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The Coming Crisis in Computational Science

Douglass E. Post
Los Alamos National Laboratory, Los Alamos, NM 87544

post@lanl.gov

Abstract

The enormous increase in computing power over the
last forty years has opened up new opportunities to
analyze and solve important problems that face society.
Computer simulations and analysis have unprecedented
potential to address complex, non-linear phenomena
with realistic data and geometries. Modern scientific
research, originally grounded in experiment and its
theoretical interpretation, is becoming a triad of
experiment, theory and computation. Computer
simulations and analysis are beginning to be used for
engineering design and public and private policy
decisions. Yet computational science is not nearly as
mature as the traditional methodologies and is
undergoing “growing pains”. This is not surprising as
history indicates that it takes time, and quite a few
major and possibly dramatic mistakes, for a
methodology to mature. These major mistakes are
beginning to occur. The computational science
community needs to analyze these mistakes and learn
from them if it is to succeed.

1. Introduction

Computational science—the use of large scale
computers to address and solve important technical
problems—is becoming an everyday tool for design and
analysis of complex technical issues. Applications
include scientific research, engineering design, policy
analysis, training and emergency response and
environmental analyses. Computational science has the
potential to address complex issues with a degree of
realism that has heretofore only been imagined. This
exciting and very important—indeed
revolutionary—potential is due to the enormous growth
in computer power (speed and memory) over the last 50
years. This growth shows no sign of slowing in the near
term. Yet computational science is a very new and
immature discipline. It has not achieved the level of
maturity of traditional methodologies such as experiment,
theory, engineering design and conventional policy
analysis for solving problems.

For example, when a scientist receives a computational
science paper from a journal to referee, he has no
definitive way to determine if the paper is correct. He
cannot reproduce the results in the paper, and generally he
can’t check the important results with experimental data.
The most important results typically make predictions for
situations for which there is no data. That’s often the
purpose of the calculation, after all. Even if he had a
listing of the code— the referee usually doesn’t—that is
not enough to determine the validity of a very complex
and large calculation. All that he can do is to subject it to
a series of “plausibility” checks. Is the paper consistent
with known physical laws? Is the author a reputable
scientist, known for careful work? Are the results
consistent with other work in the field? Is the code
validated with data as close as possible the regimes of
application? Do the computational methods seem sound
and applicable to the problem? Are the original model and
the fundamental equations correct? These criteria are not
nearly as reliable as the criteria used for theoretical or
experimental papers. A reviewer can re-derive the
important formulae in a theoretical paper. Experimental
science is a well-established methodology, and important
experiments are duplicated fairly quickly. In fact,
important experimental results are usually not accepted by
the general scientific community until they are confirmed
by independent experiments. “Discoveries” like cold
fusion have their moment of fame then fade into infamy
as “irreproducible” results. Reproducibility is a
cornerstone of sound science.

In addition, these criteria discriminate against the
reporting of new and exciting results, since such results
usually cannot be thoroughly checked, and are probably,
but not always, wrong. Major new contributions are thus
less likely to survive the refereeing process in favor of
more modest extensions of previously accepted work.

Many things could be wrong with the computational
science paper that the referee could not detect. The code
could have errors in the way it was written such as bugs,
the wrong use of computer or mathematical algorithms,
inadequate resolution in time or space, unconverged
solutions, etc. Even if the code had few errors, the models
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and equations in the code could be inadequate or wrong.
As Robert Laughlin points out, “One generally can’t get
the right answer with the wrong equations.” [1] The
physical data used in the code may not have adequate
resolution or may be inaccurate. The scientist or engineer
running the code may not know how to set up or run the
problem correctly. He may not know how to interpret the
results of the code accurately. Yet referees are expected to
judge the correctness of the paper. It’s a challenge the
community needs to address.

Even more importantly, significant scientific,
engineering design and public policy questions are
beginning to be decided on the basis of computational
science results. As a community, it is our responsibility
to ensure that computational science achieves the same
level of reliability as theoretical and experimental science
and engineering design. Otherwise computational science
will not be a credible methodology, and its potential for
contributing to the betterment of the human condition
will not be realized. If a significant number computer
predictions and analysis are wrong, and there is no way to
determine which ones are right and which are wrong,
people will not rely on them and will not support the
development of the field.

In “Design Paradigms”, Henry Petroski traces the
roughly four steps needed for an engineering technology
to reach maturity[2]. Among his examples is suspension
bridges (Figure 1). The first step involves the design and
construction of the first suspension bridges. The designers
and construction crews did not know the design limits.
The designs therefore were very conservative and
extensively over-engineered. Although there are often
initial failures, the designers generally got it right fairly
quickly. An example is the Széchenyi chain bridge over
the Danube joining Buda and Pest constructed in 1840. It
was stood for 105 years until the Germans destroyed it in
World War II. It was rebuilt in the 1990’s and stands
today. The second step involves cautious design
improvement and optimization. An example is the
Brooklyn Bridge constructed in 1880 by John and
Washington Roebling. It is still standing and carrying a
modern traffic load after over 120 years. The third step
involves the development of continually more ambitious
designs that push the limits of the existing technologies
until failures occur. The cautious approaches and the deep
fear of failure of the prior generations of designers are
often forgotten in the enthusiasm to go beyond the
achievements of the past. The Tacoma Narrows bridge,
constructed in 1940 failed catastrophically due to the
excitation of harmonic oscillations driven by wind. Such
bridge failures are spectacular. Almost everyone who reads
this paper has seen the short movie of the galloping
Tacoma Bridge as it bucked and moved in the wind until it

collapsed into the river. The civil engineering community
studied and analyzed the causes for the failures, then
developed solutions that became part of the design
methodology for all future suspension bridges. This
fourth step leads to a mature field based on the
development and adoption of the “lessons learned” from
the failures and successes. Now very large suspension
bridges are being built such as the 1991 m span Akashi
Kaikyo Bridge in 1998.

Figure 1  History of Suspension Bridges[2].

Akashi Kaikyo Bridge (1998)
1991 m central span

time

Tacoma Narrows 1940

Széchenyi Bridge
Budapest, 1840

1883Brooklyn Bridge

Lessons Learned
Case Studies
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Computational science is in the midst of the third step
on the path to maturity. The first generation of
computational science involved the use of the
supercomputers of the 1950’s, 1960’s and 1970’s. The
authors of these applications used the codes to analyze
data, design nuclear weapons, model supernovae, conduct
engineering analyses, etc. Computational science was a
new field and everyone was very aware that it had
limitations. Due to restrictions in memory and processing
speed, the problems generally did not have adequate spatial
or temporal resolution and the solutions were often not
converged. Many times only very approximate models
were employed for the problems being addressed.
Nonetheless, computational tools were a step forward,
and—used with caution and carefully verification and
validation—produced better answers than could be
obtained with traditional analytic techniques. As
computers became more powerful, the DOE and the NSF
established “supercomputer” centers in the US to provide
supercomputer capability to the academic and general
national laboratory community. The DoD used
supercomputers to address important national security
issues. Industries such as Boeing and General Motors used
supercomputers for engineering analyses of aircraft,
engine and structural automobile components. There was
still generally a strong component of skepticism about
computational results and as a consequence,
computational predictions were thoroughly checked and
validated.

By the 1990’s, computing power had reached the point
where many of the prior limitations on resolution and
ability to solve complex mathematical systems had been
overcome. Computational techniques began to really have
the potential to address difficult and important problems
such as climate change and weather prediction, nuclear
weapons design, astrophysics, non-linear turbulence,
chemistry, biology and human event simulation. This
coincided with the advent of a new generation of scientists
and engineers who were specifically trained as
computational scientists. They began to use
computational techniques to tackle many very difficult and
complex problems. While these scientists and engineers
were highly skilled at using computers, many did not
have the inherent skepticism about computational results
that was characteristic of prior generations. Although they
knew that computational models are only an incomplete
model of nature, they have sometimes placed an
unwarranted faith in the validity of the computational
results.

There are many examples of computational analyses and
results that were important elements of a policy or design
decision, but were later determined to have been inadequate
or seriously flawed. Among these, in my talk I will

discuss some examples in enough detail to illustrate the
main elements of a “lessons learned’ exercise. One
candidate example involves an assessment of potential
failure modes of a large engineering system. The
assessment indicated that there was sufficient margin
against failure. However, the system failed resulting in
destruction of the system and loss of life. Further analysis
after the failure indicated that the computational analysis
procedure was seriously flawed, leading to a false sense of
confidence in the reliability of the system.

The second assessment involved the use of computer
modeling to “explain” a new and very exciting, but very
surprising, experimental discovery. A computer
simulation was able to “reproduce” the experimental result
by changing the boundary conditions much more than was
reasonable based on the physics of the problem. By
treating the boundary conditions as “free parameters”, the
simulation could “reproduce” the experimental results.
With this confirmation, the authors published their
results. The publication caused a great deal of excitement.
Many groups began to repeat the experiment, but none
were able to achieve the results reported in the paper. The
original experimental group brought in a second group
from their laboratory to repeat the measurement, and the
second group found a null result. The original analysis of
the experimental data was determined to have been flawed,
and the result was withdrawn. All of this might have been
avoided had the computer simulation group not treated
important physics constraints as “free parameters”. The
simulation could have served to alert the experimental
team that their results were not correct, but instead it gave
them false confidence in their results.

Another example involved a theoretical prediction of the
performance of a proposed new facility. Based on
extensive analysis of the results of smaller facilities by
the international community in a particular field, it had
been proposed to build a large experiment. Just as the
design of the large experiment was being completed by an
international team, a small group of three theorists
completed a computer simulation based on a new code of
the expected performance of the proposed facility. Their
initial results indicated that the performance would be
poor due to instabilities and that the proposed facility
would not be able to achieve its goals. Their results were
widely distributed in the popular media, and contributed
strongly to several partners withdrawing from the project.
Extensive analysis by the international community led to
the realization that the three theorists had left out
important effects that stabilized the instabilities, and that
the expected performance would be roughly what the
original design team had predicted. In this case, a
computational prediction that was later proven to be
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wrong had an important impact on a scientific policy
issue.

There are many other examples that are also available.
These examples illustrate that the computational science
results are beginning to play an important role in society,
but not always a positive role. If this role is to be a
positive one, we, as a community, must work to achieve
the level of maturity for which our results are accurate and
reliable. As in the case of suspension bridges, we must
start analyzing our failures and successes, and learn from
them. To illustrate some of the kinds of “lessons learned”
analyses we will need to conduct, I describe an exercise
that Richard Kendall and I carried out for six computer
simulation projects in the nuclear weapons program[3].
The analysis we carried out emphasizes the code
development process more than the validity of the results
of the computations, but reliable answers requires a
mature methodology for development of the analysis
tools.

2. “Lessons Learned from ASCI”

Richard Kendall and I developed a set of “lessons
learned” from the US Department of Energy’s Accelerated
Strategic Computing Initiative (ASCI) program[3]. Since
1996, the ASCI program has spent over $3B to develop
the predictive nuclear weapons simulation capability
required for certification of the stockpile without nuclear
testing. The ASCI program has elements that focus on
the development of large scale, massively parallel
computer platforms, the associated operating systems and
code development tools, application codes and supporting
algorithms and models. Some of the applications
development ASCI projects have been successful in
meeting their objectives and some have not. We analyzed
the application projects at the Lawrence Livermore
National Laboratory (LLNL) and the Los Alamos
National Laboratory (LANL) utilizing metrics and case
studies that focused on the history, organization and
institutional support of the code projects. By identifying
the common elements that led to success or failure to
achieve objectives and comparing them to the experience
of the information technology (IT) community (e.g. [4]),
we developed a set of recommended practices for large-
scale technical code projects (Table 1).

Table 1:   Code Development “Lessons Learned” from the
ASCI Program at LANL and LLNL
1. Build on the successful code development history and

prototypes for your organization.
2. Good people in a good team are essential for successful

code development projects.
3 .  Software Project Management: Run the code project

like a project.

4 .  Risk identification, management and mitigation are
essential for successful code development.

5 .  Determine the schedule and resources from the
requirements (goals and objectives, quality, team
building and survival, and added value), not
independently.

6. A strong customer focus is essential for success.
7 .  Better physics in a physics code is much more

important than better computer science.
8. Use modern but proven Computer Science techniques;

do not let your project become a Computer Science
research project unless it is one.

9 .  Train the teams in project management, code
development techniques and the physics and numerical
techniques used in the code

10. Software Quality Engineering: Use Best Practices to
improve quality rather than processes.

11. Validation and Verification of codes are essential.

While the “lessons learned” list may seem obvious and
certainly contains no surprises, every code project we
studied violated at least a few. Almost all were violated
for the least successful projects. These lessons are
generally not new. Indeed, many of these lessons can be
found in Fred Brooks’ 1975 classic: “The Mythical Mon-
Month” [5]. Also, these principles apply to many other
organized human activity[6].

1. Identify the things your organization or institution
does well and build on them. Introduce change with
clearly defined goals in an evolutionary fashion. Even
though you may think that the ideal structure for effective
code development might be radically different from the
existing organization and culture, radical, instant changes
will disrupt whatever is working, and likely will not lead
to success. Successful change takes time and requires that
the people in the institution feel “safe” and trust the
management to treat them fairly.

2. Teams, not organizations or processes, develop
software. Form the best team you can, support it, and
help it “jell.” A good team is the strongest asset an
institution can have. Developing good teams is the key to
developing good software. A good team is also a crucial
deliverable for a successful project because any further
progress must build on the team.

3. Run the code project like the project that it is, with
requirements, deliverables, a sound plan, realistic
schedules and adequate resources. Align authority with
responsibility. The project manager must be able to
control the resources and the team, and have the active
support of senior management. Otherwise, he is a project
“cheerleader,” not a project leader, and the project will
fail.

