in-
terviewed and received a $40 gift certificate. During the
study, users were encouraged to ask questions although
particulars relating to the problems and the SDT were
not revealed.

1The control experiments served mainly to filter data. We did not
use data attributed to participants who did not complete the control
experiments.

4.3 Results and Analysis

Even though 25 users were scheduled to participate
(5 people for sessions 1 and 2 and 15 people for session
3), cancellations reduced the participation to 20 users
and led to uneven groupings. There were 6 people in
A1, 5 in A2, 4 in B1, and 5 in B2. Of the 20 partic-
ipants, there were 4 juniors, 2 seniors, 8 masters, and
6 Ph.D. students, all majoring in Electrical Engineer-
ing and Computer Science. None of the users had prior
StreamIt or SDT experience.

Figure 4 summarizes the study in terms of the num-
ber of solutions reported for each of the applications in
the study. In the figure, the bars labeled “solved with
the SDT” represent the number of participants that fully
debugged the corresponding applications using the SDT
and its graphical features. Similarly, the bars labeled
“solved without the SDT” represent the number of par-
ticipants that fully debugged the corresponding applica-
tions without using the graphical debugger. The bars that
are labeled “unsolved” represent the number of partici-
pants whose applications remained buggy. For example,
for the applicationEchoEffect there were two users
who were allowed to used the SDT and were unable to
debug the code properly. There was also one other par-
ticipant who did not debugEchoEffect although this
user was not allowed to use the SDT’s graphical fea-
tures.

Because the groupings are uneven as previously men-
tioned, the numbers seen in the figure are weighted de-
pending on which group is lacking users. The percent-
age above each quadruple of columns represents the per-
centage increase or decrease in debugged applications
due to the SDT (and its graphical features). For example,
the graphical debugger did not particularly help in appli-
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Figure 4. Summary of results.

cations 3, 4, and 5, but did help in debugging the others.
On average, 1.56 fewer participants fully debugged ap-
plications 3, 4, and 5 when using the graphical debugger,
and 2.56 more users debugged applications 6, 7, 8, and
9 when using the graphical debugger.

Figure 5 compares the average time spent debug-
ging each application. The percentage above each set
of columns represents the percentage improvement or
deficiency in time caused by using the SDT. On aver-
age, users took 7.78 (36.48%) more minutes to debug
applications 3, 4, 5, 6, 7, and 9 when using the graph-
ical features of the debugger, compared to participants
using more traditional debugging means. Furthermore,
participants who were allowed to use the SDT and its
graphical features spent an average of 16.96 more min-
utes debugging applications 6, 7, and 8, compared to
an average of 10.67 minutes invested by the participants
who could not use the graphical debugger. In both cases
the participants did not fully debug their respective ap-
plications.

Summarizing the results, we found that more partici-
pants were able to successfully debug their applications

when using the SDT and its graphical features. How-
ever, we also observed that the SDT increased the “time
to solution” as users had to navigate through a user in-
terface they were not familiar with. Interestingly, we
can also observe that the SDT may have mitigated user
frustration. As noted earlier, users generally spent much
more than the two hours allotted to complete the study,
and as such, users became frustrated and may have
rushed with the later applications. Correspondingly, this
might have caused users to spend less time and debug
fewer applications as users progressed through the study.
Although this pattern is true for participants who did not
use the SDT, the opposite occurs for participants who
used the SDT: 41.76% more users were able to debug
applications 6, 7, 8, and 9 using the SDT. Furthermore,
users spent 83.35% more time tracking down bugs in
applications 6, 7, and 8 when using the graphical debug-
ger. These results suggest that users are willing to spend
more time and work on more problems when using a tool
that they felt more certain would lead them to a solution.
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4.4 User Feedback

Comments obtained from the post-study question-
naires were quite helpful toward finding new feature
ideas and problems with functionality, performance, re-
liability, and usability.

Summarizing the most notable feedback, users
largely commented on their difficulties using Eclipse
and navigating the StreamIt code. Ten participants re-
ported that the time alloted to learn how to navigate
Eclipse was too short, and that the many windows,
menus, and options made it difficult to find vital infor-
mation quickly. Five participants noted that they were
uncomfortable or unaccustomed to thinking in terms fil-
ters and streams, while an equal number also found it
overwhelming to remember some of the language syn-
tax and concepts.

In general however, participants rated the SDT a 3.85
on average (on a scale of 1 to 10, from easy to hard),
praising many aspects of the stream graph viewer (e.g.,
hierarchical representation). Those who rated the SDT
as helpful, stressed that it was most useful for graphi-

cally visualizing the flow of data in the programs, espe-
cially when the applications were large.

4.5 Discussion

Many problems and issues arose in running the study
itself. One of the major problems was the time allot-
ted for users to complete the study. As previously men-
tioned, the slowest user spent twice the budgeted amount
of time. The timing negatively impacted users in several
ways, all of which contributed to incomplete or unre-
liable data: Users became frustrated and overwhelmed
by the amount of information presented to them; Users
were unable to complete the study due to time con-
straints; Users did not properly fill out the post-study
questionnaire, etc.

We believe that better screening can help bridge the
gap between between participants, although the biggest
lesson learned centers on the method of compensating
the participants. Specifically, a multi-level pay scale for
compensation may have alleviated some of the above
problems and lead to more conclusive results. A graded
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pay scale would allow each participant to judge whether
they can or are willing to complete the study. In other
words, each user is rewarded according to their invest-
ments. Nonetheless, the expertise gap between partici-
pants in a user study is a well-documented issue: Usabil-
ity studies have found that the best users are often ten
times better than the worst users, and the fastest quar-
tile of users are twice as fast as the slowest quartile of
users [2, 8]. However, because increasing the number of
users in a study only narrows the standard deviation of
the mean by the square root of the number of users[2],
the improvement in results and reliability becomes an
expensive and time-consuming task. For example, in or-
der to double accuracy, the number of participants in this
study would have to be quadrupled to 80 users, which
would cost an additional $2400 and 24 man-hours.

5 Related Work

Numerous debuggers and program visualization tools
exist for DSP applications written in C/C++ and as-
sembly. The majority of these tools are targeted at
specific hardware platforms, offering traditional debug-
ging features (i.e., program suspension, breakpoint step-
ping, watchpoints, local variable and output display,
etc.) combined with assembly code, memory register,
and signal plot display.

In recent years, some movement in the streaming do-
main has been made toward OOP languages such as
C++ or Java, which introduce abstractions that improve
the portability and reusability of code. The introduc-
tion of conceptual abstractions empowers the design,
debugging, visualization, and analysis tools created for
OOP based streaming applications to introduce hierar-
chical, modular structures while hiding unnecessary de-
tails from the programmer. On top of the traditional de-
bugging features previously mentioned, all three of the
tools described next use some variation on the theme of
signal processing blocks that are connected, displayed,
and navigated graphically.

Simulink is a modeling, simulation, and analysis tool
for control, signal processing, and communications sys-
tem design. This tool imposes OOP conventions on
Matlab, C, Fortran, and Ada programmers by allowing
its users to insert their code into the methods of pre-
defined blocks or to use application-specific standard
block libraries. Furthermore, hierarchically block nav-
igation at both the design and debugging stages is of-
fered: command-line Simulink Debugger enables break-
point stepping of the currently executing method which
is simultaneously displayed on its associated block. Ad-
ditional information, such as block state, inputs, and out-
puts, are visible in other windows.

Process-Level Debugger (PDG) is designed for a
graphical parallel programming environment for con-
current applications called GRAPE. The PDG models
processes as black boxes that interact with each other.
Like Simulink, programmers build their applications
by creating and connecting black boxes hierarchically
(i.e., each black box may be composed of sub-boxes–
subprocesses–and displayed in a graphical view). As
an application is debugged, the PDG shows the appli-
cation’s behavior in a window and allows a programmer
to zoom down on suspicious process blocks in the hier-
archy. This top-down debugging method can eventually
find the associated erroneous code.

The MULTI Integrated Development Environment
is designed for multiprocessor, distributed systems and
embedded applications using C, C++, Ada, Fortran, and
assembly. Besides standard editing and debugging func-
tionality, this IDE conveys program control flow with
perusable static and dynamic call graphs and class hier-
archies.

Much like other language efforts, StreamIt addresses
many software engineering concerns by embracing con-
cepts such as modularity, parameterization, hierarchi-
cal composition, and portability. Furthermore, the lan-
guage automates several tedious tasks such as circular
buffer management that is common in streaming codes.
StreamIt also facilitates the verification of program via
inductive reasoning since simple components are assem-
bled to create large and complex graphs. Moreover, the
language treats communication and parallelism as “first-
class citizens”, and by naturally exposing the flow of
data in a program, the StreamIt Development Tool can
help application engineers in their debugging and verifi-
cation tasks.

A more thorough treatment of related work is avail-
able [4] for review by the interested reader.

6 Concluding Remarks

This paper presents StreamIt and the StreamIt Devel-
opment Tool. The SDT is an IDE designed to improve
the coding, debugging, and visualization of streaming
applications by exploiting the StreamIt language’s abil-
ity to naturally represent these applications as structured,
hierarchical graphs. Although industry and academia
have devoted much effort to tools for developing and
debugging software, the SDT aims to emulate the best
of traditional debuggers and IDEs while moving toward
hierarchical visualization and debugging concepts spe-
cialized for streaming applications. As such, it provides
utilities for stream graph examination and navigation,
and detailed tracking of data between streams, as well
as deterministic execution of parallel streams. These
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features are in addition to program creation and code
editing, program compilation and launch support, and
general debugging and help support.

A user study evaluating the SDT uncovered several
problems and areas of improvement that need to be ad-
dressed before this tool can fully realize its goals. From
the user study however, we have empirical evidence to
suggest that the SDT improved the ability of users to
find and repair programming errors. The user study also
provided key insights that suggest that application devel-
opers and engineers are more likely to invest their time
tracking bugs and enhancing their applications if they
are confident they have adequate tools at their disposal.
In our user study, several subjects using the StreamIt
graphical debugger spent considerable more time debug-
ging applications in the latter parts of the study, com-
pared to subjects who were restricted to line oriented
debugging.