4. The development of large, complex technical codes
is inherently very risky. Many, if not most, development
efforts fail to meet their initial objectives, and quite a
number fail completely. Identifying the major risks,
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minimizing them and providing contingency and
mitigation is essential. The major risk factors for software
projects are [7]:

• uncertain goals, objectives and requirements;
• inadequate resources and support, including an overly

ambitious schedule;
•  institutional turmoil, including too much employee

turnover;
•  requirements and goals that change too rapidly or

increase too fast; and
• poor team performance.

Poor team performance is the smallest risk factor for
the ASCI code projects [3] and for the general software
industry [7]. The other risk factors strongly dominate.
Most code project failures (for ASCI as well as the
general IT community—[4, 7]) are due to the failure of
senior management to fulfill its responsibility to provide
guidance and support for the code projects. The ASCI
projects, and most technically oriented code development
efforts, have additional risks because they must develop
new algorithms and rely on other projects and groups to
provide essential components.

5. If adequate resources and schedule are not provided,
the project will fail to meet its objectives on time. This
is a failure itself and may initiate a chain of events that
will cause it to fail altogether. There is even less
flexibility for software development than for conventional
projects where one can fix two, but not three of
objectives, resources and schedule. For software, one can
only fix the objectives. The objectives and goals
determine the resources and schedule. The rate limiting
process for code development is the rate at which people
can analyze problems and develop solutions. The ability
to increase the schedule is severely limited. Similarly, the
maximum size of a code team is limited by the ability of
people to communicate complicated information with
each other. This is reflected in the quantitative analysis
that follows in the next section. The standard estimation
techniques indicate that the optimal schedule and team
size are a function only of the size and complexity of the
code[8]. Frederick Brooks put it another way: “Adding
more staff to a late project will only make it later.”[5] Ed
Yourdon wrote a book entitled “Death March” about the
disastrous consequences of overly ambitious code project
schedules[9].

6. Codes that customers do not want to use are like
experiments that do not take data or equipment that
people do not use. Such codes are a waste of resources
and the efforts of creative people. The code team and
management must focus on providing what the customer
both needs and wants. If the customer does not want or
like the product, the code will fail even if it is what he
really needs.

7. The value of the code to the ASCI customer is the
physics capability of the code. The degree of innovative
computer science in the code is of little interest to him.
The most successful ASCI codes have concentrated on

improved physics and have been very conservative in
their use of cutting edge computer science.

8. Similarly, computer science research within the
context of an application project greatly adds to the risks
and often results in code project failure. Use modern, but
proven techniques. Improving the physics is risky
enough. Leave computer science experiments to those
who can afford to fail a few times.

9. Invest in your people through training and
professional development. They will become more
capable as they acquire new skills and will be more
productive. It is a good way to encourage change and to
get the team members to see how other groups and
industries tackle their problems. In addition, their morale
will increase in proportion to the support of their
management. Training also provides an opportunity for
code team members to share experiences with the rest of
the team and with other teams.

10. Software quality is important. However, research-
oriented staff are not going to take a series of processes
defined in a book and follow them blindly because
someone in authority tells them to. They will apply the
same standard to software development methods that they
apply to their science. They have to be convinced that it
is right and adds value to their work. It is more
successful to convince the teams that individual practices
add value (configuration management, etc.) than to try to
convince them that a large system of processes is
something they should blindly embrace on faith.

11. Physics codes are an incomplete representation of
reality. The models have shortcomings and often have
mistakes in their implementation. Without a verification
and validation program for the codes and their
applications, there is no reason to believe that the code
results have any validity at all.

The software quality issue is important. If poor quality
codes are being produced, the sponsors and customers
will take action. Already the DoD and other customers
have developed fairly rigid processes for code
development and software quality assurance in response
to disastrous results due to poor quality software aircraft
and satellite control software. The Air Force cannot
tolerate bugs in aircraft control software that result in
plane crashes. They have established a very rigorous
procedure for vendors to follow to develop such
software[10]. An analogous situation existed in the
automobile industry in the 1970’s and 1980’s. The
American automobile was producing poor quality cars
and people were beginning to stop buying them. The
Japanese were building cars that had high quality and
people were buying them. A basic difference was that the
US automobile industry did not sufficiently emphasize
quality on the assembly line and in components. They
tested the cars after they came off the assembly line and
fixed the worst ones. The Japanese, on the other hand,
emphasized quality at every step of the assembly process
and for components. They tested the cars at many points
of the assembly and tested the components before
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installation. The net result was that far fewer cars with
poor quality emerged from the assembly line, and got
into the hands of consumers. The value of software
quality assurance is likely to be maximized when it is
applied at all steps of the software development process,
rather than just at the end. However, just as in the
assembly line, different development processes require
different methods, no one size fits all. Also, just as the
Japanese emphasized input from the assembly floor, the
code developers themselves are often the best judges of
how to implement quality. A process blindly imposed
from above will likely get the same type of malicious
compliance observed in the US auto industry.

3. Quantitative Estimation

The above lessons learned were based on a qualitative
and a quantitative analysis of the history of the different
code projects and comparison with the information
technology industry and conventional project
management and scientific research. The quantitative
analysis was a key element in establishing that the ASCI
code projects had not been given a consistent set of
requirements, resources and schedules. Our analysis [3]
was relatively simple compared to the methods often
employed in the Information Technology community[11],
but was nonetheless revealing. We analyzed simplified
case studies for many of the DOE’s Accelerated Strategic
Computing Initiative (ASCI) code projects to identify the
key factors that determine the success or failure of
complex scientific code projects. We found that the key
predictor was the age of the code project and the amount
of time allocated to complete the project and meet
milestones. Our analysis of the historical data indicated
that it takes about 8 years to develop an ASCI weapons
code. The projects that had 8 years of development often
succeeded, and those that did not have 8 years of
development all failed to meet their initial milestones.
This result emphasized the crucial need for a consistent
set of requirements, resources and schedule.

The case studies included metrics (code size, team size,
age, etc.). To see if the ASCI experience is consistent
with the Information Technology (IT) community, we
analyzed the case studies using a generic “function point”
model [11] widely used by the IT industry. We calibrated
this model for scientific code projects using the ASCI
case study data. Function points are a weighted total of
inputs, outputs, inquiries, logical files and interfaces [11,
12]. Functions Points were not developed for technical
software, but were the best measure we could find.

We first converted the single lines of code to Function
Points (FP)(e.g. eq. 1). T. Capers Jones lists the
equivalent single lines of code (SLOC) per function point
(FP) for the common computer languages [11]since
computer languages have different information densities.

Schedule = Contingency x Function Point schedule +
Delays (equ. 4)

In this model, the required schedule and average team
size are determined by the Function Point (FP) count
(eqs. 2,3). We calibrated and modified these general
scalings to account for the added complexity and
viscosity associated with developing scientific codes

specifically for the nuclear weapons complex. We
increased the schedule by 1.5 years to account for the
additional time it takes to recruit, hire, train and get
security clearances for code development staff. Using a
methodology developed by the Lawrence Livermore
National Laboratory Engineering Department[13], we
calculated a contingency factor of 1.6 to account for the
additional risks, uncertainties, complexities, etc. for the
LANL and LLNL computing environments. We modified
the standard FP scaling for the size of the code team (eq.
5)[11] to match the ASCI data. We included a correction
for small code teams.

We analyzed seven code projects, three at LLNL and
four at LANL (Table 2). For security reasons, we have
identified the LLNL codes with the letters A, B and C.
Table 2 lists the size of the code in function points, the
time estimated by equation 4 to develop the initial
capability of the code project, the actual age of the code at
the point it was expected to accomplish its first
milestone, whether or not the project succeeded, the
optimal code team size estimated from equation 3 and the
actual size of the team.

The case histories and the estimation procedures
indicate that it generally takes a minimum of 8 years for a
code team to develop an initial capability for a weapons
code project. The requirements for a weapons code are
determined by the physics necessary to simulate a nuclear
weapon. LANL and LLNL have over 50 years of
experience in this area, and know these requirements in
detail. Weapons code projects require between 3000 and
6000 function points (Fig.2).

€ 

FP =
C + + SLOC

53 +
C SLOC
128 +

F77 SLOC
107

 
 

 
 eq. 1( )

€ 

Team Size =
FP
150 eq. 3( )

€ 

Schedule months( ) = FPx 0.4 < x < 0.5; use x = .47 eq. 2( )

€ 

Team Size = 3 +
FP
150 •0.6 eq. 5( )
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Table 2  Software Resource Estimates for the LLNL and LANL Code Projects

LLNL LANL

ASCI A ASCI B Legacy A

Antero
Code

Project

Shavano
Code

Project

Blanca
Code

Project

Crestone
Code

Project

Single Lines of Code 184000 490000 410550 300000 500000 200000 314000

Function Points (Eq.1) 4800 4000 5400 2900 4800 3800 2900

estimated schedule(Eq.4) 8.7 7.6 6.9 6.6 8.1 7.4 6.7
Project age

(at initial milestone date) 3 9 N/A 4 3.5 8 8

Successful in achieving
initial ASCI milestone No Yes N/A No No No Yes

Estimated staff
requirements (Eq.3) 22 27 24 14 22 18 14

real team size 20 22 8 17 8 35 12
Yellow shading indicates historical data; white background denotes computed numbers.
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Figure 2. Time required to complete a project and
average code team size as a function of code capability

measured in Function Points[11, 12].

Some of the ASCI codes were started before ASCI
began in 1996 (ASCI B, Legacy A for LLNL, and the
LANL Crestone code project). ASCI B was started
roughly in 1992 and had a working prototype in 1994.
The Crestone code project was started before 1992.
ASCI A and the Shavano and Antero code projects were
started around early 1997. Legacy A was started over 30
years ago and was included for comparison. Since we are

able to match the history of weapons codes with
scalings derived from the experience of the commercial
software industry, we conclude that the constraints,
computer science practices and management issues that
generally apply to the IT industry apply to the
development of weapons codes as well (i.e. there is no
“Silver Bullet” that can radically reduce the development
time [14]).

We found that the dominant factor for success is the
age of the code project. The code projects that did not
have sufficient time (8 years) to complete their projects
failed to meet their milestones. All but one of the code
projects that had 8 years succeeded in meeting their
milestones. This is clear evidence that schedules and
requirements must be consistent. The schedule cannot be
fixed independently of the requirements, a fact long
appreciated by the IT industry[9] but not adequately
taken into account in the early planning for ASCI.
Unfortunately, the ASCI program set the milestone for
demonstrating the capability of each code project to be
three and a half years (December 1999) after the
beginning of ASCI (~mid 1996) and three years after the
date (~January 1997) many of the code projects were
launched. Having recently recognized this, partially as a
result of our analysis, the ASCI program has revised the
program milestones.

Adequate development time is necessary—but not
sufficient—for success. Several code projects failed in
spite of having adequate time. Poor practices and
inadequate support—implicitly included in the
contingency factor—hurt many of the projects as well.

A final point is that it is clear from the function
point scaling relations (eqs. 1-5) that the code
requirements determine both the schedule and resources
needed for success. This estimating analysis indicates
the importance of a realistic set of requirements,
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schedule and resources. Without them, projects will fail
and the needed applications will not be developed.

4. Conclusions

Computational science has the potential to play an
important role in society in many, many fields.
However, if computational science is to reach the level
of maturity necessary to play that role, it must increase
the level of confidence in its predictions. It must
develop methods to ensure that the equations and
models accurately reflect the real world, that the
equations and models are solved correctly, that the
applications are set up and run correctly by
knowledgeable and careful people, and that the results
are interpreted correctly. Accurate equations and
correctly implemented models requires attention to the
code development process. The process must follow the
general “lessons learned” discussed in the paper.
Particular attention must be given to building in
quality and accuracy. An intensive verification and
validation program is essential. Finally, those
developing the code and those using the code must
have a deep appreciation of the limits of the code and a
deep rooted appreciation that the results may not be
correct.
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Figure 1. Learning Curve for HEC Application
Developers
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Figure 2. Expertise Profile for HEC Applica-
tion Development Organization
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Abstract 
Network processors have emerged as prominent 

examples of multiprocessor application-specific pro-
grammable architectures.  While there have been sig-
nificant architectural developments in this field, wide-
spread adoption will be predicated on productively 
programming high performance applications on these 
architectures.  This paper presents a case study of two 
programming environments for a common network 
processor, the Intel IXP1200.  We compare the devel-
opment process, achievable performance, and re-
source usage of the final implementations using these 
two programming approaches and draw conclusions 
regarding the advantages and disadvantages of these 
approaches. 

1. Introduction 

The costly unpredictable nature of ASIC design 
coupled with increased silicon capability is fueling the 
rise of multi-processor application-specific architec-
tures.  Examples of this trend have already been dem-
onstrated in networking, multimedia, and graphics.  
Architectures for these application-specific program-
mable processors have been explored in great depth.  
For example, current network processors share many 
of the complex architectural features of traditional 
high-performance computing systems: multiple proc-
essing elements each with multiple hardware-
supported threads, distributed memories, special-
purpose hardware, and a variety of communication 
mechanisms.   

Despite the deep architectural emphasis, there has 
been relatively modest investigation of their program-
ming environments.  For many system designers who 
chose to use these programmable solutions, their suc-
cess will depend largely on their ability to implement a 
high-performance application in a short (or at least 
predictable) design time.  Current options for pro-
gramming network processors are: assembly language, 
C language variants [1] [2] [3], and block-based 
frameworks [4] [5].  The most common approach is to 

use assembler or a subset of C with architecture spe-
cific extensions (e.g. Intel Microengine C [1], Mo-
torola’s C-Ware [2], Teja Technologies Teja C [3]).  
In addition, a few efforts have raised the programming 
abstraction to a higher level.  For example, Intel has 
released a framework called ACE [4] that is a library-
based approach built on assembly code.  Another such 
effort, NP-Click [5], combines Click [6], a popular 
networking specification language, with an abstraction 
of the target network processor architecture.   