For more information on StreamIt, or to download
the StreamIt compilation and development infrastruc-
ture, please visit the project web page [10].
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Abstract

It is well established that application development pro-
ductivity is a significant bottleneck in the time to solution for
obtaining production applications on High-End Computing
(HEC) systems. Previously, we introduced a simple model
for defining application development productivity in the
presence of multiple expertise levels, and used this model
to motivate the programming model and tools solution be-
ing pursued in the IBM PERCS project [8]. In this paper,
we describeX10, an experimental language that embodies
a new parallel programming model serves as the foundation
for multiple productivity-improving technologies in PERCS
ranging from visualization and refactoring tools to static
and dynamic optimizing compilers.

1 Introduction and Motivation

The key challenges faced by current and future-
generation large-scale systems are 1)Scalability: the abil-
ity to effectively utilize multiple levels of available paral-
lelism in a high system, such as clusters, SMPs, multi-
ple cores on a chip, co-processors, SMT, and SIMD lev-
els, and 2)Non-uniform data access:the ability to support
a global data model in the presence of severe nonunifor-
mities in latency, bandwidth and interfaces for accessing
data in different parts of the system. It is now common
wisdom that the ongoing increase in hardware complexity
of large-scale parallel systems to address these challenges
has been accompanied by adecrease in software productiv-
ity for developing, debugging, and maintaining applications
for such machines [10]. This is a serious problem because

current trends for next generation systems, including SMP-
on-a-chip and tightly coupled “blade” servers, indicate that
these complexities will be faced not just by programmers
for large-scale parallel systems, but also by mainstream ap-
plication developers.

In the area of scientific computing, the programming
languages community responded to these challenges with
the design of several programming languages, includ-
ing Sisal, Fortran 90, High Performance Fortran, Kali,
ZPL, UPC, Co-Array Fortran, and Titanium. The ulti-
mate challenge facing this community is supportinghigh-
productivity, high-performance programming: that is, de-
signing a programming model that is simple and widely
usable (so that hundreds of thousands of application pro-
grammers and scientists can write code with felicity) and
yet efficiently implementable on current and proposed ar-
chitectures without requiring “heroic” compilation efforts.
This is a grand challenge, and past languages, while taking
significant steps forward, have fallen short of this goal ei-
ther in the breadth of applications that can be supported or
in the ability to deliver the underlying performance of the
target machine. MPI still remains the most common model
used in obtaining high performance on large-scale systems,
despite the productivity limitations inherent in its use.

During the same period, significant experience has
also been gained with the widespread adoption of object-
oriented languages, such as JAVA andC#, that are executed
on virtual machinesand managed runtime environments.
These languages, along with their accompanying libraries,
frameworks and tools, have enjoyed much success in im-
provingproductivityfor commercial applications.

X10 is an experimental new object-oriented language for
high performance computing that is currently under devel-
opment at IBM in collaboration with academic partners.
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The X10 effort is part of the IBM PERCS project (Pro-
ductive Easy-to-use Reliable Computer Systems) whose
goal is to design adaptable scalable systems for the 2010
timeframe. The PERCS technical agenda is focused on
hardware-software co-design that combines advances in
chip technology, computer architecture, operating systems,
compilers, programming environments and programming
language design. The main role ofX10 is to simplify the
programming model so as to increase the programming pro-
ductivity for future systems like PERCS, without degrad-
ing performance. Combined with the PERCS Programming
Tools agenda [8], the ultimate goal is to use a new program-
ming model and a new set of tools to deliver a 10× im-
provement in development productivity for large-scale par-
allel applications by 2010.

To manage concurrency and distribution,X10 introduces
constructs that are expected to be amenable to automatic
static and dynamic optimizations by 2010. Specifically,
X10 introducesatomic sectionsin lieu of locks,clocksin
lieu of barriers, andasynchronous operationsin lieu of
threads. To increase performance transparency,X10 inte-
grates new constructs (notably,places, regionsanddistri-
butions) to model hierarchical parallelism and non-uniform
data access.

X10 is a strongly typed language that emphasizes the
static expression of program invariants (e.g. about locality
of computation). Such static expression improves both pro-
grammer productivity (in documenting design invariants)
and performance. TheX10 type system supports generic
type-abstraction (over value and reference types), is place-
and clock-sensitive and guarantees the absence of deadlock
(for programs without conditional atomic sections), even in
the presence of multiple clocks.X10 specifies a rigorous,
clean and simple semantics for programming constructs in-
dependently from a specific implementation.

In the remainder of this extended abstract, we present an
overview of theX10 design, and use example programs to
illustrate some of the individual features inX10.

2 The X10 language design

This section provides a brief summary of theX10 lan-
guage, focusing on the core features that are most relevant
to locality and parallelism. A number of other features in
X10 are not mentioned here due to space limitations. These
include generic interfaces, generic classes, type parameters,
sub-distributions, array constructors, exceptions, place casts
and the nullable type constructor.

A central concept inX10 is that of aplace. A place is
a collection of resident light-weight threads (calledactiv-
ities) anddata, and is intended to map to a data-coherent
unit in a large scale system such as an SMP node or a single
co-processor. It is intended to contain a bounded, though

perhaps dynamically varying, number of activities and a
bounded amount of storage. Cluster-level parallelism can
be exploited in anX10 program by creating multiple places.

There are four storage classes in anX10 program:

1. Activity-local — this storage class is private to the
activity, and is located in the place where the activity
executes. The activity’s stack and thread-local data
are allocated in this storage class.

2. Place-local— this storage class is local to a place,
but can be accessed coherently by all activities exe-
cuting in the same place.

3. Partitioned-global— this storage class represents a
unified or global address space. Each element in
this storage class has a unique place that serves as
its home location,referencesto the element can be
manipulated by both local activities (activities in the
same place as the element) and remote activities (ac-
tivities in a different place from the element). How-
ever, as discussed below,accessesto the element can
only be performed by local activities.

4. Values— Instances ofvalue classes(value objects),
are immutable and stateless inX10, following the
example of Kava[6]. Such value objects are in this
storage class. Since value objects do not contain
any updatable locations, they can be freely copied
from place to place, and also lend themselves to more
extensive compiler optimizations than mutable ob-
jects [4]. The choice of when to clone, cache or share
value objects is left to the implementation. In addi-
tion, methods may be invoked on such an object from
any place.

X10 activities operate on two kinds ofdata objects. A
scalarobject has a small, statically fixed set of fields, each
of which has a distinct name. The mutable state of a scalar
object is located at a single place. It is also worth not-
ing that commonly-used basic types such asint , float ,
complex andstring are defined asvalue classesin the
x10.lang standard library, rather than as primitive types
in the language.

An aggregate(array) object has many elements (the
number may be known only when the object is created),
uniformly accessed through an index (e.g. an integer) and
may be distributed across many places. Specifically, anX10
array specifies 1) a set of indices (called aregion) for which
the array has values, 2) adistribution mappingfrom in-
dices in this region to places, and 3) the usual array map-
ping from each index in this region to a value of the given
base type (which may itself be an array type). Operations
are provided to construct regions (distributions) from other
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regions (distributions), and to iterate over regions (distribu-
tions). These operations include standard set-based opera-
tions such as unions and intersections, some of which are
available in modern languages such as ZPL [9].

Activities represent lightweight threads inX10. An ac-
tivity is created in a given place and remains in that place
for its lifetime, but each place may have several activities
executing in parallel. An activity can recursively spawn ad-
ditional activities at places of its choosing. Throughout its
lifetime an activity executes at the same place, and has di-
rect access only to data stored at that place. Remote data
can only be accessed by spawning asynchronous activities
at the places at which data is resident. Any attempt by an
activity to directly access a non-local datum is made mani-
fest either as a type-checking error during compilation or as
aBadPlaceException during execution.

The X10 type system is used to catch many common
cases

Asynchronous activities have two forms — statements
and expressions. The expression form of an asynchronous
activity is called afuture, and is discussed further below.
The statement form of an asynchronous activity isasync
(P) S whereS is a statement andP is a place expres-
sion. Such a statement is executed by spawning an activ-
ity at the place designated byP to execute statementS. As
a convenient means of identifying the place of a datum in
the partitioned-global storage class, when the expressionP
specifies an array element or object, it evaluates to the place
containing that array element or object.(P) can also be
omitted, in which case, it is inferred to be the place of the
data accessed by statementS (provided that a single place
can be unambiguously inferred).

For example, theX10 statement,

async (A[99]) { A[99] = k }

creates a new activity at the place containing element
A[99] of a global distributed arrayA. The values of lo-
cal variables such ask are passed as implicit parameters to
this activity. We believe that the use of implicit parameters
aids in productivity, since it relieves the programmer of the
burden of encapsulating remote activities as procedure calls
with explicit parameters. As an additional productivity aid,
X10 also supports animplicit syntaxfor async statements
and other constructs e.g., the above example could sim-
ply be written asA[99] = k; , which denotes the same
asynchronous activity to be executed at the place contain-
ing A[99] . This example illustrates how anasync state-
ment can be used to accomplish a remote store operation.
However,async statements can be used as the foundation
for many other common programming idioms in HEC ap-
plication development including fine-grained threads, asyn-
chronous DMA operations, message send (for an active or
passive message), and scatter operations.

In addition to theasyncstatement, theforeachconstruct
serves as a convenient mechanism for spawning local activi-
ties across a specified index set (region) and theateach(pro-
nounced “at each”) construct serves as a convenient mech-
anism for spawning activities across a set of local/remote
places or objects.

X10 provides five mechanisms for the coordination of
activities — clocks, force operations, finish operations,
atomic sections, andconditional atomic sections— which
are summarized below.

Clocks Clocks are a generalization of barriers, which
have been used as a basic synchronization primitive for MPI
process groups and in other SPMD programming models.
X10 clocksare designed to offer the functionality of multi-
ple barriers in the context of dynamic, asynchronous, hier-
archical networks of activities, while still supporting deter-
minate, deadlock-free parallel computation.