This paper is a case study comparing two different 
software development approaches for a representative 
network processor, the Intel IXP1200 [7]: Microen-
gine C (which we refer to as IXP-C) and NP-Click.  
We chose these two software development approaches 
to compare different levels of abstraction: a C-like 
language and a domain-specific language.  To our 
knowledge, this is the first research effort to compare 
in a detailed manner the software development meth-
odologies for a network processor.  We chose the 
IXP1200 over newer architectures based on the avail-
ability of software development environments.  How-
ever, we believe the results of this study are applicable 
to recently released architectures like the Intel 
IXP2xxx family as well as other network processor 
families.   

To compare these two programming approaches, 
we use each of them to implement a 16 port IPv4 
packet forwarder and a 4 port Differentiated Services 
(DiffServ) interior node.  The IPv4 packet forwarder is 
a performance focused benchmark, while the DiffServ 
application contains more functionality, but supports 
fewer ports.  We compare these two software devel-
opment approaches across three categories: develop-
ment process, achievable performance, and resource 
usage of the final implementation.  We analyze these 
results and compare and contrast the advantages and 
disadvantages of the IXP-C and NP-Click program-
ming environments.   

The remainder of this paper is organized as follows: 
Section 2 provides a brief architectural description of 
the Intel IXP1200.  Section 3 describes the two soft-
ware development approaches we chose: IXP-C and 
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NP-Click.  Section 4 describes the applications we 
implemented: IPv4 packet forwarding and a DiffServ 
interior node.  Results are presented in Section 5.  Fi-
nally, sections 6 and 7 summarize our results and 
comment on future work, respectively. 

2. Intel IXP1200 

For this case study we chose the Intel IXP1200 be-
cause it is representative of other network processing 
and other multi-processor application-specific archi-
tectures.  In addition, the IXP1200 has numerous 
available programming environments, relative to other 
network processors.   

The IXP1200 is one of Intel’s first network proces-
sors based on their Internet Exchange Architecture.  It 
has six identical RISC processors, called microengi-
nes, plus a StrongARM processor.  The StrongARM is 
used mostly to handle control and management plane 
operations.  The microengines are geared for data 
plane processing and each has hardware support for 
four threads that share a fixed size program memory.  
The memory architecture is divided into several re-
gions: large off-chip SDRAM, faster external SRAM, 
internal Scratchpad, and local register files for each 
microengine.  Each of these areas is under the direct 
control of the user and there is no hardware support for 
caching data from slower memory into smaller faster 
memory (except for the small cache accessible only to 
the StrongARM).  There is also a hash engine co-
processor that provides hardware support for hash key 
creation.  The IX Bus (an Intel proprietary bus) is the 
main interface for receiving and transmitting data with 
external devices such as Ethernet MACs and other 
IXP1200s.  It is 64 bits wide and runs up to 104MHz 
allowing for a maximum throughput of 6.6Gbps.  The 
microengines can directly interact with the IX bus, so 
any microengine thread may receive or transmit data 
on any port without StrongARM intervention.  This 
interaction is performed via Transmit and Receive 
FIFOs which are circular buffers that allow data trans-

fers directly to/from SDRAM.  For the microengines to 
interact with peripherals (e.g. determining their state), 
they need to query or write to Control Status Registers 
(CSRs).  Accessing control status registers requires 
using the Command Bus which doubles as the inter-
face to the hash engine, scratchpad memory, and 
Transmit and Receive FIFOs.  A micro-architectural 
diagram of the Intel IXP1200 is show in Figure 1. 

3. Software Development Approaches 

For this case study, we focus on software develop-
ment for data-plane processing, where high throughput 
and low latency are required.  In this section we de-
scribe the two IXP1200 microengine software devel-
opment approaches we chose to compare: IXP-C and 
NP-Click.   

3.1. Intel IXP1200 Microengine C (IXP-C) 

The initial programming model that Intel provided 
for the microengines was assembly language [8].  This 
is the lowest level of programming the architecture as 
it exposes all facets of the architecture under pro-
grammer control.  Intel also provided a macro assem-
bler that supports higher-level programming constructs 
like conditionals and loops.  There is also a register 
allocater so symbolic variable names can be used.   

Later, Intel augmented their assembly language in-
terface to the microengines with a subset of C (which 
we refer to as IXP-C) [1].  IXP-C supports loops, con-
ditionals, functions, intrinsics (function calls using C 
syntax that direct instruction selection), basic data 
types, and abstract data types such as structs and bit-
fields.  However, data allocation to different memory 
regions is user defined; for practical applications, ex-
plicit binding is necessary at declaration time.  In addi-
tion, the multithreading model is explicit: the pro-
grammer must manually divide their application across 
microengines and threads, control all inter-processor 
and thread communication, and arbitrate access to 
shared resources.  Intel also provides a library that 
defines additional data types, macros, and functions 
that provide a slightly higher abstraction of the hard-
ware.  For example, there are bit-fields that export the 
format of control status registers and intrinsics for as-
sembler instructions that use the hash engine. 

3.2. NP-Click 

NP-Click [5] is a programming model implemented 
for the Intel IXP1200 that combines the “flow-based 
router” concept from Click [6] with an abstraction of 
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the target architecture.  Like Click, elements are the 
base unit of computation in NP-Click.  Elements corre-
spond to common networking operations like classifi-
cation, route table lookup, and header verification.  
Elements communicate by passing packets using well-
defined semantics.  There are two types of communi-
cation: push and pull.  Push communication is initiated 
by the source element and effectively models the arri-
val of packets into the system.  Pull communication is 
initiated by the sink element and often models avail-
able memory in hardware resources for egress packet 
flow.  In NP-Click, the elements are implemented in 
IXP-C to leverage the existing compiler for the 
IXP1200.   

NP-Click also provides visibility into salient archi-
tectural details that greatly affect performance.  Spe-
cifically, it enables programmers to: 

• control thread boundaries to effectively manage 
processor and thread utilization 

• map data to different memories (registers, 
Scratchpad, SRAM, and SDRAM) 

• separate design concerns of arbitration of 
shared resources and functionality 

NP-Click separates the application description from 
implementation choices, such as functional partitioning 
across microengines or arbitration schemes for shared 
resources.  For example, after initially implementing 
their application in NP-Click, the application pro-
grammer is able to change the thread boundaries to try 
different implementations without changing the appli-
cation description.  

4. Applications 

For this case study, we use IXP-C and NP-Click to 
implement two applications: packet forwarding and a 
DiffServ interior node.  The IPv4 packet forwarding 
application is a performance-centric benchmark with 
relatively narrow functionality.  The second applica-
tion, a DiffServ interior node, is a functionally rich 
application with lower performance requirements.   

4.1. IPv4 Packet Forwarding 

IP Version 4 packet forwarding [9] is a common 
kernel of many network processor applications.  We 
chose to implement the data plane of a 16 port Fast 
Ethernet (16x100Mbps) IPv4 router.  The major fea-
tures of this benchmark are listed below:  

• incoming packets are checked for validity, in-
cluding proper version number and correct 
header length 

• the egress port of a packet is determined by a 
longest prefix match route table lookup based 
on the IPv4 destination address field 

• after the egress port has been determined, the 
time-to-live (TTL) and checksum fields in the 
packet header are updated 

4.2. Differentiated Services Interior Node 

The differentiated services architecture (DiffServ) 
[10] is a method of facilitating end-to-end quality of 
service (QoS) over an existing IP network.  In contrast 
to other QoS methodologies, it is a provisioned model, 
not a signaled one.  This implies network resources are 
provisioned for broad categories of traffic instead of 
employing signaling mechanisms to temporarily re-
serve network resources per flow.  A DiffServ network 
relies on traffic conditioning at the boundary nodes to 
simplify the job of the interior nodes.  The boundary 
nodes of a DiffServ network aggregate ingress traffic 
into a number of categories, called behavior aggre-
gates (BAs), using the differentiated services code-
point (DSCP) as specified in [11].  The interior nodes 
apply different per hop behaviors (PHBs) to each of 
the BAs.  The classes of PHBs recommended by IETF 
include: 

• Expedited Forwarding (EF): low packet loss, 
latency and jitter 

• Assured Forwarding (AF): 4 classes of traffic, 
each with varying degrees of packet loss, la-
tency and jitter 

• Best Effort (BE): no guarantees of packet loss, 
latency, or jitter 

The PHBs in a DiffServ implementation are defined 
by a combination of: 

• classifiers: elements that select a subset of the 
packet stream based on packet header fields 

• traffic conditioners: elements that measure, 
mark, shape and drop packets 

For this case study, we implemented an interior 
DiffServ node.  While there is less monitoring and 
shaping than in a boundary node, we believe an inte-
rior DiffServ node is a good benchmark for network 
processors as it is a functionally rich application that 
stresses different aspects of the development process.   

Our DiffServ application begins with data-plane 
IPv4 packet forwarding functionality.  After an ingress 
packet passes through IP verification, IP lookup, and 
time-to-live decrement, it is classified based on its 
DSCP, with each class of traffic receiving different 
treatment.  For example, EF traffic is first metered, 
with traffic below the specified data rate queued for 
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transmit, while traffic above this data rate is discarded.  
On egress, we use two cascaded packet schedulers: 

• deficit round-robin scheduling (DRR) [12] for 
EF and AF classes with a weighting toward EF 
and higher priority AF classes 

• strict priority scheduling between the output of 
DRR scheduling and BE traffic 

The DiffServ application we implement supports 4 
Fast Ethernet ports (4x100Mbps).  Though the 
IXP1200 may seem like overkill for this application, 
we attempted to implement an 8x100Mbps version of 
this application, but neither the IXP-C nor NP-Click 
implementation could support this line rate.   

5. Results 

To test each implementation, we used a cycle-
accurate architecture simulator of the IXP1200 [13] 
assuming a microengine clock rate of 200MHz and an 
IX Bus clock rate of 100MHz.  Our simulation envi-
ronment also models the Ethernet MACs (Intel 
IXF440s) connected to the IX Bus.  For both applica-
tions, the destinations of the input packet streams were 
randomly distributed evenly across the output ports.  
In addition, the routing table contained 1000 entries 
and measurements were not taken until steady state 
was reached. 

5.1. Performance 

This section describes the measurement methodol-
ogy and performance results of the IXP-C and NP-
Click implementations.  We first present the results for 
IPv4 packet forwarding, then for the DiffServ interior 
node.   

5.1.1. IPv4 Packet Forwarding. To measure per-
formance for the IPv4 packet forwarding application, 
we consider the packet forwarder to be functional if it 

has a steady state transmit rate that is within 1% of the 
receive rate without dropping any packets.  We test 
each of the implementations with a variety of single 
packet size input streams (64, 128, 256, 512, 1024, 
1280, and 1518 bytes) and the IETF Benchmarking 
Methodology Workgroup (BMWG) mix [14].  We use 
64 and 1518 byte packet streams as they represent the 
minimum and maximum frame sizes permitted by the 
Ethernet standard.  The packet sizes in between are 
included to give additional insight into the perform-
ance of the different implementations.  The BMWG 
packet mix provides a more realistic input data set as it 
contains an even random distribution of seven packet 
sizes ranging from 64 bytes to 1518 bytes.  For each 
input packet stream, we measure the maximum sus-
tainable aggregate data rate. 

The results of our experiments for IPv4 packet for-
warding are shown in Figure 2.  The IXP-C implemen-
tation is able to perform at 85% of line rate 
(1360Mbps aggregate) across all single packet size 
input streams.  For the BMWG packet mix, the per-
formance is slightly lower (1200Mbps aggregate) be-
cause of dynamic load balancing effects.  We attribute 
the consistent data rate across all packet sizes to sub-
optimal arbitration of multiple threads accessing the 
shared transmit FIFO as the performance limiting fac-
tor.   

The aggregate bandwidth of the NP-Click imple-
mentation ranges from 880-1360Mbps.  NP-Click’s 
implementation has more processing overhead per 
packet than IXP-C’s.  As a result, for data streams 
composed of smaller packets, NP-Click’s throughput 
suffers.  For the BMWG packet mix, a more realistic 
data set, the NP-Click version also suffers from load 
balancing issues, but is able to achieve 93% of the 
IXP-C implementation (1120Mbps aggregate).   

For reference, we show the performance of a hand-
tuned assembler implementation based on an Intel ref-
erence design.  The assembler implementation was 
able to meet line rate (1600Mbps aggregate) for single 
packet size streams, but only maintains 1360Mbps 
when tested with the BMWG packet mix.  Both the 
IXP-C and NP-Click implementations fall short of this, 
by 11.7% and 17.6% respectively, because of the fine 
degree of scheduling that is available only when pro-
gramming at the assembly language level.   

5.1.2. Differentiated Services Interior Node. For the 
DiffServ application, measuring performance is not as 
simple since the specification requires non-conforming 
packets to be dropped.  Thus, the transmit data rate 
will always be less than received data rate.  To gauge 
performance we compare the egress data rates of the 
constituent traffic flows.  For the baseline setup for all 
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measurements, the ingress data rates were set to the 
following percentages of ingress bandwidth: 

• Assured Forwarding, Class 1 (AFC1): 20% 
• Assured Forwarding, Class 2 (AFC2): 15% 
• Assured Forwarding, Class 3 (AFC3): 10% 
• Assured Forwarding, Class 4 (AFC4): 5% 
• Best Effort (BE): 10% 

We measured egress data rates for all traffic flows 
as the Expedited Forwarding (EF) traffic grew from 
0% to 40% of ingress bandwidth in 5% increments.  
When the EF flow is set to 40% of ingress bandwidth, 
the aggregate ingress bandwidth is at line rate 
(100Mbps/port).  Since this is only a 4 port design, we 
do not see the load balancing issues witnessed in the 
IPv4 packet forwarding implementations.  Thus, to 
measure the worst case, the packet sizes of all flows 
were set to 64 bytes. 

Both the IXP-C and NP-Click implementations 
were able to receive packets at line rate.  The egress 
data rates of all flows for both implementations are 
shown in Figure 3 and Figure 4.  Ideally, the graph 
should be a horizontal line for Assured Forwarding 
(AFCx) classes indicating their egress data rates were 
not affected by increase in EF traffic.  For EF traffic, 
the egress and ingress data rates should be equal 
through 20%, then egress EF traffic should level off.  
This is due to the setting of the bandwidth meter in the 
EF PHB.  The egress Best Effort (BE) data rate is 
bound to decrease as EF increases since BE packets 
are subject to a strict priority scheduling with respect 
to all other flows.   