A clock is defined as a special value class instance, on
which only a restricted set of operations can be performed.
At any given time an activity isregisteredwith zero or more
clocks. The activity that creates a clock, is automatically
registered with this clock. An activity may register other ac-
tivities with a clock, or may un-register itself with a clock.
At any given step of the execution a clock is in a given
phase. The first phase of the clock starts when the clock
is created. The clockadvancesto its next phase only when
all its currently registered activities have quiesced (either
by performing anext operation, or by terminating), and
all statements scheduled for execution in the current phase
have terminated. In this manner, clocks serve as a general-
ization of barriers for a dynamically varying collection of
activities. From an activity’s viewpoint, when it performs a
next operation, it quiesces onall the clocks it is registered
with, and suspends until all of them have advanced to their
next phase.

Force Operations When an activityA executes the state-
ment, F = future (P) E , it asynchronously spawns
an activity B at the place designed byP to evaluate the
expressionE. Execution of the expression inA terminates
immediately, yielding afuture [3] in F, thereby enablingA
to perform other computations in parallel with the evalua-
tion of E. A may also choose to make the future stored inF
accessible to other activities. When any activity wishes to
examine the value of the expressionE, it invokes aforce
operation onF. This operation blocks untilB has completed
the evaluation ofE, and returns with the value thus com-
puted. Likeasync statements,future ’s can be used
as the foundation for many other common programming
idioms in HEC application development including fine-
grained threads, asynchronous DMA operations, message
send receive, and gather operations.
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Finish Operations When an activityA executes the state-
ment,finish S , whereS is a statement, it is guaranteed
that the finish statement will not be completed till all activ-
ities that are (recursively) spawned byS have terminated.
Therefore,finish is a convenient operation that can be
used to enforce global termination.

Unconditional Atomic Sections A statement block or
method that is qualified asatomic has the semantics of
being executed by an activity as if in a single step, during
which all other activities are frozen1. An atomic section
is a generalization of user-controlled locking, so that the
X10 programmer only needs to specify that a collection of
statements should execute atomically and can leave the re-
sponsibility of lock management and other mechanisms for
enforcing atomicity to the language implementation. Prim-
itives such as fetch-and-add, updates to histogram tables,
updates to a bucket in a hash table, airline seat reservations
arriving at an online data base, and many others, are a nat-
ural fit for coordination using atomic sections.X10 also
requires that each access to shared mutable data (i.e., mu-
table data that can be accessed by multiple activities) must
occur in an atomic section, thereby easing the constraints
imposed by the memory consistency model.

Consider the following atomic section as a concrete ex-
ample:

atomic { node = new Node(data, head);
node.next = head; head = node; }

By declaring the statement block as atomic, the program-
mer is able to maintain the integrity of a linked list data
structure in a multithreaded context, while still giving the
X10 system the flexibility of using fine-grained synchro-
nization or even non-blocking implementations.

From a scalability viewpoint, it is important to avoid in-
cluding long-running or blocking operations in an atomic
section. In addition, we call an atomic sectionanalyzable
if the locations and places of all data to be accessed in the
atomic section can be computed on entry to the atomic sec-
tion. Analyzability of atomic sections is not a language re-
quirement, but serves as an important special case for which
optimized implementations of atomic sections can be devel-
oped [7].

Conditional atomic sections Conditional atomic sections
in X10 are akin to conditional critical regions [2], and have
the formwhen (c) S . If the guardc is false in the cur-
rent state, the activity executing the statement blocks until

1The implementation may of course allow concurrent execution of
atomic sections, using techniques such as non-blocking algorithms and
optimistic concurrency, as long as atomic sections are made to appear to
execute in a “single step” to the rest of the program.

c becomestrue. Otherwise, as far as any other concurrently
executing activity is concerned, the statement is executedin
a single stepwhich begins with the evaluation ofc = true,
and ends with the completion of statementS. This implies
that c is not allowed to change between the time it is de-
tected to be true and the timeS begins execution.X10 cur-
rently does not permit the statementS to contain or invoke
a nested conditional atomic section.

A conditional atomic section for which the conditionc
is statically true is considered to be equivalent to an uncon-
ditional atomic section.

3 RandomAccess Example

Figure 1 outlines one possible implementation for the
RandomAccess HPC Challenge benchmark inX10. The
group of statements labeled (1) is used to allocate and ini-
tialize table as a global block-distributed array. Note the
definitions of region r and distribution d, which
provide the foundation for allocating thetable array.
Since the index variable used in theateach construct has
the same distribution as thetable array, it is guaranteed
that each access totable[i] will be performed by a lo-
cal activity i.e., by an activity located in the same place
as table[i] . The use of thefinish operator ensures
that all initialization activities spawned in theateach con-
struct must be completed before execution moves to group
(2).

Next, the group of statements labeled (2) is used to al-
locate and initializeranStarts as a “unique-distributed”
arrayi.e., an array with exactly one element per place, and
the group of statements labeled (3) is used to allocate and
initialize avaluearray namedsmallTable .

The group of statements labeled (4) defines the core
computational kernel of RandomAccess, with one activity
per place that executes a long running sequential loop, (5).
Each iteration of the loop performs anasync statement
on the place containingtable[j] group of statements la-
beled (2) , and the async statement performs an atomic read-
exor-write operation ontable[j] .

Finally, the statement labeled (6) performs a sum reduc-
tion ontable[] , and compares the sum value with an ex-
pected result.

4 Jacobi Example

Figure 2 outlines one possible implementation for the Ja-
cobi example program inX10. The group of statements la-
beled (1) is used to create a block distribution,D, a second
distribution, D inner , that contains only the interior el-
ements ofD, and a third distribution,D boundary , that
contains all the remaining elements. Next, the group of
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public boolean run() {
// (1) Allocate and initialize table as a block-distributed array
final region r = new region(0,TABLE_SIZE-1);
final distribution d = distribution.block(r);
ranNum[d] table = new ranNum[d];
finish ateach(int i:d) {table[i]=new ranNum(i);}

// (2) Allocate and initialize ranStarts as a unique-distributed array
// with one random number seed for each place
final distribution d2= distribution.unique(place.places);
ranNum[d2] ranStarts = new ranNum[d2];
finish ateach(int i:d2) {ranStarts[i]=new ranNum(...);}

// (3) Allocate a small immutable table that can be copied on all processors
// and is used in generating the update values
final region r3=new region(0,SMALL_TABLE_SIZE-1);
final place valuePlace=(1).place;
final distribution d3=distribution.constant(r3,valuePlace);
value ranNum[d3] smallTable = new ranNum[d3];
foreach(int i:r3) {smallTable[i]=new ranNum(i * SMALL_TABLE_INIT);}

// (4)In all places in parallel, repeatedly generate random table indices
// and perform atomic read-modify-write operations on corresponding table elements
finish ateach (point p : ranStarts.distribution) {

long ran = nextRandom(ranStarts[p]);
// (5) Sequential loop
for (int count=1; count<=N_UPDATES_PER_PLACE; count++) {

final int j = f(ran);
final long k = smallTable[g(ran)];
async(table.distribution[j]){atomic{table[j]ˆ=k};}
ran = nextRandom(ran);

}
}

// (6) Return true iff sum of elements in table[] matches expected result
return table.reduce(ranNum.add,0)==EXPECTED_RESULT;

}

Figure 1: RandomAccess example inX10

49



/ **
* Jacobi iteration

*
* At each step of the iteration, replace the value of a cell with

* the average of its adjacent cells in the (i,j) dimensions.

* Compute the error at each iteration as the sum of the changes

* in value across the whole array. Continue the iteration until

* the error falls below a given bound.

*
* /

public class Jacobi {
. . .

// (1) Create distributions D, D_inner and D_boundary
final region R=new region(new region(0,N+1),

new region(0,N+1));
final region R_inner=new region(new region(1,N),

new region(1,N));
final distribution D = distribution.block(R);
final distribution D_inner = D.restriction(R_inner);
final distribution D_Boundary = D.difference(D_inner);

public boolean run() {
int iters = 0;
// (2) Initialize array b
double[D] b= new double[D];
finish ateach(point [i,j]:D_inner) {b[i,j]=(double)i * N+j;}
finish ateach(point [i,j]:D_boundary) {b[i,j]=0.0;}
while(true) {

// (3) Create array temp, and overlay it with array b
final double[D_inner] temp = new double[D_inner];
finish ateach(point [i,j]:D_inner) {

temp[i,j]=(b[i+1,j]+b[i-1,j]+b[i,j-1]+b[i,j+1])/4.0;}
if ( b.restriction(D_inner).lift(double.sub,temp).lift(double.abs)

.reduce(double.add,0.0) < epsilon) break;
b = b.overlay(temp);
iters++;

}

// (4) Validate correctness of the run
return b.reduce(double.add,0.0)==EXPECTED_CHECKSUM &&

iters==EXPECTED_ITERS;
}

}

Figure 2: Jacobi example inX10
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statements labeled (2) is used to allocate and initialize ar-
ray b. Note the use of different initialization statements for
the inner and boundary elements.

The statements in (3) creates a new array,temp[] , that
is used to compute the new values of the interior elements
of b[] . The overlayoperator is used to merge in temp[]
values intob[] .

Finally, the statement labeled (4) performs a sum reduc-
tion onb[] , and compares the sum value with an expected
result.

5 Conclusion

X10 is considerably higher-level than thread-based lan-
guages in that it supports dynamically spawning very light-
weight activities, the use of atomic operations for mutual
exclusion, and the use of clocks for repeated quiescence de-
tection of a data-dependent set of activities. Yet it is much
more concrete than languages like HPF in making explicit
the distribution of data objects across places. In this, the
language reflects the designers’ belief that issues of locality
and distribution cannot be hidden from the programmer of
high-performance code in high-end computing. A perfor-
mance model that distinguishes between computation and
communication must be made explicit and transparent. At
the same time we believe that the interaction between the
concurrency constructs and the place-based type system (in-
cluding first-class support for type parameters) will enable
much of the burden of generating distribution-specific code
and coordination of activities to be moved from the pro-
grammer to the underlying implementation.

In future work we plan to extendX10 along two dimen-
sions. First we plan to develop animplicit syntaxwhich
allows the programmer to elide certain details. The com-
piler will automatically fill-in these details based on type
information. For instance, the programmer may specify an
assignmentl = x wherex is not known to be local; the
compiler may automatically introduce aforce/future
combination to read the remote value synchronously and
store it in l . Several simplifications to theX10 syntax are
possible in this fashion.

Second we plan to develop mechanisms to support li-
brary developers writing place- and clock-generic code and
their own high-level domain-specific abstractions. For in-
stance, it should be possible for library developers to write
code for hierarchically tiled arrays [1], and for distributed
data-structures [5]. It should be possible for such develop-
ers to use the equivalent offoreach/ateach over their
own distributed data-structures.

We plan to evaluate the effectiveness of theX10 lan-
guage by designing and runningproductivity trials. These
trials will primarily be designed to evaluate the ease of de-
veloping new code in the HPC domain usingX10. We plan

to target developers in the HPC domain who are focused
on developing performance-efficient library code, as well
as developers interested in rapidly prototyping new appli-
cations (that must use high degrees of concurrency). Once
a performance-efficient implementation ofX10 is available
we also plan to evaluate the performance ofX10, for a range
of benchmark programs.
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Abstract 

Advances in parallelism now yield systems of 
theoretical peak performance nearing 100 TFlop/s. 
However, realizing an acceptable fraction of that 
potential, either for ports of legacy applications or 
for development of new ones, is generally achieved 
only after “heroic” efforts. Designing systems to 
deliver sustained petascale performance will require 
understanding the elements of architecture, pro-
gramming models and environments, languages, 
hardware, and software that enhance or hinder 
productivity. To arrive at that understanding, we 
have developed SUMS, the Standardized User Moni-
toring Suite, which applies techniques of data mining 
and statistical learning to objective, fine-grained 
observations of software development processes. In-
strumentation is with consent but non-intrusive, im-
proving the accuracy of sampled data. A modular, 
layered architecture allows for rapid, independent 
development and exploration of new ideas. Light-
weight data acquisition components facilitate 
installation at new sites and applicability to arbitrary 
systems and experiments. The SUMS database aggre-
gates data from multiple experiments, facilitating 
analysis both currently and retrospectively. We pre-
sent the design and implementation of SUMS, 
together with results from two initial experiments. 

1. Introduction 

Computational science is now recognized as a vital 
complement to theory and experiment. Realistic simula-
tions involving detailed models, high resolution, and so-
phisticated algorithms are necessary for advancement and 
to sustain competitiveness in physical and life sciences, 
engineering, climate and environment, and national secu-
rity [1]. Today’s high-end computing systems are largely 
evolutionary, providing thousands to tens of thousands of 

commodity processors coupled with various interconnects 
and programmed using a relatively small number of estab-
lished programming models and languages. Productive use 
of those resources as capability systems is possible but not 
without challenge, and scaling complex software to run 
efficiently even on only thousands of processors requires 
specialized expertise and remains arduous. Demands for 
ever more realistic simulation and for progress in new, 
challenging problem domains continue to motivate devel-
opment of more powerful capability-oriented and leader-
ship-class computing facilities. At the high end, for 
example, applications requirements were recently identi-
fied for full global climate modeling and plasma fusion 
simulation that extend to the zettaflop (109 teraflops) range 
[2]. Systems now being envisaged [3] entail scales and 
revolutionary aspects that may require very different 
programming models, languages, and development envi-
ronments if they are to produce desired results in 
acceptable timeframes. Improved understanding of the 
factors that enable or hinder productivity is required to 
guide the design of future systems. 

The need to understand productivity has fostered sev-
eral efforts to quantify software development in the 
context of parallel computing. Recently, the DARPA 
HPCS Productivity Team [4] initiated a series of 
productivity experiments and has begun collecting a set of 
hypotheses, known with the community as “tribal lore”, 
for testing based on the results of those experiments. 
Instrumentation for the HPCS “development time” ex-
periments conducted to date has used Hackystat [5], which 
provides a sensor-based framework for collecting data 
from software developers. 

The current work describes SUMS, the Standardized 
User Monitoring Suite, which addresses the essential 
problem of understanding factors which promote or hinder 
productive use of high-end computing resources. SUMS 
differs from other initiatives in two fundamental ways. 
First, we believe that the software development process 
must be instrumented in an objective, comprehensive, non-
intrusive manner that supports systems on which actual 
work must be accomplished using today’s systems and 
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programming models, languages, and techniques. Truly 
meaningful data will not be accessible through designed 
productivity studies alone. Instrumentation must also be 
easily extensible to new systems, languages, and models 
as the field rapidly evolves. Second, we believe that data 
mining [6], in which we include statistical learning and 
knowledge discovery, is a powerful and natural approach 
to understanding complex relationships inherent in data 
that will necessarily span many experiments conducted 
with disparate subject populations and environments over 
the span of years. This mandates objective, well-defined, 
fine-grained data acquisition. 

SUMS acquires data from programming activities in 
very general contexts. Those contexts can include de-
signed productivity experiments, but they can also include 
classroom and workshop settings and active research 
groups. That generality allows SUMS to address popula-
tions ranging from novices to experts working on software 
ranging from easily implemented algorithms through 
complex research codes. Of special interest is the software 
development process for actual research codes, which 
maps poorly to short-duration, designed experiments. 
Lightweight, easily deployed, non-intrusive acquisition 
that work with diverse systems, programming models, and 
languages encourage widespread use of SUMS by avoid-
ing barriers to acceptance. Data acquisition within SUMS 
supports paradigms needed by today’s practitioners, such 
as C, Fortran, C++, MPI, OpenMP, and CHARM++ [7], as 
well as those of emerging interest, such as UPC [8], Co-
Array Fortran [9], Titanium [10], TCE [11], and X10. The 
data gathered is objective, fine-grained, and highly 
detailed. The SUMS database provides a powerful and 
efficient core, efficiently bridging comprehensive devel-
opment data and high-level analysis tools. 

SUMS addresses the high dimensionality of the feature 
set—both systems and experiments can represent an abun-
dance of possibilities—in the analysis and discovery layer 
through techniques of data mining and statistical learning. 
For example, in an experiment using UPC, cluster analysis 
of source code changes and compiler output as related to 
subject population might reveal one subgroup adept in C 
syntax and another that is less adept (perhaps coming from 
a Fortran background). Recognizing those clusters would 
guide separate analyses and generate potentially different 
inferences, each with higher confidence, for each of the 
subpopulations. 

Central to the SUMS approach are techniques of unsu-
pervised and supervised learning. Rather than test a finite 
set of hypotheses, which may be incomplete, insufficiently 
general, or evolving less rapidly than the systems, SUMS 
instead non-obtrusively (and with consent) monitors de-
velopers’ progress. Productivity analysts can mine the data 
immediately as well as retrospectively, as additional ex-
perimental data add statistical weight and as new questions 
arise. 

2. Architecture and Implementation 

The SUMS architecture (Figure 2) features distinct lay-
ers of components: acquisition components, deployed at 
productivity experiments to acquire raw data; analysis and 
discovery components, which implement techniques of 
data mining and machine learning to cluster, recognize 
patterns in, and draw inferences from the SUMS data; and 
presentation components, which provide a user interface 
through which performance analysts explore and interact 
with the data. Coupling the architecture, the SUMS data-
base efficiently and securely bridges data acquisition and 
analysis layers. 

2.1. Design goals 

Practical design goals shape the SUMS system. SUMS 
must address the full range of system architecture, pro-
gramming models, languages, software, and hardware of 
interest both today and in the future. It must obtain robust 
data from practitioners as they work, not in contrived set-
tings, and therefore must be portable, general, objective, 
and non-intrusive. Through appropriate choices for gener-
ality and easy extensibility, SUMS supports systems 
relevant to current productivity experiments, and it will 
also support systems that are not yet ready for those 
deployments, e.g. emerging programming languages. We 
seek to complement and interoperate with the DARPA 
HPCS Productivity Team. To that end, we are integrating 
the Productivity Team’s metrics, workflows, and bench-
marks [12] into analysis and discovery components. To 
address the full range of productivity concerns, SUMS 
aggregates empirical data over large and diverse popula-
tions and development approaches, which will achieve 
statistical significance as the volume of data acquired from 
productivity experiments continues to expand. Choosing a 
componentized, extensible framework promotes rapid 
implementation for short-term analysis as well as future 
discovery, encouraging incremental additions and in-
creases in sophistication. Extensibility is necessary to 
provide ongoing value and broad applicability; indeed, the 
methodology embodied in SUMS is not specific to high-
end computing, but is equally applicable to software 
engineering in general. SUMS must interoperate with 
diverse development environments, both open and pro-
prietary, ranging from command line interfaces (e.g. f90, 
make) to integrated development environments (e.g. 
Eclipse). To avoid biasing incoming data, SUMS must 
integrate transparently with participants’ workflows, not 
perturb their work patterns, and not depend on subjective 
input. To foster widespread deployment, SUMS Data Ac-
quisition Components feature support for relevant systems 
and convenient installation and uninstallation. Finally, we 
leverage third-party software, especially in the analysis 
and discovery layer. 
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Figure 1. SUMS architecture. 
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2.2. Data Acquisition Components 

SUMS acquisition components are lightweight, inde-
pendent but interoperating tools that instrument actions 
involved in software development. Acquisition compo-
nents are designed to be portable where possible, with 
system-specific versions where necessary. Client-side 
support includes Linux and Window, with possible exten-
sion to Mac OS X, pending demand. Server-side support 
currently includes Linux- and UNIX-like systems. In this 
model, developers work on a client (for example, a PC), 
remotely developing parallel code for execution on a 
supercomputer or a cluster. 

Finally, and perhaps most importantly, only through 
non-intrusively capturing practitioners’ actual develop-
ment process can we hope to glean, without introducing 
bias, the factors that influence their productivity in real-
world settings. For example, we choose not to interrupt a 
subject with an inquiry of “Why did you recompile your 
code?”, obtaining an answer that may or may not be 
accurate. Instead, by assembling data on recent shell 
commands, source code revisions, and compiler invoca-
tions and results, one can instead deduce that the reason 
for recompilation, whether to debug, to tune performance, 
or as a step in initial code development. 