For the IXP-C implementation, as the Expedited 
Forwarding (EF) flow increases, we see a minor de-
crease on the egress data rate of Assured Forwarding 
(AFCx) flows.  This is caused by an overall increase in 
the ingress data rate, which results in more packets to 
process.  This increases the total amount of computa-
tion required, which results in a slower packet process-
ing rate.  The decline in Best Effort (BE) egress band-

width is caused by the increased availability of packets 
from other flows with higher priority.   

The NP-Click implementation performs similarly, 
but experiences some additional degrading effects as 
the EF flow increases beyond 20% of ingress band-
width.  However, the egress bandwidths of EF and 
AFCx flows in NP-Click’s implementation remain 
within 10% of IXP-C’s.  Since the transmit function is 
slightly slower in NP-Click, the BE data rate takes a 
performance hit earlier in the ramp up of EF traffic.   

5.2. Development Process 

This section compares and contrasts the develop-
ment process of the applications using IXP-C and NP-
Click.  Specifically, we focus on the debugging and 
performance improvement process, design time alloca-
tion, and total design effort.  Number of lines of code 
is often used as a proxy for design effort.  However, 
when comparing vastly different programming meth-
odologies, this metric can be very misleading.  Instead, 
we measure person-hours.   

5.2.1. IXP-C. When using IXP-C to implement IPv4 
packet forwarding and the DiffServ interior node, most 
of the development effort was spent arriving at a func-
tionally correct initial implementation.  The remainder 
of the design effort was spent improving the imple-
mentation.  More than half of that was fixing bugs that 
arose from thread interactions.  Some of these interac-
tions were not obvious from the design or the code, 
which made debugging even more difficult. 

Given the relatively low level abstraction of IXP-C, 
both profiling and optimizing the implementation 
proved difficult.  As a result, we were able to only 
implement and test a few design alternatives.  All the 
design alternatives we implemented were incremental 
changes on the initial implementation.  Large design 
changes to the implementation would have required 
even more design effort, with no guarantee of per-
formance improvement. 
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Figure 3. IXP-C DiffServ egress data rates 
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Our total design effort for the IPv4 packet for-
warder using IXP-C was 400 person-hours.  For the 
DiffServ implementation, we started with a hand-
coded data-plane implementation of an IPv4 packet 
forwarder, then added the DiffServ functionality.  The 
total design effort for this implementation was 320 
person-hours.  

5.2.2. NP-Click. Using NP-Click, we began with a 
Click description of the application and we were able 
to create an initial functionally correct design within a 
few days.  We spent the majority of the design effort 
exploring the design space of implementations: pin-
pointing design bottlenecks, changing the mapping of 
elements to microengines, and simulating.  Due to the 
modularity of NP-Click, profiling different implemen-
tations was easy.  Performance improvement consisted 
of three major categories: changing mappings of ele-
ments to threads/microengines, better implementations 
of elements, and lower overhead arbitration schemes.  
Relatively little effort was spent debugging and when 
an error was spotted, it was easy to pinpoint which 
portion of the implementation was the cause.  Common 
errors included incorrectly specifying element configu-
rations and minor functional bugs within an element.  

Our initial implementation of the IPv4 packet for-
warding application had very low performance 
(480Mbps aggregate).  The limiting factor of this im-
plementation was a poor arbitration scheme of a shared 
resource (Transmit FIFO).  With NP-Click, we were 
able to implement a new arbitration scheme which 
increased performance by 83-133%.  The total design 
effort of this application was 100 person-hours.  For 
the DiffServ application, we were quickly able to ar-
rive at an initial functional implementation.  This ini-
tial implementation was a naïve mapping of elements 
to microengines, which we then optimized.  The total 
design effort for the NP-Click 4 port DiffServ imple-
mentation was 120 person-hours. 

5.3. Resource Usage 

Resource usage of the final implementation is a key 
comparison metric for any embedded software devel-
opment approach.  For this case study, we compare the 
number of microengines used, MIPS required, and 
code size for the IXP-C and NP-Click implementa-
tions.   

For the IPv4 packet forwarding application, both 
the IXP-C and NP-Click implementations used 6 all 
six microengines on the IXP1200.  For DiffServ, IXP-
C required only 3 microengines, while NP-Click re-
quired 4.  The additional microengine for the NP-Click 
implementation was needed because of instruction 

store limitations.  The instruction store on the Intel 
IXP1200 is limited to 2048 instructions per microen-
gine.  It is important to note that this memory is not a 
cache, but a flat memory.  As a result, all instructions 
to be executed on the microengines must fit in this 
space.  We attempted to fit the NP-Click DiffServ ap-
plication on fewer than 4 microengines, but often cre-
ated functional partitions that exceeded the instruction 
store on a particular microengine.  Thus, some of the 
NP-Click implementation effort was spent optimizing 
for code size, not performance.  The modularity of NP-
Click is responsible for the higher code size.  We sus-
pect better IXP-C compilation technology could sig-
nificantly reduce this.  A summary of the number of 
required microengines and code sizes for the four im-
plementations is given in Table 1.   

The number of microengines used does not give a 
clear measure of the amount of computing power re-
quired for the different implementations.  To measure 
this, we calculated the MIPS executed per implementa-
tion using a representative packet flow.  On every 
clock cycle, a microengine on the IXP1200 is either: 
executing an instruction, aborting an instruction (due 
to a mispredicted branch), stalled (waiting for multi-
cycle access to return without context switching), or 
idle.  We calculate MIPS by aggregating the number of 
cycles spent executing and aborting instructions across 
all microengines and dividing by time.  Since the mi-
croengines are running at 200Mhz, the peak MIPS rate 
is 200 per microengine.  Table 1 includes a summary 
of our results.  For IPv4 packet forwarding, the IXP-C 
and NP-Click implementations executed at similar 
MIPS rates.  We attribute the extra MIPS in the NP-
Click DiffServ implementation to overhead introduced 
by NP-Click’s modularity and time spent in polling 
loops.   

6. Summary and Conclusions 

In this case study, we have compared two different 
software development approaches for the Intel 
IXP1200, a common network processor.  We com-
pared IXP-C and NP-Click by implementing a 16 port 

Table 1. Statistics of the final implementa-
tions 

IPv4 Packet For-
warding 

DiffServ  

IXP-C NP-Click IXP-C NP-Click 
Number of 
microengines 

6 6 3 4 

MIPS 1196.6 1197.8 585.3 719.9 

Code Size 
3870 
instrs 

5591 
instrs 

2363 
instrs 

6090 
instrs 
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IPv4 packet forwarder and a 4 port DiffServ applica-
tion.  The advantages and disadvantages of each ap-
proach are given immediately below. 

6.1. Microengine C (IXP-C) 

The principal advantage of the IXP-C software de-
velopment approach is resource usage of the final im-
plementation.  For the DiffServ implementation, we 
were able to meet line rate using only 3 microengines 
and used significantly fewer instructions.  IXP-C also 
has a slight performance edge over NP-Click: it sup-
ports 75Mbps per port (BMWG packet mix) for the 
IPv4 packet forwarder and has a slightly higher egress 
data rate across all traffic flows for the DiffServ appli-
cation.   

Using IXP-C for software development had some 
drawbacks too.  The overall development effort per 
application was much longer than NP-Click’s, as was 
the time to reach functional correctness of the applica-
tion.  After meeting the functional requirements, per-
formance tuning was also quite difficult.  Hence, all 
performance improvements were incremental changes 
on the initial implementation.  As a result, with IXP-C, 
the final implementation is largely dependent on the 
initial implementation.  This places a large burden on 
the programmer’s intuition of how the application 
should be partitioned.   

6.2. NP-Click 

NP-Click’s primary advantage is ease of program-
ming.  With NP-Click, we were able to rapidly imple-
ment applications to meet the functional specification.  
Then, we were able to easily explore the design space 
of implementations to further improve performance.  
As a result, the total design effort was 2.5-4x shorter 
than IXP-C’s.   

For the IPv4 packet forwarder, the NP-Click im-
plementation was able to route packets at 70Mbps per 
port (BMWG packet mix), 6.7% less than the IXP-C 
implementation.  For DiffServ, the egress data rate of 
higher priority flows in NP-Click’s implementation 
was within 10% of the IXP-C implementation.   

The major weakness of using NP-Click is resource 
usage.  For the DiffServ implementation, NP-Click 
was able to receive packets at line rate, but required an 
additional microengine.  This was mainly due to NP-
Click’s code size overhead when compared to IXP-C.  
The instruction store limitations on the IXP1200 
forced us to use one more microengine.   

It is important to note that we spent significantly 
less effort using NP-Click for both applications.  We 
believe further effort using NP-Click will result in bet-

ter implementations.  For the 16 port packet forward-
ing design, we believe NP-Click can produce an im-
plementation that can meet a higher data rate.   For the 
DiffServ implementation, we can likely achieve similar 
performance with lower resource usage (but not as low 
as IXP-C’s).   

6.3. Conclusions 

Embedded systems software development often 
falls into two categories: 

• Performance-focused: the system is required to 
meet certain performance requirements 

• Effort bound: a fixed number of person-hours 
are allocated for a design 

If performance is the primary goal, IXP-C has a 
slight edge, at the cost of design effort.  If resource 
usage is predicted to be tight, IXP-C is the preferred 
approach.  For effort-bound projects, NP-Click is pre-
ferred.  NP-Click gives designers a fast path to an ini-
tial implementation and the facilities to try many dif-
ferent implementations to improve performance and 
resource usage.  In either case, if there is little intuition 
about an ideal functional partitioning a priori, NP-
Click is more attractive.   

It may be possible to combine the two software de-
velopment approaches: use NP-Click to quickly try 
many different functional partitionings, yet write the 
final implementation in IXP-C.  This would provide a 
compromise between design effort, performance and 
resource usage.   

The Intel IXP1200 shares many of the salient fea-
tures with other network processors: multiple multi-
threaded processors, disparate memories with varying 
latencies, numerous heterogeneous shared resources, 
and different on-chip communication mechanisms.  As 
result, we believe these results are applicable to many 
other network processors, including newer architec-
tures.   

7. Future Work 

This case study compares two software develop-
ment approaches for the Intel IXP1200.  We would 
like to have compared other approaches, like Intel’s 
ACE framework [4] as well.  However, time limita-
tions prevented us from doing so.  We anticipate this 
framework enables a limited exploration of functional 
partitionings, but authoring functional blocks in as-
sembler is error-prone and time consuming.  Thus, we 
believe IXP-C should still be used for resource con-
strained applications while NP-Click should be used if 
reducing design effort is a primary concern.  
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Newer architectures like the Intel IXP2800 [15], 
which has 16 microengines and a more complex mem-
ory architecture, are exacerbating the difficulty of the 
programming task.  Implementing applications on 
these newer architectures will be even more difficult as 
the design space is larger.  In addition, the programmer 
will also have little intuition of which functional parti-
tioning will meet the specification.  For performance-
centric applications, we still anticipate IXP-C will be 
able to produce higher performance implementations 
at the cost of significantly more design effort.  For 
functionally rich applications, we anticipate an in-
creased utility of NP-Click’s ease of programming and 
facility to explore different mappings to the architec-
ture.  To confirm our hypothesis, we aim to perform a 
similar study for these architectures when tools for 
them become available to the university community.   
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Abstract

High-performance code is typically the product of a
tight collaboration between a domain expert, who writes
the high-level model, and a system expert, who tunes the
high-level code for a particular machine. Lacking tool
support, this collaboration is not very productive: the
performance-tuning process involves actually rewriting
the original, clean code into a large, hard-to-maintain
high-performance code. The result is that once the sys-
tem expert is done tuning, the domain expert has a hard
time modifying his model.

We present a tool for making the collaboration be-
tween system and domain experts more productive.
Specifically, we focus on the domain of bitstream pro-
grams. In our tool, the domain expert first writes
his algorithm in a high-level domain-specific language
(DSL). The system expert then optimizes the original
program not by manually rewriting it, or by developing
a standard optimizing compiler, but instead by specify-
ing his domain- and machine-specific transformations
in a higher-order transformation-specification language
(TSL).

Our key novelty is that the system expert needs to
merely sketch the desired transformation. The system
fills in the details missing in the expert’s template by
constraining the optimized code to behave like the orig-
inal one. Such “templating” has the potential to im-
prove productivity by (a) allowing rapid prototyping of
transformations; and (b) making a transformation ap-
plicable even after its original source DSL is to some
extent modified.

1 Introduction

Many high-performance codes start as a relatively
clean implementation written almost entirely by do-
main experts, e.g., mathematicians specializing in
cryptographic algorithms. Starting from this high-level
implementation, domain experts will work closely with

system experts to do extensive performance tuning.
In the process, large sections of code are modified to
achieve better parallelization or vectorization of loops,
better cache performance, or elimination of redundant
operations. Often, the result is low-level code that is
not maintainable: it is hard to read, debug, or port to
a different machine.

Domain experts working in such a software devel-
opment process often face a dilemma. Whenever they
want to explore different high-level algorithms, they
must either (i) implement their high-level changes in
the heavily optimized low-level code, where they will
be expensive to implement and debug; or (ii) write
the changes into the original unoptimized version and
go through the extensive performance tuning all over
again, throwing away the results of the previous tun-
ing effort. The first option is error-prone; the second
is laborious; both are inefficient.

This paper focuses on the domain of bit-stream pro-
grams, which appear in a wide range of settings, from
data compression, to encryption, to coding. In high-
performance bit manipulation, there can be large per-
formance differences between naive and hand-tuned
implementations, and the latter tend to be hard to
debug. For example, in the BitTwiddle benchmark
from the NSA suite, the algorithm specification takes
less than half a page, whereas a single-processor high-
performance implementation in FORTRAN extends
over 600 lines of code filled with complicated array in-
dex computations. Bit-streaming programs are compli-
cated because the system expert must trade-off several
conflicting metrics. As our running example will illus-
trate, he must determine how to (i) fill computer words
with as many useful bits as possible, in order to max-
imize bit-vector parallelism; (ii) reduce the number of
bit shifts within the word, by shifting multiple bits;
and (iii) reduce the word-to-word copies.