Acquisition component implementations include pro-
gram wrappers, cron scripts, small C utilities, and easily 
deployed third-party software. SUMS acquisition compo-
nents currently include: 

  sums_source records statistics describing source files, 
including total lines of code and the number of lines 
added, deleted, and changed for each file. The 
sums_source component executes as a cron process, 
examining saved files every 60 seconds (tunable), 
allowing use of arbitrary editors and additional a poste-
riori analysis. For example, language-specific analysis 
tools are being developed to instrument measures of 
complexity, e.g. the number of entry points and vari-
ables, and also indicators of explicit parallelization, e.g. 
MPI calls, OpenMP directives, and parallel language 
constructs. 

  sums_web obtains timestamps, usernames, URLs, and 
access methods from Squid [13] web proxy cache logs. 
Output from the sums_web component contains data 
necessary for identifying accesses to documentation. 
Sums_web data is also useful for identifying non-devel-
opment time, which can be deduced from the URLs 
visited and corroborated by output, or lack thereof, from 
other acquisition components. Prior to database inser-
tion, sums_web output is pruned to eliminate extraneous 
information, e.g. retrieval of images associated with 
other html or text requests. 

  sums_shell records each command executed from a 

shell. When integrated with IDEs, analogous function-
ality can be provided for spawned subprocesses. 

  sums_window notes the name and auxiliary information 
for the subject’s active window, providing information 
on subjects’ instantaneous activity in a windowed 
desktop environment. The sums_window component is 
currently implemented for both Windows and X11. 

  sums_compiler records each compiler invocation along 
with its command line, exit status, number of errors, 
and number of warnings, and output. 

  sums_batch records output from batch software, 
through which supercomputers are typically accessed. 
Output from the sums_batch component includes the 
number of processors, wall-clock execution time, and 
when available, other job-specific parameters such as 
memory requirements. 

  sums_profiler records invocations of code profilers and 
their results. 

Additional acquisition components are planned. 

2.3. SUMS Database 

The SUMS database aggregates instrumentation and 
system data associated with each experiment, providing an 
efficient engine to manage multiple views, augment raw 
data with derived information and dimension-reduced 
forms, and interface to analysis and discovery compo-
nents. The design of the database allows for analyses and 
re-interpretation through complementary “component” and 
“history” views. 

The component view preserves all raw data from each 
data acquisition component, enabling component-specific 
interpretation of highly detailed statistics. Preservation of 
raw data allows future analyses of increased sophistication 
and targeting new lines of inquiry. 

Supplementary fields in the component view, as well as 
in auxiliary tables, support data preparation including 
normalization, conversion to alternate representations, 
preliminary parsing, dimension reduction, and designation 
of outliers. For example, categorizing window focus 
records into shell, browser, debugger, performance tool, 
IDE, and system classes allows recognition of activity 
patterns without extending definitions of each instance of 
each class to higher-level tools. The secondary data struc-
tures accommodate information generated by synthetic 
components, which fuse data from separate acquisition 
components to add meaning. They also allow for feedback 
from data mining and statistical tools, providing scaffold-
ing for additional analyses and method validation. 

The history view facilitates tracking all events for any 
given user on a timeline basis. Operating on the history 
view, queries and other analysis tools can immediately 
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reconstruct an ordered timeline of any subject’s develop-
ment activities. The history view contains summaries of 
the raw data, to increase the efficiency of complex analy-
ses, as well as links to detailed raw data, to allow 
arbitrarily deep inquiries. Because all raw data is pre-
served, the history can be regenerated at will as improved 
summarization procedures are implemented. As in the 
component view, the history view supports derived data, 
e.g. assignment of phases Development, Debugging, 
Performance Optimization, Testing, and Production to a 
given subject’s timeline. 

The SUMS database is implemented in MySQL [14], in 
which to subjects’ data is controlled through a username/ 
password/host model. A web interface will be provided for 
uploading SUMS data collected from new experiments. 

2.4. Analysis and Discovery 

Analysis and Discovery components operate on data 
from the SUMS database, augmenting the database, 
drawing inferences, and providing tools for unsupervised 
and supervised machine learning to identify correlations 
between independent variables with various measures of 
productivity and workflows. Following the SUMS phi-
losophy, the Analysis and Discovery layer includes 
independent, interoperating tools for data mining, cluster 
analysis, pattern recognition, neural networks, inference 
generation, and other statistical methods. Leveraging 
selected, mature, open-source software, our focus is on 
efficiently applying a range of techniques to detailed pro-
ductivity measurements, discovering salient and perhaps 
subtle trends in the empirical data. Inferences generated 
will guide future experiments and, as the weight of data 
collected achieves statistical significance, we hope they 
will also guide development of environments and systems 
to increase productivity. 

Examples of the types of inquiries we expect to be able 
to probe inquiries include questions such as the following: 
What clusters of total development times and application 
performance emerge for given applications being devel-
oped in MPI vs. OpenMP vs. Co-Array Fortran vs. UPC 
vs. X10 vs. hybrid models? For applications that yield 
favorable scaling, where are developers spending most of 
their time, and hence, where would improvements yield 
the greatest benefit? What effect, quantitatively, do IDEs 
(integrated development environments, for example, 
Eclipse) have on productivity? How do correlations differ 
for porting large, legacy applications vs. developing small, 
specialized, codes? How does choice of programming 
model and language affect ongoing maintenance and 
enhancement of production applications? What effect do 
various factors, for example programming model and 
interconnect design, have on inception-to-result 
productivity? If an architectural feature were changed in a 

specified way, what would be the effect on productivity? 
Attaining those goals will require gathering of adequate 

productivity data, together with careful mining of the col-
lection. The data must be sufficiently rich to support cross-
validation through multiple methods, validating against 
measurable quantities wherever possible. 

A few aspects of analysis can be implemented purely as 
database operations. For example, statistics regarding de-
velopment times and execution times as related to 
different programming models or different architectures 
can be implemented directly in SQL. Similarly, many data 
preparation tasks are also best expressed in the database 
layer, and a library of useful utilities is steadily growing. 

We have begun preliminary analyses using a variety of 
data mining techniques, to be detailed in a future paper. 
Tools include a suite of database scripts to filter, combine, 
and classify raw component data, as well as sophisticated 
and relatively mature systems for information visualiza-
tion [15] and machine learning [16]. Initial emphasis is on 
cluster analysis, which together with assignment of devel-
opment phases to timelines, will significantly improve the 
confidence of inferences drawn from otherwise disparate 
subject populations and systems. Those analyses, together 
with knowledge of experimental conditions, fit naturally 
with HPCS workflows [12] identified by Koester, et al. 
Similarly, HPCS productivity metrics can be integrated 
into the SUMS analysis tools. Explicitly addressing the 
HPCS productivity metrics and workflows will provide a 
common language through which the community can in-
teract and advance. 

Supervised learning techniques, in particular neural 
networks and genetic algorithms, are of interest for their 
potential to relate perturbations to known systems to 
changes in productivity. To explore this possibility, we 
plan to train selected algorithms using subsets of the 
SUMS data. Their results, expressed for example in the 
parlance of productivity metrics, will be validated against 
the remainder and also against other techniques. As new 
data continue to arrive, we will revisit the collection as a 
whole, periodically redrawing inferences, increasing scope 
and sophistication of analyses and knowledge discovery 
tools, and improving the confidence of predictions. 

3. Productivity Experiments 

SUMS was deployed in two productivity experiments 
to date, summarized in Table 1. Additional productivity 
studies are planned, addressing a range of programming 
models and subject backgrounds. 

3.1. PSC Workshop (MPI) 

SUMS was first deployed at the Pittsburgh Supercom-
puting Center’s Introduction to Terascale Code Develop-
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ment workshop on September 13-14, 2004. Acquisition 
components were deployed on both terminal and super-
computer systems. Terminals were dual-boot Windows/ 
Linux PCs in the PSC’s training center. Individual logins 
ensured accurate reporting even though participants could 
use different systems as the workshop progressed. 
Exercises were conducted on the NSF Terascale 
Computing System (TCS), a 3000-processor HP Alpha-
Server SC (Compaq Tru64 UNIX V5.1A (Rev. 1885); 
Compaq AlphaServer SC TS2.5; dual-rail fat tree 
Quadrics Elan3 interconnect; 1.0GHz Alpha EV6.8 
processors with 4GB RAM per 4-processor node; PSC-
modified OpenPBS scheduler). 

The two-day workshop focused on MPI using C and 
Fortran. Participants developed a parallel solution to 
Laplace’s equation using point Jacobi iteration, chosen 
because its conceptual simplicity allows individuals from a 
broad range of backgrounds to focus on the parallel pro-
gramming principles rather than the algorithm. The 
sums_web, sums_shell, sums_compiler, sums_window, and 
sums_source acquisition components were installed and 
executed, and subjects progressed at normal rates through 
their exercises, as judged by the instructors who taught the 
same exercises on numerous prior occasions. 

Accumulation of data from similarly opportunistic pro-
ductivity studies, working within constraints imposed by 
experimental environments, will result in increasingly 
significant masses of data. Furthermore, that is the only 
model available for the intensely interesting target group 
of expert developers working on research applications. 

3.2. University of Pittsburgh class 
(MPI, OpenMP) 

A second experiment was conducted on November 29 
and December 2, 2004, drawing on undergraduates in a 
Parallel Computing course at the University of Pittsburgh. 
Goals for this experiment included deployment of data 
acquisition components at an external site, development 
and use of an experimental design conducive to comparing 
programming models, and gathering of productivity data 
specific to OpenMP and MPI across a relatively uniform 
population. 

Iterative solution of a tridiagonal system using Jacobi’s 
algorithm was selected as being well-suited to the short 
time (80 minutes per session) available for the classes. 
(We also developed a closely related example using suc-
cessive over-relaxation that would be excellent for more 
protracted experiments, as the dependence within the inner 
loop poses a greater challenge for parallel implementa-
tions.) The algorithm was described verbally, and then a 
handout was distributed that included pseudocode, input 
specification, and an example of correct output. Pseu-
docode was chosen to minimize bias not related to 
message-passing or threaded programming models. The 
input was designed to scale from small rank (e.g. 8), for 
development and debugging, to large rank (e.g. 400) to 
measure parallel efficiency, which is one component of 
productivity. 