We present a tool that facilitates the interaction be-
tween domain and system experts without both sac-
rificing high-level clarity and throwing away the tun-
ing effort when the source code is modified. In the
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scheme we are proposing, collaboration is achieved by
relying on two separate languages, one for the domain
experts and one for the system experts. The first lan-
guage is a DSL that specifies the high-level algorithms
to be implemented; the other specifies the performance-
improving transformations on the high-level program.
Since the high-level code is never directly modified, our
approach allows system experts to specify performance
improving transformations in a way that preserves the
integrity of domain experts’ code.

Our approach can be viewed as empowering the sys-
tem experts with a tool for rapidly developing opti-
mizations closely tailored to the original high-level pro-
gram. Our tool makes three contributions:

• We observe that a large class of bit-stream pro-
grams can be expressed as a composition of
affine transformations, which can be specified as
Boolean-valued matrices. This observation allows
us to use the StreamIt [12] language for expressing
bit-stream programs.

It is interesting to note that the process of opti-
mizing bit-stream operations can be viewed as a
sort of vectorization of bit operations (where the
vectors are the computer words). The StreamIt
language, however, does not directly identify or
express vector operations. Instead, this vectoriza-
tion is found during the system expert’s tuning
process.

• We develop a TSL that allows system experts to
specify a large number of transformations. The
TSL is a high-order language: it manipulates the
program written in StreamIt by the domain ex-
pert.

• We allow the user to specify the transformation
partially, using a transformation template; the
tool then figures out the remaining details. To this
end, we develop a simple constraint solver which
uses the original reference program and the tem-
plate to derive a complete transformation. Specif-
ically, the constraint solver looks for decomposi-
tions of matrices that specify the transformations
on the bit stream.

Since the template is often rather general, it can
tolerate small changes in the program. The tem-
plate with the solver thus act as an optimizer de-
signed by the system expert for a narrow class of
the optimizations.1

1The “narrowness” of the class should be viewed as an ad-
vantage, as we seek a method for writing optimizations that are
powerful because they are tailored to a particular program, or a
class of similar programs.

Templating has three important properties:

• The transformations do not change the semantics
of the original program, because we constrain the
resulting code to behave like the original, refer-
ence implementation. As a result, system experts
will be free to experiment with different transfor-
mations without worrying about introducing bugs
into the program.

• Our specifications are rather concise, because we
allow the system expert to specify only a template
of the transformation. Specifically, we want to
manually specify those parts of the transformation
that an automated algorithm would have trouble
finding.

• The specifications are robust in the sense that they
will continue to be applicable even when small
changes are made to the original program.

The three properties are actually somewhat comple-
mentary. Allowing system experts to specify only a
template of a transformation makes the specifications
more robust, since changes to the code that affect only
the details of the transformation will require no changes
to the specification. At the same time, ensuring that
the transformed program is semantically equivalent to
the original one is what allows us to derive complete
transformations from their convenient partial specifi-
cations.

2 Bitstream programs and their trans-
formations

To illustrate the bit-stream programs of interest, as
well as their high-performance implementations, this
section gives an example of a simple bit-stream pro-
gram and sketches an efficient way of implementing it
on a general-purpose processor.

Somewhat surprisingly, the seemingly simple task
“drop every third bit from the input stream” can serve
as a sufficient canonical example for many complex bit-
stream manipulations. While bitstream manipulations
can of course be more complex than this, efficiently im-
plementing this manipulation calls for the same trans-
formations as the more complex manipulations we have
encountered (e.g., permuting bits in the input stream).

To see why efficiently implementing this manipula-
tion in a 64-bit machine (with the usual operations
of bitwise and/or and left/right shifts) is difficult, one
needs to realize that efficiently implementing bit oper-
ations amounts to vectorizing with additional tweaks:
Packing bits into words for parallelism is like vector-
ization. However, since bits needs to be shifted within
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Figure 1. Two bit compaction algorithms. (a) A naive O(n) algorithm for compacting bits within a
word. (b) An O(log(n)) algorithm for the same problem. Our running example illustrates how to
effectively implement bit compaction in a stream (not just a word) using the approach in (b).

a word and then assembled into output words, we have
to keep track of where all the bits are at different points
of the execution.

More importantly, there are exponentially many
ways in which we could shift the bits. Most of the
schemes, including the one that a greedy search would
find, are of order O(n), but given that the bit shift
instructions can move multiple bits within a word at
a time, there is an algorithm that allows one to shift
the bits within the word in O(log(n)) time. Figure 1
shows the difference between a naive scheme and the
O(log(n)) scheme for a word-size of 16. The main dif-
ference is that the first one moves bits one set at a
time, and is therefore not taking full advantage of all
the parallelism available. The second algorithm on the
other hand moves every other set of bits at every step,
therefore reducing the number of gaps between sets of
bits by half on every step. In order to exploit this
trick effectively, however, it is necessary to minimize
the number of times that we move bits across words,
since bits that go to different words can not be moved
simultaneously with bits that have to stay in the same
word.

It is not difficult to see that the amount of code re-
quired for this task will be disproportionate to the one
sentence description of the task. In addition, a code
that really takes advantage of the wide datapath and
uses the optimal algorithm would be very hard to mod-
ify given even simple changes to the description, like
deciding to drop the second bit of every three instead
of the third one.

3 The stream manipulation language

The domain expert specifies bitstream manipula-
tions with a Domain Specific Language based on the
StreamIt language that was originally developed for

stream programs for signal processing applications [12].
The StreamIt language provides an abstraction for ma-
nipulating streams of word-sized entities (e.g., floating-
point numbers), but this abstraction is suitable also for
streams of bits, and we use it without any change.

As far as efficiently compiling bitstream programs,
while the StreamIt compiler provides a number of opti-
mizations aimed at optimizing word-sized stream pro-
grams with linear filters, the optimizations don’t help
with bitstreams, because in the case of bitstreams, the
key translation task is how to “pack” elementary op-
erations into bigger ones (i.e., how to pack bits into
words), which is not an optimization performed by the
StreamIt compiler. Therefore, we need to develop these
optimizations ourselves. Developing these optimiza-
tions rapidly is the focus of this paper.

The building blocks for StreamIt are filters that can
consume Nin elements from an input stream, and com-
pute Nout elements to be written to an output stream.
Filters can be of three different types:

Basic filters specify the mapping from input to out-
put imperatively in a language similar in syntax to C
and can therefore be any arbitrary function, although
the transformations presented in this paper apply only
to affine filters. In figure 2 we show the description for
a filter that performs the task described above, along
with a matrix representing the transformation imple-
mented by the filter. The matrix representation for the
filters is used through out the paper instead of the ac-
tual code to make the illustrations more concise, and
to emphasize the fact that the filter is performing a
linear transformation on the bit stream.

Pipelines chain several filters together. The input
to the pipeline is fed to the first filter, and the output
of each filter is fed as input to the next filter until you
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filter subsequence{

Work push 2 pop 3{

for(int i=0; i<3; ++i){

x = peek(i)

if(i<2) push(x);

pop();

}

}

}

Input

Output

1 0 0
0 1 0

?

?

(a) (b)

Figure 2. A bitstream filter that generates its output stream by dropping every third bit in its input
stream. This high-level code specifies the filter’s function, but not a particular implementation of
the filter on the target machine. (a) StreamIt code for the filter. (b) A graphical representation of the
same filter. Because the filter is linear, it can be represented by a matrix: Each three bits popped
from the input stream form a vector; this vector multiplied by the matrix produces the corresponding
part of the output stream. That is, there is a column in the matrix for each input bit, and this column
specifies where the input bit appears in the output.

get to the last filter, and then its output becomes the
output of the pipeline.

Splitjoins are composed of three parts. A splitter,
receives the input stream and creates N streams. Each
stream is fed to a filter, and the output of each filter
is fed to a joiner which combines them into a single
stream that becomes the output of the filter. For the
splitter, we implement the same splitters implemented
by StreamIt: round robin, and duplication. In the case
of round robin, you must give as parameters a list of
N numbers, k1, k2, . . . , kN where ki is the number of
bits to pass to filter i on every round, and Nin for the
entire splitjoin will be Nin =

∑N
i=1 ki. In the case

of duplication, a copy of the input stream is sent to
each filter. As for joiners, we implement again round
robin, and xor. In the case of round robin, we need to
specify once again N parameters, but in this case the
ith parameter ki is the number of bits to get from filter
i on each time step. The xor joiner will xor together
the streams coming out of each filter to produce an
output stream.

4 Compiling the stream manipulation
language

In order to understand how our compilation process
works, one must first notice that it is easier to generate
code for some programs than for others. In particular,
there is a class of programs where each of the basic
filters that compose them corresponds to an instruction
available in our machine. In general, we refer to filters
that can be easily mapped into machine instructions

as being in low level form for that particular machine.
For a machine with standard bitwise AND, SHIFT, and
XOR, table 1 summarizes all the filters that our system
regards as being in low level form.

We exploit the distinction between high level and
low level stream programs by dividing the compilation
into two stages: a transformation stage and a code
generation stage. The code generation stage receives a
stream program and assumes that the program is al-
ready in low level form; therefore it has only to identify
to which class each filter belongs, and generate the cor-
responding statement. This makes the implementation
of the code generator quite simple. The only complex
algorithm in the code generation phase is the schedul-
ing algorithm, which is the same as the one used by
the StreamIt compiler.

In turn, the transformation stage will be responsible
for bringing a program to low level form. It is in this
stage that most of the optimization can take place, and
therefore it is here where the input from the system ex-
pert will become important. The transformation stage
takes place in two steps. In the first step, the trans-
former takes in a stream program, and a specification
of the transformations provided by the system expert.
The transformer then applies the transformation to the
program to generate a new program. During the sec-
ond stage, the program is checked to see if it is already
in low level form. If it is not, the system will derive a
set of transformations to get the program to low level
form before handing it off to the code generator. These
transformations will be described in some detail in the
next section when we introduce the TSL. The trans-
former will then generate a new transformation speci-
fication that incorporates both the specifications from
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Figure 3. Transforming the high-level algorithm into low-level form, for a 4-bit-word machine. (a) Fig-
ure 2 transformed part-way to the low-level form. In this transformed filter, the round robin splitter
distributes each 12 bits of input, 4 bits to sj1, 4 to sj2 and 4 to sj3. The sj1 filter will then make
two copies of the 4 bits it is given, and pass the copies to F1 and F2. F1 and F2 will each output 4
bits, and the round robin joiner will concatenate their outputs. The outputs of all three splitjoins will
be XOR-ed by the outer joiner. See Figure 4 for formal description of the transformation. (b) Filter
F1 from (a) after it has been converted to low-level form. This filter is in low-level form (for a 4-bit
machine) because G1–3 can be each directly implemented on the target machine: G1 is an AND with
the bitmask 1100, G2 is a shift left by one, and G3 is an AND with the bit mask 0010.

the system expert and the transformations derived by
the transformer and returns it to the system expert.
This allows the system expert to examine the transfor-
mation specification, and to modify it to perform the
transformation in a way that generates a more efficient
low level program.

In figure 3(a), for example, we show a graphical rep-
resentation of the filter in fig 2 after it has been par-
tially transformed to low level form for a 4 bit machine.
All the filters are already square matrices of size 4x4,
but the filter is not yet in low level form because we do
not have any instructions in our machine that perform
the transformations F1 or F6. In figure 3(b), we show
how F1 can be brought to low level form. In this case,
we took each one of the two diagonals from the matrix
in filter F1 that have non-zero entries, and turned them
into separate filters joined by a splitjoin. For the one
which had the non-zero in the first diagonal above the
main one, we did a further factorization, and the result
is a set of filters that correspond to shifts and ANDs
with bitmasks.

5 Automatically Transforming the pro-
gram

To better understand how the transformation from
figure 2 to the one in 3(a) was performed, we must first
introduce the TSL. The TSL is a high order language
that allows us to specify transformations in a concise
and robust way. The main component in the TSL is
a set of transformations which take in a reference to a
filter and return a transformed filter. The main trans-
formations are listed in table 2.

When the system has to bring a program to low level
form on its own, the system will start by making all
splitjoins operate on word size chunks. In particular,
we want the number of bits passed to a each filter by the
splitter, and the number of bits received from each filter
by the joiner to be a multiple of the word-size, since we
can only pass complete words to each filter. This goal
is achieved by the SRRtoDup and JRRtoXOR transforma-
tions. These transformations turn round robin splitters
and joiners into duplication splitters and xor joiners re-
spectively, adding additional filters to preserve seman-
tics of the splitjoin. Figure 6 shows an example of the
use of these two transformations.

The system will then apply the Unroll[N] transfor-
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subsequence = Unroll[4](subsequence); // 1

subsequence = ColSplit[4](subsequence); // 2

subsequence.subsequence_1 = RowSplit[4](subsequence.subsequence_1); //3

subsequence.subsequence_2 = RowSplit[4](subsequence.subsequence_2); //4

subsequence.subsequence_3 = RowSplit[4](subsequence.subsequence_3); //5

Figure 4. The TSL specification for transforming the program in Figure 2 into the one in Figure 3(a),
for a 4-bit machine. Statement 1 unrolls the filter (called subsequence) so that it takes 12 bits as
input and returns 8 as output. Statement 2 decomposes the unrolled filter into a splitjoin of three
different filters, each of which consumes 4 bits and outputs 8 bits (see also Figure 5). Each of the new
filters correspond to four columns of the matrix generated by Statement 1. The new filters are named
subsequence.subsequence i. Finally, each of the three new filters is decomposed into a splitjoin of
two filters, each of which consuming 4 bits and producing 4 bits.
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Figure 5. The three splitting transformations. (a) ColSplit[4] transforms a filter into two filters, each
receiving only half of the input of the original filter, since the input is now distributed round robin
among the two. Their output is XOR-ed, so the semantics of the filter is unchanged. (b) The effect
of RowSplit[4] on the same filter. In this case, the input is duplicated, and passed to the two new
filters. Their results are concatenated by a round robin join. (c) DiagSplit[4] creates two new filters
that correspond to 4x4 blocks from the diagonal of the original matrix. The input is distributed round
robin, as in (a), but the output is concatenated as in (b). In order to guarantee semantics preservation,
the system checks that the rest of the matrix is all zeros.
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Figure 6. The splitjoin transformations. (a) The original filter. (b) The result of applying SRRtoDUP
on the splitjoin in (a). (c) The result of applying JRRtoXOR to (b). Note that the two transformations
eliminated the round robin splitters and joiners, which is useful when the size of the round robin
splitters and joiners is not a multiple of the word size.

mation with

N =
word-size

gcd(Nin, Nout, word-size)
.