The class was conducted in two sessions. In session 1, 
five of the ten subjects attempted the exercise in MPI, 

 
Table 1. Summary of productivity experiments 1 and 2, conducted from September-December, 2004. 

experiment subjects 
programming 

model(s) programming exercise milestones 

1. Workshop: 
Introduction 
to Terascale 
Code 
Development 

  4 undergraduates 
  7 graduate students 
  2 postdocs 
  2 faculty 
  4 research staff 
19 total 

MPI; 
C & Fortran 

  Solution of 
Laplace’s equation 

  assigned from serial 
reference codes 

  C: 72 SLOC; 
Fortran: 82 SLOC 

  SUMS proof-of-concept 

  Successful deployment of data 
acquisition components 

  Successful instrumentation of 
development activity: 19,717 actions 
recorded 

2. Class: 
Parallel 
Programming 

10 undergraduates MPI, 
OpenMP; 

C 

  Iterative Jacobi 
solution of a 
tridiagonal system 

  assigned as 
pseudocode 

  serial reference 
implementation: 
45 SLOC 

  Successful deployment at an external 
institution 

  Designed experiment: 5 subjects 
performed the exercise with OpenMP 
while the other 5 used MPI. The 
groups then switched to the other 
programming model, addressing 
discrimination of learning effects.  
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while the other half attempted it in OpenMP. All subjects 
programmed in C, consistent with prior class policy, and 
all had completed two prior programs in both OpenMP 
and MPI. The choice of initial programming model was 
voluntary. 

Only one subject completed the exercise in the time 
available. Allowing subjects to continue their first day’s 
activity in session 2, seven completed the OpenMP ver-
sion, five completed the MPI version, and only one 
completed both. This underscores the importance of 
selecting straightforward exercises for short experiments 
and relatively inexperienced programmers, as well as the 
importance of complementing classroom settings with 
more less constrained productivity studies. 

3.3. Preliminary Analysis 

Experiments 1 and 2 established confidence that the 
SUMS methodology effectively gathers objective, fine-
grained information describing the software development 
process. Subjects progressed at usual rates, unencumbered 
by the data acquisition tools that quietly logged their 
actions. Voluntary participation rates were high: 83% in 
Experiment 1, and 100% in Experiment 2. The extremely 
preliminary and limited nature of our data precludes actual 
analysis at this stage. Instead, we focus on the nature of 

the data collected for experiment 1, which will be the criti-
cal foundation for later work. 

19,717 actions were logged by acquisition components 
during experiment 1. Figures 2 and 3 summarize logged 
actions by subject and by component. The distribution by 
subject showed a wide range of activity, ranging from 4.4 
to 676 actions per hour. Data acquisition rates for individ-
ual components vary widely, with source code changes 
and compilations being among the less frequent. The com-
ponents’ patterns show indications of dependence on a 
variety of as-yet-undetermined factors. 

Shifting to the history view, Figure 4 provides a view 
of subject 18’s activity. The plot is a timeline, where the 
vertical axis jitter serves only to separate the 505 actions 
represented. We see a distinct period of development from 
approximately 10-40 minutes, most simply indicated by 
frequent source code changes and recompilations. From 
the next 35 minutes, intense activity from the 
sums_window component reveal that the subject was 
debugging with TotalView, frequently re-running the ex-
ercise  binary, visualizing its content, and working through 
the source. This is evident through application name and 
class data logged by sums_window, with values in this 
case of app_name=XWinClass and app_class={Etnus, 
Program,Process,visualize,“prun<laplace_mpi_c>.0”}. 
Subject 18 then recompiled laplace_mpi.c, requiring 5 

Figure 2. Total actions logged for each of the subjects 
who participated in Experiment 1. The obvious outlier,
actions for subject_id=7, is dominated by web accesses. 
Even this apparently troublesome case can be effectively
mined, however, as URLs associated with web access
provide indications of development time (for example,
accessing documentation or course materials) versus non-
development time (reading webmail). 
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Figure 3. Actions logged per component for Experiments
1 and 2. The differing acquisition rates from E1 to E2 
reflect a combination of factors including experiment 
format, subjects’ background, motivation, and priorities, 
and systems, programming models, languages, and 
algorithms being considered. “Source”, “compiler”, “shell”, 
“window”, and “web” denote the components from which 
the corresponding actions were obtained. 
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attempts to get the link line right, executed the result, and 
returned to TotalView. Incorporation of additional features 
into the analysis, such as the nature of individual source 
code changes and summarizing time spent in each 
development phase for all subjects, is underway. 

4. Conclusion and Future Work 

We implemented the SUMS Data Acquisition Compo-
nents, a lightweight, componentized system of interacting 
but independent tools for non-intrusively observing soft-
ware development processes. Two initial productivity 
experiments provided seed data, which we are now using 
to establish effective data mining techniques. Additional 
experiments will increase SUMS data to statistical signifi-
cance. We are actively seeking new participants to 
improve sampling. Experimental systems, programming 
models and languages, and problem domains will be ex-
panded as new architectures, compilers, and development 
environments become available. 

Applications of both unsupervised and supervised 
learning algorithms will be applied to the existing data, 
and as data from additional productivity experiments ar-
rives, the techniques developed will be reapplied for 
validation and to attain statistical relevance. This modeling 
will incorporate HPCS productivity measures and work-
flows, providing a valuable common ground for ongoing 
dialog with other productivity efforts. As the volume of 
empirical data expands, mining of SUMS data will allow 
detailed assessment of factors underlying productivity. 
Using neural nets and other machine learning techniques 
trained with results of sufficient productivity studies, we 
will also explore the feasibility of generating predictions 
regarding the effects that perturbations to existing archi-

tectures and systems would have on their productivity. 
The relatively sparse opportunities during which data 

are collected, together with the complexity of the 
relationships that must be understood, warrant 
investigating fully the issues faced by individual software 
developers prior to introducing additional complexity. For 
example, lessons learned from the case of individuals may 
inform extension of SUMS to more general cases of teams 
of programmers and distributed, long-term development. 
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Abstract

The high performance computing (HPC) community is
increasingly aware that traditional low-level, execution-
time measures for assessing high-end computers, such as
flops/second, are not adequate for understanding the ac-
tual productivity of such systems. In response, researchers
and practitioners are exploring new measures and assess-
ment procedures that take a more wholistic approach to
high performance productivity. In this paper, we present
an approach to understanding and assessing development-
time aspects of HPC productivity. It involves the use of
Hackystat for automatic, non-intrusive collection and anal-
ysis of six measures: Active Time, Most Active File, Com-
mand Line Invocations, Parallel and Serial Lines of Code,
Milestone Test Success, and Performance. We illustrate the
use and interpretation of these measures through a case
study of small-scale HPC software development. Our re-
sults show that these measures provide useful insight into
development-time productivity issues, and suggest promis-
ing additions to and enhancements of the existing measures.

1. Introduction

High performance computing systems are becoming
mainstream due to decreasing costs and increasing numbers
of application areas with computation and/or data intensive
processing. With this interest, however, comes new chal-
lenges. For example, recent initiatives in the HPC commu-
nity [8, 1] have concluded that low-level HPC benchmarks
of processor speed and memory access times no longer nec-
essarily translate into high-level increases in actual develop-

ment productivity. Put another way, the bottleneck in high
performance computing systems is increasingly due to soft-
ware engineering, not hardware engineering.

To make matters even more interesting, high perfor-
mance computing application development often differs in
significant ways from the systems and development pro-
cesses traditionally addressed by the software engineering
community:

� The requirements often include conformance to so-
phisticated mathematical models. Indeed, require-
ments may often take the form of an executable model
in a system such as Mathematica, and the implementa-
tion involves porting to the HPC system.

� The software development process, or “workflow” for
HPC application development may differ profoundly
from traditional software engineering processes. For
example, one scientific computing workflow, dubbed
the “lone researcher”, involves a single scientist devel-
oping a system to test a hypothesis. Once the system
runs correctly once and returns its results, the scien-
tist has no further need of the system. This contrasts
with standard software engineering lifecycle models,
in which the useful life of the software is expected to
begin, not end, after the first correct execution.

� “Usability” in the context of HPC application develop-
ment may revolve around optimization to the machine
architecture so that computations complete in a reason-
able amount of time. The effort and resources involved
in such optimization may exceed initial development
of the algorithm.

Fortunately, there is an emerging interdisciplinary com-
munity involving both HPC and software engineering re-
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searchers and practitioners who are attempting to define
new ways of measuring high performance computing sys-
tems, ways which take into account not only the low-level
hardware components, but also the higher-level productivity
costs associated with producing usable HPC applications.

This paper presents an approach to investigating the soft-
ware engineering problems associated with high perfor-
mance computing system application development. It in-
volves the introduction of technology into the HPC develop-
ment environment which unobtrusively gathers process and
product data. This process and product data can be used for
two purposes. First, it can be used to provide a more wholis-
tic perspective on productivity, one that includes measures
of performance, functionality, and development. Second, it
can be used to provide new insight into the process of high
performance system application development, which can be
used to identify bottlenecks in the development process and
assess the consequences of process or product changes on
these bottlenecks. We have been applying this approach
to an ongoing case study of high performance computing
system application development in our laboratory, and this
paper reports on our initial results.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the technology we have developed, called
Hackystat, which supports unobtrusive collection and anal-
ysis of product and process measures. Section 3 intro-
duces “Software Project Telemetry“, which is the princi-
pal approach to measurement collection and interpretation
we have adopted for this research. Section 4 introduces a
case study adapted from the Truss Purpose-based Bench-
mark (PBB) [3], which uses the problem specification but
collects and analyzes an alternative set of metrics. Section
5 presents our initial conclusions from the use of these met-
rics and our future directions.