This transformation will make the number of in-
puts and outputs from each filter be multiples of the
word size. After unrolling, the ColSplit[N] and
RowSplit[N] transformations are then used to break
transformations which read more than word-size bits
from the input or write more than word-size bits from
the output, as shown in Figure 5. N will be set to the
word size, in order to obtain matrices that read and
write exactly word-size bits from the input and out-
put. Figure 4 shows the TSL specification relying on
the three transformations, which transforms the pro-
gram in Figure 2 into the one in Figure 3(a).

Finally, when all matrices will be square of word size,
StandardDecomp will be applied to them. This trans-
formation was applied to F1 in figure 3(a) to obtain
the filter in low level form shown in figure 3(b). The
transformation decomposes the filter into a splitjoin of
filters whose corresponding matrices contain non zero
elements in only one of their diagonals. There will be
one filter whose matrix will contain nonzero elements
only in the main diagonal, in the case of our example
it is G1, and this filter can be translated directly to
an AND with a bitmask. The rest of the filters will be
further split into a pipeline where one filter contains all
ones in one of its diagonals, like G2 in the figure, and
one that contains ones and zeros in the main diagonal,
like G3.

Figure 8 shows the transformation specification that

the transformer would generate for a 16 bit machine
for this same problem if no specification is given by
the system expert. The code resulting from this trans-
formation will probably be much faster than anything
that could be written by hand in 9 lines of code, which
is what our specification takes. Nevertheless, this code
will still be largely suboptimal, and would not match
the performance of an optimized hand written imple-
mentation. The main problem with the generated code
is that when using StandardDecomp, the resulting code
will use the bit shifting scheme from 1(a). In order to
get the system to use the O(log(n)) scheme, the system
expert will have to provide a template for the transfor-
mation.

6 Aiding the Automatic Transforma-
tion through Templating

In order to obtain a program that uses the fast bit
shifting algorithm, the system expert will have to pro-
vide a better TSL transformation than the one synthe-
sized by the system in the previous section. Our TSL
transformations are sufficient for the purpose, but spec-
ifying the transformation exhaustively may be tedious
and not robust across changes in the input program.
Therefore, we allow the system expert to specify merely
a template of the transformation.

The two TSL factorization transformations Factor
and PermutFactor are the most powerful tools for the
system expert to create the template. The factorization
transformations break up a basic filter into pipelines
of simpler filters. Both are parameterized by either a
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complete specification of the decomposition or a tem-
plate for it. The main difference between them is
that where as Factor will work on any arbitrary fil-
ter, PermutFactor is specialized for filters that simply
perform a permutation of the bits in the input stream.
Such filters can be very common in many encryption
algorithms like DES, and focusing on them allows us to
use more powerful algorithms for deriving the decom-
positions.

Factor will receive as its arguments a decomposition
consisting of a sequence of filters into which we want to
decompose the given filter. A placeholder can be used
in place of a filter that we don’t want to specify, and
the system uses basic linear algebra to determine what
this filter should be. If it is not possible to solve for a
missing filter, or if the factorization is fully specified,
but the specification results in a filter different from the
one passed as an argument, the transformation termi-
nates with an error message.

PermutFactor will decompose a transformation
that performs permutations of bits into a pipeline
where each of the stages moves some of the bits by
a certain amount. A complete specification will say
which bits to move at each step and by how much to
move them. In the case of a template, we must specify
into how many filters to decompose the permutation.
For each filter, we can give the system a set of con-
straints as to what it can do with each of the bits. The
constraints are given in the form of shift templates, and
the system will consider itself free to move any bit not
mentioned in a shift template in any way necessary to
satisfy the other constraints. Table 7 describes the 5
types of shift templates allowed by the system, along
with the syntax for combining them.

In order to see how PermutFactor derives complete
specifications from the templates, consider the case
where we are given shift specifications of type 1, 2 and
3 only. For this case, we can use the constraints to con-
struct a system of linear equations as follows. First, let
xi,j correspond to the amount that filter j shifts the bit
that was originally in position i, and let Ki be the total
amount we will have to move bit i which is derived from
the semantics of the original program. Then, we have
that for i = 1. . . word-size,

∑j=N
j=0 xi,j = Ki. Now,

constraints of type 1 and 2 will make some of the xi,j

constant, while constraints of type 3 will allow us to
replace all the xi,j listed in the shift specification with
a single variable, therefore reducing the number of un-
knowns. The resulting system has to be solved over
the integers, since we can only shift bits by an integer
amount, but this can be done efficiently even for large

systems (see [15]). If the system has no solution within
the allowed range of shifts, the user is notified that it
is not possible to satisfy the template while preserving
the semantics of the original program.

In the presence of constraints of type 4 and 5, we
have to search through many of the combinations of
values allowed by the constraints of this type, and find
a set that satisfies all the constraints. The search can
be worst case exponential, but if the system fails to
find a solution in a reasonable amount of time, it will
ask the system expert to refine the specification.

In the case of our example, the system expert can
use the PermutFactor both to specify the O(log(n))
algorithm for shifting bits within a word, and to tell
the system to pack all the bits within a word before
moving bits across words. Figure 9 shows the trans-
formation specification for doing this, again for a 16
bit machine. The specification is fairly concise due to
the use of templating. In addition, small changes to
the algorithm will require no changes to the specifica-
tion, for example, if I decide to pick the first and third
bit instead of the first and second, the transformation
specification will not need any modifications at all.

7 Related Work

The issue of productivity has been a theme to vary-
ing degrees in much of the high performance literature.
Optimizing compilers, for example, allow programmers
to write code in a high level but general purpose lan-
guage while the compiler takes care of transforming the
program to run efficiently in the target machine. Mod-
ern compilers can perform a number of transformations
aimed at eliminating redundant or unnecessary oper-
ations, improving memory access locality, and for ex-
ploiting particular machine features such as vector pro-
cessors (see [3] for a very complete survey).

Our approach, complements traditional compiler
technology by allowing the users to specify transfor-
mations that are too specific to a particular problem
to be worth including in a compiler. At the same time,
by compiling into a mature language like C, we ben-
efit from the optimizations performed by high end C
compilers. Our project is part of the larger PERCS
project, whose Programming Model effort investigates
a spectrum of approaches to improving productivity in
high-performance application development [6]. In the
context of the productivity metric defined in [6], the
approach in our paper seeks to allow developers with
higher level of expertise finish a task sooner.

Domain specific languages have also been widely
studied for their potential to improve productivity.
There have been a number of recent efforts to improve

34



Syntax for PermFactor: PermFactor[shiftSpec]( filter );

shiftSpec := [ shiftList ] shiftSpec
shiftList := shift( numberList by amount ) , shiftList
numberList := number , numberList | number:number , numberList
amount := ? | optionList
optionList := number || optionlist

type 1 shift( i by j) Shifts bit i by j
type 2 shift( set by j) Shifts all the bits listed in set by j
type 3 shift( set by ?) Shifts all the bits listed in set by the same amount,

but gives the system freedom to select the amount.
type 4 shift( i by a ‖ b ...) Shifts bit in position i by either a, or b, or any

other amount in the optionlist.
type 5 shift( set by a ‖ b ...) Shifts each of the bits listed in set by either a or

b, or any other amount listed in the option list.
They don’t have to all move by the same amount.

Figure 7. Syntax for PermFactor, and clasification of the shift templates.

(a) (b)
WSIZE=16;

subsequence = Unroll[WSIZE](subsequence); // 1

subsequence = ColSplit[WSIZE](subsequence); // 2

for(i=0; i<3; ++i){

subsequence.filter(i)=

RowSplit[WSIZE](subsequence.filter(i));

}

for(i=0; i<3; ++i){

for(j=0; j<2; ++j){

subsequence.filter(i).filter(j)=

StandardDecomp(subsequence.filter(i).filter(j));

}

}

Figure 8. The naive transformation for compiling the filter in Figure 2 to low level form. (a) the transfor-
mation specification of the transformation. The code generated from the low-level form will compact
bits within each word using the slow algorithm in Figure 1(a). (b) The filter matrix after the Unroll
operation. The squares correspond to non zero entries. Each of the six submatrices corresponds to
one of the basic filters obtained after performing the ColSplit and RowSplit operations.
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WSIZE=16;

subsequence = Unroll[WSIZE](subsequence);

subsequence = PermutFactor[ [shift(1:2 by 0), shift(17:18 by 0), shift(33:34 by 0)],

[shift(1:16 by ?), shift(17:32 by ?), shift(33:48 by ?)]

] ( subsequence );

subsequence.subsequence_1=DiagSplit[WSIZE](subsequence);

for(i=0; i<3; ++i){

subsequence.subsequence_1.filter(i) =

PermutFactor[ [shift(1:16 by 0 || 1)],

[shift(1:16 by 0 || 2)],

[shift(1:16 by 0 || 4)]

]( subsequence.subsequence_1.filter(i) );

}

Figure 9. The system-expert-provided transformation for compiling the filter in Figure 2 to low level
form. The code generated from the low-level form will compact bits within each word using the fast
algorithm in Figure 1(b). The first PermutFactor instructs the system to decompose the unrolled filter
into two filters. The first filter can move bits any way it desires, but it is prohibited from moving either
bits 1,2 17, 18, 33, or 34. The second filter must shift all the bits within a word by the same amount.
With these constraints, the system determines that in order to satisfy both constraints, in the first
step it must pack all the bits within the word, and on the second step it can pack bits across words.
The second PermutFactor provides a template for the fast bit packing algorithm by instructing the
system that in the first step all the bits must either stay in place or move by 1. In the second step,
they can only move by two, and in the third step, can only move by 4.

the performance of domain specific languages. Padua
et.al., for example, have made significant progress to-
wards making the performance of MATLAB compara-
ble to that of handwritten code through the use of ag-
gressive type and maximum matrix size inference[1, 5].

Kennedy et. al. have worked to improve the per-
formance of domain specific languages through the use
of an approach called telescoping languages. The idea
is to build libraries to provide component operations
accessible from the domain specific language, and pre-
compile several specialized versions of them tailored
for different sets of conditions that may hold when the
routine is invoked, therefore avoiding the expense of
having to perform extensive interprocedural optimiza-
tion at the time the program in the domain specific
language is compiled, while still achieving good perfor-
mance [10] [4].

The StreamIt language on which our abstraction
is based, builds upon a large body of work on Syn-
chronous Data Flow programming languages (see [8]
or [14] for examples of this work). It’s compiler au-
tomatically identifies linear filters, and performs many
optimizations targeted towards DSP applications.

Aspect Oriented Programming aims at supporting
the programmer in “cleanly separating concerns and
aspects from each other, by providing mechanisms that

make it possible to abstract and compose them to pro-
duce the overall system” [11]. Our approach can be un-
derstood as a form of Aspect Oriented Programming,
where the algorithm specification and the performance
improving transformations are the two aspects we are
dealing with. There have been other efforts at applying
aspect oriented programming to restricted application
domains, for example Irwin et. al. demonstrate the
use of Aspect Oriented Programming in the domain of
sparse matrix computations[9].

Finally, one of the most widely used methods for im-
proving productivity in high performance computing is
the use of libraries. Successful domain specific libraries
in widespread use include BLAS [13] and LAPAC [2].
Code that uses the high performance libraries can be
clean and fast, and composed relatively quickly, but
within the library, the problems described above some-
times even become amplified, since the library must be
performance tuned for lots of different platforms. More
recently, a lot of work has been devoted to the develop-
ment of self tuning libraries like FFTW [7], or SPIRAL
[17], as well as runtime adaptive libraries like STAPL
[16]. Our approach could provide an alternative for
these approaches for cases when the narrow applicabil-
ity of a library does not warrant the high development
effort of a self tunning or runtime adaptive system.
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8 Conclusion and Future Work

We have presented a tool for making the collabo-
ration between system and domain experts more pro-
ductive in the domain of bitstream programs. The
key to this scheme is to allow the system expert
to optimize the original program not by manually
rewriting it but instead by specifying his domain-
and machine-specific transformations in a higher-order,
transformation-specification language. The TSL allows
the system expert to write special purpose optimiza-
tions in a way that is safe, robust and concise.

We have implemented code to take an AST of
the transformation specification, apply the transforma-
tions specified onto an AST of the main program, and
then apply any additional transformations needed to
bring the program to LLF. We have also implemented
the code generator described in section 4. Within the
next few weeks, we would like to get some performance
numbers for the generated code for some sample bit
manipulation tasks to compare performance of code
generated from the default transformation versus that
with the user directed transformation.
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Description Example

Simple filters of size NxN
with non zero entries only
in the main diagonal

.
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

?

?

bitwise AND with 1010
out = in & 1010;

Simple filters of size NxN
with all ones in one of
their diagonals

.
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

?

?

shift left by one
out = in << 1;

Pipeline where all the fil-
ters are in low level form.

.
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

- --
chain the operations
tmp = in << 1;
out = tmp & 1010;

Duplication spliter for
splitjoin

¨
§

¥
¦

9 q
Duplicate

give a copy to each filter
in 1 = in;
in 2 = in;

Xor joiner for splitjoin ¨
§

¥
¦

q)
xor

aggregate outputs from all filters
out = 0;
out = out xor out 1;
out = out xor out 2;

Round robin spliter or
joiner where all the block
sizes are multiples of N.

¨
§

¥
¦

9 q
rrobin 4, 4

Pass one word to the first filter and one
word to the second.
in 1 = in[0];
in 2 = in[1];

Splitjoin where the spliter,
the joiner and all the fil-
ters are in low level form.

.
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

.
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

¨
§

¥
¦

¨
§

¥
¦

9 q

q)

rrobin 4, 4

xor

in 1 = in[0];
in 2 = in[1];
out 1 = in 1 & 1010;
out 2 = in 2 << 1;
out = 0;
out = out xor out 1;
out = out xor out 2;

Table 1. Listed in the table are all the filters for which it is possible to generate code without further
transformations. For the sake of clarity, the examples asume a 4 bit word length, and constants are
shown in binary.
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Name Type Description

Unroll[N](filter) BasicFilter→BasicFilter Copies the body of the filter N times, so the
filter will now take in N times as many bits as
before, and take out N times as many bits as
well. Useful for getting the filter size to be a
multiple of the word size.

ColSplit[N](filter) BasicFilter→SplitJoin Splits a large filter into several small filters,
each taking in N bits, and puting out the
same number of bits as the original basic fil-
ter. The splitjoin will do roundrobin split, and
xor join. Figure 5(a) illustrates the behavior
of ColSplit.

RowSplit[N](filter) BasicFilter→SplitJoin Similar to ColSplit, but this maintains the
number of inputs to take, while changing the
number of outputs. Its behavior is illustrated
in 5(b).

DiagSplit[N](filter) BasicFilter→SplitJoin This function will return a splitjoin with round
robin split and round robin join, where each of
the filters is an NxN block from the diagonal
of the original filter. Figure 5(c) shows the
behavior of this filter.

SRRtoDup(filter) SplitJoin→SplitJoin Turns a splitjoin with a round robin spliter
into a splitjoin with a duplication spliter. In
order to preserve the semantics, it will add a
filter before every filter in the splitjoin to select
out of the stream only bits that the filter would
have received with the round robin spliter.

JRRtoXOR(filter) SplitJoin→SplitJoin Turns a splitjoin with a round robin joiner into
a splitjoin with an xor joiner. As before, filters
must be added at the output of each filter in
the splitjoin to preserv semantics.

StandardDecomp(filter) BasicFilter→SplitJoin Performs a standard decomposition that in the
case of NxN filters is guaranteed to bring them
to low level form.

Factor[filterList](filter) BasicFilter→Pipeline Decomposes a filter into a pipeline of filters.
filter list is simply a list of comma delimited
filters, and can have the symbol ? to represent
a wildcard. In which case, the system derives
a description for the missing filter.

PermutFactor[SpecLst](filter) BasicFilter→Pipeline The given filter must represent a permutation
of bits. It can only move bits from one position
to another, or take bits out of a stream. The
specification is described in figure 7

Table 2. Transformations available in the system
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Abstract

We have been pursuing a research program aimed
at enhancing productivity and performance in parallel
computing at the Parallel Programming Laboratory of
University of Illinois for the past decade. We summarize
the basic approach, and why it has improved (and will
further improve) both productivity and performance.

The centerpiece of our approach is a technique called
processor virtualization: the program computation is di-
vided into a large number of chunks (called virtual pro-
cessors), which are mapped to processors by an adap-
tive, intelligent runtime system. The runtime system
also controls communication between virtual proces-
sors. This approach makes possible a number of runtime
optimizations.

We argue that the following strategies are necessary
to improve productivity in parallel programming:

• Automated resource management via processor vir-
tualization

• Modularity via concurrent composability

• Reusability via frameworks, libraries, and multi-
paradigm interoperability

Of these, the first two directly benefit from processor
virtualization, while the last is indirectly impacted. We
describe our research on all these fronts.

1. Introduction

Parallel programming is more difficult than sequen-
tial programming because of the additional issues of de-
terminism, synchronization, communication costs, load
imbalances and performance portability that must be ad-
dressed by the programmer. As a result, productivity of
parallel programming efforts tends to be low.

Recognizing the importance of high productivity, in
the early days of parallel computing researchers aimed
at automatic parallelizing compilers. However, after
decades of very stimulating research [7, 38, 17, 18, 9],
it has become clear that although some of the tools pro-
duced can indeed extract almost all the parallelism from
thegivencode, a from-scratch parallel reformulation is
often required to attain higher performance.

We have been pursuing an approach to high produc-
tivity with scalable performance even for complex, dy-
namic parallel applications for the past decade [25]. One
of the guiding principles for us is to seek an optimal di-
vision of labor between the programmer and the “sys-
tem”. The human programmers do what they can do
best, while leaving only what can be efficiently auto-
mated to the system. Specifically, we find that program-
mers are best at finding and expressing the natural paral-
lelism of the application, but the runtime system can ef-
ficiently carry out resource management and many per-
formance optimizations.

We think that parallel programming productivity can
be increased by advancing the state of art on the follow-
ing fronts:

• Automatic resource management:Writing a par-
allel program involves managing and allocating re-
sources including processors, memories and net-
works to application data and computations. Espe-
cially for irregularly structured and/or dynamically
varying applications, such resource management
entails a significant programming effort. At the
same time, advances in algorithms create smarter
algorithms (with lower total operation counts) that
tend to be irregular in structure. For example, for
N-body interactions, a simple O(n2) algorithm is
easy to parallelize, where O(n log n) algorithms
(such as Barnes-Hut) or O(n) algorithms (such as
Fast Multipole) are more complex. Applications
themselves are tackling more dynamically evolving
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scenarios, typically requiring adaptive refinements
as the computation progresses. If the programmer
were freed from dealing with resource management
issues, their burden would be significantly reduced.

• Concurrent compositionality: It should be pos-
sible to compose independently developed paral-
lel modules into an application, in such a way that
the execution of composed modules may overlap in
time or space (i.e. processors); moreover this “con-
current composition” must be achieved without los-
ing efficiency. With this capability, it would be pos-
sible for application structure to be based on logical
interactions of its modules, automatically overlap-
ping the computation and communications across
modules.

• Techniques for promoting reuse of parallel soft-
ware components:Because a parallel module op-
erates in a more complex context, it is more diffi-
cult to reuse it than a sequential component. Yet,
the complexity of parallel software puts a higher
premium on reuse. Thus, we must develop tech-
niques that eliminate the barriers to reuse of paral-
lel software.

In this paper, we illustrate the research we have been
carrying out towards these objectives. One of the en-
abling factors in our research is the idea of processor
virtualization. We begin with a brief exposition of this
idea.

2. Processor Virtualization

Processor virtualization is a simple idea: the pro-
grammer decomposes the computation, without regard
to the physical number of processors available, into a
large number of objects, which we callvirtual proces-
sors (VPs). The programmer leaves the assignment of
virtual processors to physical processors to the runtime
system. The virtual processors themselves can be pro-
grammed using any programming paradigm: e.g. they
can be MPI “processes” implemented as user-level, ex-
tremely lightweight, threads (NOT to be confused with
system level threads or Pthreads), that interact with each
other via messages, as in Adaptive MPI [20]. Alterna-
tively, they can be organized as indexed collections of
C++ objects that interact via asynchronous method in-
vocations, as in Charm++ [28].

This simple idea has significant consequences. Most
importantly, from the point of view of this paper, it em-
powers therun-time system (RTS)to optimize resource
allocation by migrating VPs across processors. The RTS

Figure 1. Processor Virtualization in Adap-
tive MPI: An MPI process is implemented
as a user-level thread, several of which can
be mapped to one single physical proces-
sor.

Figure 2. Message-Driven Execution with a
processor-level scheduler

is also involved in delivery of messages to VPs. as a re-
sult, it can optimize communication as well.

Let us first sketch the direct consequences of proces-
sor virtualization: since each physical processor may
house hundreds (or even thousands) of VPs, the RTS
needs to have a scheduler to decide which VP executes
next. This scheduler can (and indeed must) be message-
driven: it only schedules VPs that are ready to execute
because they have a message pending. This message-
driven scheduler turns out to be a critical component
from the point of view of concurrent composition.

Second, since VPs may migrate as a program evolves,
the RTS needs to maintain information about where each
VP is located. This can (and must) be done efficiently,
without bottlenecks. Our implementations ensure that in
most cases, messages are delivered to VPs without any
forwarding, with the assumption that migrations are not
as common as messages [34].

Charm++ and Adaptive MPI are systems we have de-
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veloped over the past 14 years that embody this idea of
processor virtualization. For concreteness, the next few
sections assume each VP as running an MPI “process”
and interacting with others via the usual MPI sends and
receives.

3. Automated Resource Management

Processor virtualization empowers the run-time sys-
tem (RTS) to incorporate intelligent optimization strate-
gies. We discuss two categories of such strategies below.

3.1. Automatic Load Balancing

Probably the most obvious advantage of processor
virtualization is that the runtime system can do auto-
matic load balancing dynamically. Since the applica-
tion program never sends messages directly to physical
processors, the RTS is free to migrate the VPs across
processors any time it pleases.

Of course, the RTS must be quite “intelligent” for this
to work, but it is certainly possible [34]; what is more,
only one RTS needs to have these smarts, whereas all
the application programs can just use it.

In the simplest possible setting, the RTS can moni-
tor the load on a processor and its neighbors. If/when a
(physical) processor goes idle, the RTS sends a request
for additional VPs from a neighboring processor. Other
variations on this idea are possible [23, 40].

A more interesting and fruitful set of strategies be-
comes feasible when we observe a property of many
parallel computations, especially those involving phys-
ical systems. Even for dynamic applications, the com-
putation loads and the communication patterns exhib-
ited by the VPs tend to persist over time for most of the
VPs. This is because often dynamic variations happen
abruptly but infrequently (as with periodic mesh refine-
ments) or frequently but slowly (as with migrations of
particles in n-body codes including molecular dynam-
ics).

Based on this “principle of persistence” (which is a
heuristic principle, like the principle of locality), one
can now build measurement based runtime load bal-
ancing strategies. The RTS can instrument the VPs to
record computational load and communication patterns.
It can do this automatically, without user code, since the
RTS is the intermediary for both scheduling and com-
munication. Load balancing strategies can then use this
database in a centralized or distributed manner to effect
remapping decisions periodically. (These periodic deci-
sions can be augmented by “idleness-based” schemes as
mentioned above when necessary.)

We and others have implemented many such strate-
gies, and work is ongoing on strategies that ob-
serve more subtle patterns, such as dependences, crit-
ical paths, multiple-phases-within-iterations and so on.
However, the main point is that the application program-
mer doesn’t have to worry about this important aspect of
their parallel program.

As a concrete example, we show dynamic load bal-
ancing in action in NAMD, the highly scalable molec-
ular dynamics program used routinely by biophysicists.
Figure 3 shows processor utilization against time for a
NAMD run of 1024 processors [29]. The initial greedy
balancer works from 157 through 160 seconds (the pe-
riod in the graph with the dip in utilization), leading to
some increase in average utilization. Further, after the
refinement strategy finishes (within about .7 seconds)
at around 161.6 seconds, we can see that utilization is
significantly improved. In this figure, we may appear
to spend too much time on load balancing; however, in
molecular dynamics, such load balancing is needed only
after several thousand timesteps [39].

Refinement

Load Balanced
Timesteps
Continue

Full Load Balancing

Figure 3. Processor Utilization against
Time on 1024 processors

As a result of such runtime optimizations, NAMD has
attained an unprecedented high performance on several
thousand processors, leading to a Gordon Bell award
[39]. The performance of NAMD using Charm++ on
PSC Lemieux is shown in Figure 4. Each timestep takes
around 25 seconds on 1 processor. This drops to 27 mil-
liseconds on 1000 processors and finally down to 12 mil-
liseconds when scaled to 3000 processors with a corre-
sponding performance level of 1000 GFLOPS. Not only
are the achieved speedups impressive, the absolute time
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taken per timestep (12ms) is also lowest by a consider-
able margin compared with other molecular dynamics
programs.

Figure 4. Processor Utilization against
Time on 1024 processors

3.2. Communication Optimizations

Since the RTS mediates communication, it can in-
tercept the communication and replace communication
algorithms as required by the patterns observed. This
is especially true for collective operations. By keeping
track of the number of processors (VPs and physical) in-
volved, the amount of data, and the state of the rest of
the computation, the RTS can decide which of the avail-
able collective communication algorithms will be better
suited, and switch it at runtime. Our own results in this
area have been promising [33].

Automatic runtime communication optimizations can
also be performed for other non-collective operations.
For example, a graph partitioning application written by
a newcomer to parallel programming used an extremely
fine-grained communication style: very short messages
with a few bytes of data were being sent, which would
have led to bad performance. However, by interposing
the streaming library of the communication subsystem
of the RTS (which collects short messages locally, and
sends them using a virtual mesh), this was optimized
without changing user code. In this case, the interposing
was done manually, but as the RTS capabilities are im-
proved it can make such decisions itself. (Even with the
manual interposing, the advantage still remains that the
user code didn’t have to change.)

4. Modularity via Concurrent Composition

For high productivity in parallel programming, one
should be able to modularize the program. In particular,
it should be possible to compose independently devel-
oped parallel modules into a single parallel application
(or into higher level modules, composed hierarchically).
Further, the modules being composed should be allowed
to overlap their execution in time, and over processors.
Without this flexibility, one risks the danger of fragment-
ing the set of processors (especially when a large num-
ber of modules are being composed) and certainly loses
the ability to exploit adaptive overlap of communication
and computation across modules. This is illustrated with
a schematic and application example below.