2. Automated process and product measure-
ment with Hackystat

An important characteristic of our approach to under-
standing HPC software development and productivity is that
measures of product and process must be automatically col-
lected. This requirement limits the kinds of data we can
collect, but dramatically lowers the cost of collecting these
measures and provides a level of scalability for measure-
ment not possible with expensive, manual data collection.

For the past several years, we have been developing
a framework for automated software development process
and product metric collection and analysis called Hackys-
tat. This framework differs from other approaches to auto-
mated support for product and process measurement in one
or more of the following ways:

� Hackystat uses sensors to unobtrusively collect data

from development environment tools; there is no
chronic overhead on developers to collect product and
process data.

� Hackystat is tool, environment, process, and applica-
tion agnostic. The architecture does not suppose a spe-
cific operating system platform, a specific integrated
development environment, a specific software process,
or specific application area. A Hackystat system is
configured from a set of modules that determine what
tools are supported, what data is collected, and what
analyses are run on this data.

� Hackystat is intended to provide in-process project
management support. Many traditional software met-
rics approaches are based upon the “project repository”
method, in which data from prior completed projects
are used to make predictions about or support control
of a current project. In contrast, Hackystat is designed
to collect data from a current, ongoing project, and use
that data as feedback into the current project.

� Hackystat provides infrastructure for empirical exper-
imentation. For those wishing to compare alternative
approaches to development, or for those wishing to do
longitudinal studies over time, Hackystat can provide a
low-cost approach to gathering certain forms of project
data.

� Hackystat is open source and is available to the aca-
demic and commercial software development commu-
nity for no charge.

The design of Hackystat [6] has resulted from of prior
research in our lab on software measurement, beginning
with research into data quality problems with the PSP [5]
and which continued with the LEAP system for lightweight,
empirical, anti-measurement dysfunction, and portable soft-
ware measurement [7].

To use Hackystat, the project development environment
is instrumented by installing Hackystat sensors, which de-
velopers attach to the various tools such as their editor, build
system, configuration management system, and so forth.
Once installed, the Hackystat sensors unobtrusively monitor
development activities and send process and product data to
a centralized web service. If a user is working offline, sen-
sor data is written to a local log file to be sent when connec-
tivity can be established with the centralized web service.
Project members can then log in to the web server to see
the collected raw data and run analyses that integrate and
abstract the raw sensor data streams into telemetry. Hack-
ystat also allows project members to configure “alerts“ that
watch for specific conditions in the sensor data stream and
send email when these conditions occur.
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Hackystat is an open source project with
sources, binaries, and documentation available at
http://www.hackystat.org. There is also a public server
available at http://hackystat.ics.hawaii.edu. Hackystat has
been under development for approximately three years,
and currently consists of around 900 classes and 60,000
lines of code. Sensors are available for a variety of tools
including Eclipse, Emacs, JBuilder, Jupiter, Jira, Visual
Studio, Ant, JUnit, JBlanket, CCCC, DependencyFinder,
Harvest, LOCC, Office, and CVS.

3. Software Project Telemetry

A major application of Hackystat has been the develop-
ment of a new approach to software measurement analysis
called “Software Project Telemetry“. We define Software
Project Telemetry as a style of software engineering pro-
cess and product collection and analysis which satisfies the
following properties:

Software project telemetry data is collected automati-
cally by tools that unobtrusively monitor some form of state
in the project development environment.In other words,
the software developers are working in a “remote or inac-
cessable location“ from the perspective of metrics collec-
tion activities. This contrasts with software metrics data that
requires human intervention or developer effort to collect,
such as PSP/TSP metrics [4].

Software project telemetry data consists of a stream of
time-stamped events, where the time-stamp is significant for
analysis.Software project telemetry data is thus focused on
evolutionary processes in development. This contrasts, for
example, with Cocomo [2], where the time at which the cal-
ibration data was collected about the project is not signifi-
cant.

Software project telemetry data is continuously and
immediately available to both developers and managers.
Telemetry data is not hidden away in some obscure database
guarded by the software quality improvement group. It is
easily visible to all members of the project for interpreta-
tion.

Software project telemetry exhibits graceful degradation.
While complete telemetry data provides the best support for
project management, the analyses should not be brittle: they
should still provide value even if sensor data occasionally
“drops out“ during the project. Telemetry collection and
analysis should provide decision-making value even if these
activities start midway through a project.

Software project telemetry is used for in-process moni-
toring, control, and short-term prediction.Telemetry analy-
ses provide representations of current project state and how
it is changing at the time scales of days, weeks, or months.
The simultaneous display of multiple project state values
and how they change over the same time periods allow

opportunistic analyses—the emergent knowledge that one
state variable appears to co-vary with another in the context
of the current project.

Software Project Telemetry enables a more incremen-
tal, distributed, visible, and experiential approach to project
decision-making. It also creates perspectives on system de-
velopment that can provide new insight into HPC develop-
ment processes, as we illustrate in the case study below.

4. Process and Product measures for HPC uti-
lizing Hackystat

The development of an HPC system from a software
engineering perspective raises many interesting questions.
How long does such a system take to develop? Do some
components take longer to develop than others? How much
of the system is devoted to the sequential code, and how
much is devoted to the parallelization of this code? How
did the developer allocate their time during development
to these activities? Do different choices of HPC tools and
technologies lead to different answers to these questions?
Would a different application area lead to similar or differ-
ent results?

We believe that automated infrastructure for the collec-
tion and analysis of product and process data is an impor-
tant first step toward enabling the HPC community to gen-
erate answers to these questions, and then use these answers
to improve the tools and techniques for HPC development.
The question is, what process and product measures can be
both automatically collected and used to provide interesting
insight into the questions raise above? This case study in-
vestigates the use of the following measures: Active Time,
Most Active File, Command Line Invocations, Parallel and
Serial Lines of Code, Milestone Test Success, and Perfor-
mance.

The following sections describe each of these measures
and illustrate them with sample data from a one week “snap-
shot” of development of the Optimal Truss Design problem
in our case study.

4.1. The Optimal Truss Design problem

Our case study focuses on the development of a system
for optimal truss design. Specifically, the system finds a
pin-connected steel truss structure that uses as little mass
as possible to support a load connected from three attach-
ment points on a wall to the load-bearing point away from
the wall. This problem was originally developed for use in
research on Purpose-Based Benchmarks (PBBs) [3]. PBBs
gather a different and complementary set of metrics in or-
der to assess productivity in terms of acceptability to the
customer.
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The system is being implemented by one of the authors,
Michael Paulding, and thus generally conforms to the “lone
researcher” workflow for HPC development. The system
development process and associated case study started in
the Spring of 2004 and is still ongoing. To date, the imple-
mentation of the Optimal Truss Design problem consists of
approximately 1,200 source lines of code.

The solution to the Optimal Truss Design problem de-
veloped in this case study involves several components.
The first component is termed the “sequential workhorse”,
which includes the task of solving a truss once all of its
elements are defined. Solving a truss includes the calcu-
lation of its mass, which is determined by summing the
mass of each of its components (e.g. all steel joints and
members). In addition to mass calculation, solving a truss
also includes verifying equilibrium and deformational con-
straints. Equilibrium constraints require that all forces and
moments within a truss net zero magnitude, thus ensuring
that the truss is not accelerating. Deformational constraints
require that the length of members (strut or cable) used in
the truss do not exceed construction safety limits. These
limits are defined and known prior to runtime.

Figure 1. An unoptimized solution to the
Truss problem

Figure 2. An optimized solution to the Truss
problem

The second component of the Optimal Truss system
generates the permutation of all possible truss topologies
within the domain space, ensuring that the configuration
with minimal mass is a global minimum. The domain space
for the initial implementation is a 2-dimensional mesh of
points, defining the rectangle formed between the attach-

ment points and the load bearing point. Exploring all pos-
sible configurations results in a combinatorial explosion as
the mesh size is increased and this served as the first point
of parallelism in the implementation. The task of paralleliz-
ing topology generation can be equally divided among the
available nodes. This can be accomplished in an “embar-
rassingly parallel” manner, where each row of the mesh is
assigned to a different processor to permute.

The third component of the system performs geometry
assignment for all trusses. After generation, a topology de-
fines the path of each truss from the attachment points to
the load bearing point, but it does not specify what type of
member connects each joint. In this stage, either a strut or
a cable is substituted for each member, flushing out all per-
mutations. Once the geometry has been assigned, it can be
given to a processor to compute the mass of the truss and to
determine whether the topology is valid under the equilib-
rium and deformational constraints.

Now that the description of the Optimal Truss Design
problem, used in our case study, has been explained, it is
prudent to illustrate and investigate the measures applied to
the problem.

4.2. Active Time

Active Time is a measure of the time spent by develop-
ers editing source code (or other files) related to the system.
Active Time can be collected automatically through the use
of sensors attached to the editor used by developers. The
sensors collect active time via a timer-based process inside
the editor that wakes up every 30 seconds and checks to see
if the active buffer has changed in identity or size since the
last 30 seconds. If so, a timestamped “statechange” event
is sent to the Hackystat server. Active Time does not reflect
effort spent by developers on the project that does not in-
volve editing files, including time spent viewing a file with-
out performing editing actions. Support for non-editing ac-
tivities such as “reading” is a subject of future research, but
even the restricted definition of Active Time appears useful
in the HPC context as a proxy for overall effort. For ex-
ample, it helps a development team answer questions such
as:“How much of the overall development effort was spent
editing files?”or “Did all team members devote equal time
to writing code?” or “When was team effort focussed on
code development during the project?”

Figure 3 shows the Active Time associated with develop-
ment of the Optimal Truss Design application for a sample
period in May, 2004.

4.3. Most Active File

A measure related to Active Time is the “Most Active
File”. One way to abstract the raw event stream sent from an
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Figure 3. Active time

editor-based Hackystat server begins by representing each
day as a sequence of 288 five minute intervals. If a devel-
oper actively edits one or more files within a five minute pe-
riod, then determine which file was edited most during that
five minutes, and assign the “credit” for that five minute
interval to that file and that file alone, which we call the
“Most Active File”. (We performed a calibration study
which found this to be a reasonable abstraction.) The Most
Active File abstraction may be useful in the HPC context as
a way of determining what specific files were the focus of
developer attention, and how that focus of attention changed
over the course of development.

For example, Figure 4 shows the Most Active Files asso-
ciated with Optimal Truss Design during the first few days
of this time interval.

4.4. Command Line Invocations

In addition to time spent editing files in an editor, HPC
development frequently involves extensive use of shell pro-
cesses to invoke programs such as make, gcc, etc. We have
implemented a sensor for the Unix command shell (based
upon the ’history’ shell mechanism) to record these com-
mand line invocations. Command Line Invocation data can
be useful in the HPC context as a way of providing further
insight into the types of activities performed by developers

during the development of the HPC code. For example, if
the HPC developer spends significant time working at the
command line without concurrent editing of code, then it
might be useful to develop an enhanced representation of
Active Time that accounts for this type of effort as well.
While the current sensor only captures command invoca-
tions and not their results, it might be useful to extend the
sensor to capture the results of command line invocations in
certain circumstances. For example, recording whether or
not a compilation succeeded or failed as well as what types
of run-time errors occur could help identify potential devel-
opment bottlenecks.

Figure 5 illustrates Command Line Invocation data for a
portion of one day during the development of the Optimal
Truss Design system.

4.5. Parallel and Serial Size

To understand HPC software development, it helps to be
able to represent both “serial” and “parallel” code. We have
enhanced our size measurement tool, LOCC, with a token-
based counter for C++ that allows us to count non-comment
source lines of code, and determine for each line of code
whether or not an MPI directive occurs on it. Thus, for
HPC programs built using C++ and MPI, we can determine
(a) the total number of files in the system, (b) the total non-
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Figure 4. Most Active File

Figure 5. Command Line Invocations
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commented size of each file in the system; (c) whether or
not a file consists purely of serial (non-MPI) code or not;
(d) for files containing MPI directives, the frequency of oc-
currence of each MPI directive; and (e) for files contain-
ing MPI code, what percentage of the non-comment source
lines of code contained an MPI directive.

Figures 6, 7, and 8 provide perspectives on size data for
the Optimal Truss Design system.

4.6. Functionality

We have defined a process for measuring the func-
tionality of an HPC application and tracking its develop-
ment progress through the use of unit testing. We have
termed this approach “Progress Assessment through Mile-
stone Tests” (PAMT).

Essentially, PAMT is a process in which HPC applica-
tion designers draft the specification for the system as a set
of unit tests prior to development. Each unit test is de-
fined such that it represents a milestone, or significant as-
pect of application functionality. Quantitative interpretation
of “significant” is determined by the application designer
or program manager and is expected to vary between HPC
projects. Defining the set of milestone tests prior to de-
velopment provides a specification for the system and also
serves as a mechanism to promote test driven design.

Once the milestone tests have been defined, the develop-
ment team has a concrete set of tests to implement that, to-
gether, represent the functionality of the entire system. The
development team can then implement the milestone tests
in any order and their progress through the application can
be monitored. System progress and functionality is mea-
sured by investigating the number of milestone tests passing
in ratio to the total number of milestone tests representing
the system. In most cases, a development team will begin
implementation with zero milestone tests passing and finish
development when all milestone tests pass.

For the Optimal Truss Design problem, a set of 10 mile-
stone tests were defined prior to implementation. Individ-
ually, each test represents a significant functionality of the
application and together they provide a specification for the
entire system. For the Optimal Truss problem, the mile-
stone tests were written in CppUnit, a unit test framework
for the C++ programming language. Below is an example
of a single milestone test for the Optimal Truss problem.

Milestone Test 4:This test verifies that the appli-
cation is capable of representing a 2-dimensional
topology. In the Optimal Truss specification, a
topology is defined as a set of 2 trusses that in-
dividually connect the 2 attachment points to the
load bearing point. Interconnections (members)
between the trusses are allowed. Therefore, for

this milestone test, given 2 attachment points, a
load bearing point and the number of joints, the
application must be able to query:

1. Each of the trusses connecting the 2 attach-
ment points to the load bearing point

2. The set of members composing one of the
trusses in the topology

3. Given a truss, whether it is part of the topol-
ogy

From this chart is is evident that during the development
period from 04-May-2004 through 11-May-2004 that the
Optimal Truss application progressed from 1 milestone test
passing at the beginning of the interval to 5 milestone tests
passing at the end. It is important to note that this interval
represents a sample of the development period and does not
capture start to finish. In addition, this trend indicates a
consistent increase in passing milestone tests. However, it
is quite possible for development to lower the number of
successful milestone tests, indicated by a negative slope in
the trend.

4.7. Performance

The high performance computing community has devel-
oped a broad range of standard measures to characterize
parallel performance, including degree of parallelism, av-
erage parallelism, speedup, redundancy, and utilization. In
this research, we are not attempting to specify the “right”
performance measure for any particular application area.
Instead, we advocate that performance be measured regu-
larly throughout development using as many metrics as nec-
essary to best characterize the application.

Performance measures are not generally interesting as
absolute numbers, since the absolute values are obviously
dependent upon current hardware and other physical re-
sources. Performance measures are interesting as relative
numbers, in the sense that the way they change over time
tells us whether or not and to what extent developers could
tune an initial implementation to improve its performance,
how the code evolved to obtain this performance increase,
and whether or not functionality was sacrificed in order to
do so.

Figure 10 shows the execution (wall time) performance
of the Optimal Truss Design system developed in the case
study for a sample time interval.

5. Conclusions

After accumulating the data trends provided by the
Hackystat system, we are able to gain insights that assist in
understanding the development of HPC applications. From
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Figure 6. Parallel vs. sequential constructs

Figure 7. Parallel vs. Sequential Files
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Figure 8. Parallel vs. Sequential SLOC

Figure 9. Progress Assessment through Milestone Tests
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Figure 10. Truss Execution Time Performance

the graphs presented earlier, we are able to make interpre-
tations about development activities, development progress
and application performance and functionality tradeoffs.

5.1. Development Activities

From the data presented in Figure 5 we are able to in-
terpret the developer activities of that particular day. The
daily dairy for 06-May-2004 lists all the commands issued
to the console on that day. Figure 5 is a sample of all the
command line invocations issued, but it provides insight to
the developer activities on that day.

For example, from the command line invocations and
most active file data for 06-May-2004, we can ob-
serve that the developer devoted the most time on the
test distribution.ccfile. It so happens that this file imple-
ments the distribution of 2-dimensional mesh from which
the truss topologies are constructed. Furthermore, the dis-
tribution of topologies is a significant function of the Opti-
mal Truss problem and has been designated as a milestone
test of the system. Therefore, from this data, an observer
can conclude that the developer was investing his efforts on
implementing functionality on this day, rather than on in-
creasing performance by optimizing code.

In addition, an observer, such as a project manager or the
developer himself, can observe the active time trend in Fig-

ure 3 to understand the time invested to implement a partic-
ular milestone. For example, in Figure 3 on 06-May-2004,
it is evident that the developer spent over 5 hours editing
code to implement the topology distribution milestone.

5.2. Development Progress

The data presented in Progress Assessment through
Milestone Tests (PAMT) chart, as illustrated in Figure 9,
provides a clear illustration of the real-time progress being
made on the Optimal Truss problem.

There are two trends presented in this figure, one repre-
senting the total number of milestone tests defined for the
Optimal Truss problem and the other representing the num-
ber of milestone tests passing at the conclusion of each day.

In the Optimal Truss problem, the total milestone tests
are represented by the horizontal line fixed at 10 unit tests.
This indicates that there are 10 milestone tests encompass-
ing the Optimal Truss problem and that the project manager
has not added or removed any of these milestones during
this time interval. It is quite possible that a project manager
may have to alter milestones in order to meet deadlines and
this analysis provides a trend for this purpose. For example,
if the total milestone tests is altered, the total tests trend on
the chart will move up or down accordingly.

The PAMT chart also allows an observer to track the
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progress made through the application. For example, in
this figure, the lower trend represents the number of mile-
stone tests passing on each day. Every time a new milestone
test passes, it indicates that another unit of functionality has
been added to the system provided that all previously pass-
ing tests still pass after the change.

Coupling the PAMT data with the active time data in
Figure 3, an observer is also able to interpret a quantitative
measurement of how much development time was devoted
to a particular unit of functionality. For example, on 06-
May-2004, approximately 5 hours of editing were invested
to add one unit of functionality to the application. This is
indicated by the number of passing milestone tests increas-
ing from one to two on this day. In addition, an observer can
quickly understand the percentage complete of the system.
On 06-May-2004, the Optimal Truss problem has 2 out of
10 milestone tests passing and is therefore 20% complete.

5.3. Application Performance and Functionality
Tradeoffs

When one combines the data presented in the Perfor-
mance chart in Figure 10 with the PAMT Functionality
chart in Figure 9, it reveals an example of the interactions
between performance and functionality in HPC develop-
ment.

One of the primary objectives of HPC development is
to obtain the fastest possible execution time of the system.
This goal influences developers to frequently (if not con-
stantly) think about or perform optimization on their code.

However, as functionality is added to the application, it
is common for the performance of the system to decrease,
indicated by an increase in execution time.

The data presented in figures 10 and 9 reveal this perfor-
mance and functionality tradeoff. For example, execution
time between 04-May-2004 and 07-May-2004 increaseses
roughly from 30.0 hours to 32.5 hours. On the other hand,
3 additional milestone tests, representing system functional-
ity, are implemented successfully during this interval. This
indicates that three units of functionality have been added at
the cost of an addition of approximately 10% in execution
time.

Data presented in these figures allow project managers
to understand how functionality increases affect system per-
formance. It also gives them a starting point to determine
which functionality should be optimized in the case where
the performance degradation is not acceptable. Trends such
as these enable project managers and developers to under-
stand the development process and make in-process deci-
sions to affect the development outcome.

In conclusion, we have found that Active Time, Most
Active File, Command Line Invocations, Parallel and Serial
Lines of Code, Milestone Test Success, and Performance

constitute an interesting set of process and product mea-
sures that can be automatically collected during HPC de-
velopment. As our case study continues, we will look for
other opportunities to use this measures to gain insight into
opportunities to improve high performance computing.
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