Consider the situation in Figure 5(a). A, B and C are
each parallel modules spread across all processors. A
must call B and C, but there is no dependence between B
and C. In traditional MPI style programming, one must
choose one of the modules (say B) to call first, on all the
processors. The module may contain sends, receives,
and barriers. Only when B returns can A call C on each
processor. Thus idle time (which arises for a variety of
reasons, including load imbalance and critical paths) in
each module cannot be overlapped with useful computa-
tion from the other, even though there is no dependence
between the 2 modules.

In contrast, with processor virtualization (and the
message-driven execution induced by it), A invokes B
on each processor, which computes, sends initial mes-
sages, and returns to A. A then starts off module C in a
similar manner. Now B and C interleave their execution
based on availability of data (messages) they are waiting
for. This automatically overlaps idle time in one module
with computation in the other, as shown in the Figure.
One can attempt to achieve such overlap in MPI, but at
the cost of breaking the modularity between A, B and
C. With processor virtualization, the code in B does not
have to know about the code in A or C, and vice versa.

This phenomenon is illustrated in NAMD (Figure
5(b)). The computation partitions atoms into a set of cu-
bic cells called “patches”. Interactions between atoms
in adjacent cells are computed by separate virtual pro-
cessors called the “pairwise compute objects” in the
Fgure. The PME (Particle-Mesh Ewald) module in-
volves two 3D-FFTs (each with a communication in-
tensive transpose operation) over a relatively small grid
(192x144x144 in one case). By concurrently compos-
ing the PME and force-calculation modules, it becomes
possible to use the considerable latency of the transposes
in the PME algorithm with pairwise-force computations
adaptively. Neither partitioning of processors among the
two modules, nor sequencing their execution one after
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(a) Modularity and Adaptive Overlapping: Schematic

Reductions
Asynchronous

Compute Objects
Angle

Transposes

PME

Compute Objects
Pairwise

Patches : Integration

Patches : Integration

Point to Point
Multicast

Point to Point

(b) Concurrent Composition of PME and Force Computa-
tions in NAMD

Figure 5. Concurrent Composition

the other will yield the same efficiency of concurrent
composition employed by NAMD. Moreover, this effi-
ciency is attained without any coding by the programmer
to juggle execution between the two modules.

Figure 6 shows the timeline of a few processors in
a 2112 processor NAMD run on PSC’s Lemieux alpha-
cluster. The light gray rectangles (as well as the dark-
est gray rectangles at the beginning, around 123.938
secs) represent components of the PME computations,
whereas the medium gray rectangles are pairwise (and
bonded) force computations. The overlap of the two
modules’ operations can be clearly seen. On PSC’s
Quadrics communication network, the communication
co-processors ensure that the CPU spends only a small
time on communication. Therefore, all the latency of
the transpose operation (between the yellow sections) is
available for doing useful pair-wise force computations,
which are adaptively scheduled by the system.

4.1. Software Engineering Benefits

Virtual processors are logical entities, and can be
made to correspond to the structure of the application.
In contrast, shoe-horning the application structure into

Figure 6. PME Execution in NAMD

physical processors leads to inelegant software.
The simplest example of this is in the number of pro-

cessors used. MPI programs modeling a physical do-
main via structured grids often require the number of
processors to be a cube (and even a power-of-two cube).
With virtualization, one can decompose the data into a
power-of-two cube virtual processors, yet be able to use
the available number of physical processors. Attempt-
ing to do that without explicit support for virtualization
leads to multiple-block codes that have to deal with mes-
sages for different blocks at various points in the code,
and can spoil neat expression of the evolution of a single
block when it engages in multiple phases of communi-
cation.

In software engineering terminology, such parallel
software (based on physical processors) often lacks “co-
hesiveness”. Code and data are brought together simply
because they are on the same physical processor.

Figure 7. Rocket simulation via virtual pro-
cessors

Consider a version of the rocket simulation appli-
cationconsisting of two parallel modules: Rocflo (a
fluid simulation of the burning gases in the Rocket in-
terior) and Rocsolid (structural dynamics of the solid
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fuel). These were derived from independently devel-
oped codes. Since the fluids and solids meshes were
decomposed separately by each module, the portion of
space simulated by Rocflo on processori had no logical
connection with that simulated by Rocsolid on proces-
sor i. However, an MPI implementation required them
to be fused together on each processor (Figure 7 top).
An AMPI implementation, on the other hand, (Figure 7
bottom) provided each module with its own set of vir-
tual processors, and allowed for communication across
them by supporting inter-communicators across multi-
ple MPI_COMM_WORLDs. Among other benefits, this
allows the number of pieces of Rocflo to be determined
independently of that of Rocsolid, and the RTS is able to
bring together (on one processor) pieces of Rocflo and
Rocsolid that directly interact (because they are physi-
cally abutting, for example).

5. Cost of Processor Virtualization

An important question often raised is about the cost
of processor virtualization. Although users may be will-
ing to concede a certain amount of performance in return
for benefit in productivity, they would like to know the
extent of the performance loss. The situation in remi-
niscent of early days of (Fortran) compilers, when users
were unwilling to switch away from assembly language
programming. In fact, then as now, since programmers
are highly conscious of performance issues, and they al-
ready have (by compulsion) mastered the intricacies of
low level programming, they will not want to switch to a
new paradigm unless assured of “as good” performance
with lower effort.

To be sure, the adaptive runtime systems enabled by
processor virtualization achieve such performance en-
hancements as automatic dynamic load balancing. But
it can be argued that expert programmers will be able to
achieve such performance by programming load balanc-
ing code into their application themselves.

So, the question of overhead is still important. Luck-
ily, in most situations, the overhead of processor vir-
tualization is insignificant. Context switching between
virtual processors requires less than a microsecond on
current processors. (Recall that our virtual processors
are not system level threads, or pthreads; they are user
level threads). The number of messages increases with
multiple VPs per processor. Messages have a software
overhead of a few microseconds. So, the degree of vir-
tualization chosen should be such that the computation
per message is substantially larger than these overheads.
This is clearly reasonable for most applications. For ex-
ample, in a particular molecular dynamics benchmark,
we used about 30,000 VPs spread over 3000 processors;

the average computation per VP per timestep was 900
microseconds, and the average computation per message
was about 200 microseconds.

Figure 8. “Overhead” of Multipartitioning
in an FEM application

Figure 9. 7-point stencil on a 3D problem
size 2403 run on PSC Lemieux.

To compare the performance of MPI and AMPI, we
compared the performance of a 7-point stencil code, do-
ing Jacobi relaxation for 3-D data, in Figure 9. AMPI
achieves nearly identical performance as MPI, but it runs
on any number of processors, whereas MPI requires a
cubic number of processors. Additional performance
data can be found in [20].

Cache performance typically improves with proces-
sor virtualization, because of its blocking effect. A study
of the effect of virtualization we did with an unstructured
mesh application showed (Figure 8) that performance
actually improves with the degree of virtualization, and
only after over 1024 VPs per physical processor does the
overhead start showing its effect.

Since Charm++/AMPI are often implemented on top
of native MPI, the communication costs can be expected
to be higher. This is not a fundamental cost: on many
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machines,our implementation uses lower level commu-
nication APIs (E.g. Elan, GM and VMI), where our per-
formance is comparable to MPI [33]. A comparison of
MPI and AMPI versions of the rocket simulation code
at Illinois also showed the performance of two versions
to be almost identical [11].

In some applications, virtualization leads to a large
number of small messages. This can be mitigated by
using a streaming library available in the Charm++ run-
time that uses message combining to optimize perfor-
mance.

5.1. Limitations and Remedies

There are situations where processor virtualization
may lead to poorer performance.

When large layers of ghost cells (instead of the com-
mon 1-layer ghosts) are used, virtualization may be con-
strained by the memory overhead of the extra ghost cells.
However, we believe it is possible to alleviate this over-
head by a combination of techniques alluded to in [26].

Parallel algorithms whose costs increase with the
number of processors can also limit the benefits of virtu-
alization. Fortunately, such algorithms are rare, and they
exist as components of large applications (e.g. parallel
prefix, which has a complexity of2n + log p), and they
can be allowed to run with a lower virtualization factor
by concentrating data inp virtual processors.

Another source of overhead arises when processors
use a large amount of remote data. If each VP uses its
own memory for such data,and if such data overlaps
significantly (i.e. multiple VPs request the same data)
then both memory and communication overheads may
increase. This happens, for example, in gravity com-
putations, where each cell containing a bunch of parti-
cles is a VP, and the computation requests particles from
other cells. This can be remedied by using an abstraction
for requesting and caching remote data, which is imple-
mented by a lower level library that is aware of physical
processors. We are using such a library in a collaborative
project in computational astronomy. NAMD also uses a
similar technique in the form of proxy objects [24].

6. Reuse of Parallel Software Components

Reuse of parallel components can be promoted by
domain-specific frameworks and allowing composition
of modules written in different parallel programming
paradigms.

6.1. Frameworks and Libraries

One method for improving productivity is to reuse a
collection of techniques that are commonly needed in a
particular application domain. Even though parallel ap-
plications are diverse, one can find such commonalities.
For example in simulations of physical models (which
constitute the dominant use of parallel computers now),
one finds that only a few distinct parallel data structures
are used: structured grids (arrays), unstructured meshes,
spatially decomposed particles, tree structures (e.g. in
multi-grid and AMR), along with a collection of linear
system solvers, cover a large fraction of the application
space. To improve productivity we should therefore ex-
tract the domain specific techniques into frameworks so
that they don’t have to be recoded for every application.

One can take two approaches to design domain spe-
cific frameworks: Vertical integration or horizontal lay-
ering. Vertical integration leads to highly specialized
problem solving environments (e.g. for structural dy-
namics), while horizontal layering leads to a collection
of capabilities that can be composed in different ways
for different applications.

Our experience with horizontally layered frameworks
has been quite positive. Specifically, we have developed
an unstructured-mesh framework [4] that can partition a
mesh and set up communication lists for a user-specified
layer of ghosts. Although originally used for Finite Ele-
ment computations, the framework is now used for finite
volume, discontinuous Galerkin, as well as space-time
meshes. Other capabilities such as collision detection
or matrix-free solver interfaces are available as separate
components.

However, the simplicity of problem solving environ-
ments (PSEs) suggests that horizontally layered compo-
nents should be used to put together specialized PSEs,
which will cut down on the development cost of PSEs
themselves.

It is tempting for application developers to decide to
code such capabilities themselves, since they seem rela-
tively simple. However, once one takes the maintenance
cost of software into account, and considers the fact
that many focused optimizations and capabilities may
have been implemented by the framework developer in
the context of real applications, the advantage of frame-
works becomes clear. Also, frameworks can make use of
complex and tricky features of the RTS that application
developers may require a significant effort to use.

6.2. Multiparadigm Interoperability

Although reuse of parallel components is desirable
for enhancing productivity, another obstacle to such
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reuse occurs because of the use of different parallel pro-
gramming paradigms in different modules. One mod-
ule may be written using Charm++, while another might
use a DSM system, or Global Arrays [37], or the FEM
framework, or MPI, or BSP, etc. By requiring that all
the modules being composed into an application use the
same paradigm, we give up a large opportunity for reuse.

The modules themselves may be written in different
paradigms for two distinct reasons: First, a particular
paradigm may be better suited for the algorithms be-
ing specified by the module. Second, it may be sim-
ply a matter of subjective choice of the programmer of
that module (which might have been developed indepen-
dently at an earlier time).

Concurrent composition capabilities of message-
driven execution come in handy in this context, with one
proviso: If all the (message-driven) paradigms share a
single scheduler (See Figure 2), and possibly a com-
mon runtime support layer, then such interoperability
is possible. With this in mind, we designed the Con-
verse [27] framework, which provides (a) common ca-
pabilities such as a scheduler, user-level thread package,
portable low-level communication interface, and encap-
sulation of other machine capabilities and (b) meth-
ods to allow the concurrent interoperation of modules
written in different paradigms. In addition to provid-
ing interoperability, Converse also simplifies the task of
writing runtime systems for new parallel programming
paradigms.

Converse and Charm++ together now support a wide
variety of programming paradigms in our infrastructure,
including ARMCI, Global Arrays, Adaptive MPI, Jade
(a parallel Java-like language), PVM, specific forms of
DSM systems, etc. Of course, adoption of such multi-
paradigm frameworks is possible only when runtime de-
velopers agree to a common standard, for which Con-
verse is but one candidate.

7 Related Work

This paper focused on productivity-and-performance
oriented ideas developed by the author, for pedagogi-
cal clarity. However, many of the central ideas have ap-
peared in other research as well.

Chare Kernel, the C-based progenitor of Charm++
was developed around 1989 [22]. This system, with
function calls to remote processors with objects encoded
as global pointers, and a message-drive scheduler, is
similar to Nexus [14]. Active Messages [42] shared
message-driven execution ideas with Charm, but not
processor virtualization. The Actors model [1], with
its message-driven objects, is quite similar to Charm++
at its lower level, and is considered useful for specify-

ing and understanding the semantics of message-driven
programs. However, the intellectual progenitors of our
early work were the RediFlow project [31] for parallel
execution of functional programs, and the Dataflow re-
search. The basic low-level ideas in Charm++ can be
considered to be macro data-flow, extended with high-
level notions of automatic resource management. Other
research with overlapping approaches include work on
Percolation and Earth multi-threading system [21], work
on HTMT and Gilgamesh projects [15], and the work on
Diva [16].

Virtualization itself is not a new concept. Geoffrey
Fox’s 1986 textbook on parallel programming describes
virtualization, for example (it was used to load balance
the sharks-and-fishes application by dividing the do-
main into a large number of blocks, and sprinkling them
across the processors randomly). The DRMS system
[36] is an example of an approach based on virtualiza-
tion that is closer to our work. Our approach (embodied
in programming systems such as Charm++ and AMPI)
can be thought of as virtualization++ : we support virtu-
alization at the language and run-time level, and exploit
it to the hilt to optimize application performance.

In the direction of interoperability, recent work on
Common Component Architecture [2] is important, as
it provides a method for interconnecting independently
developed modules, enhancing reuse. We believe that it
needs to be extended to allow processor virtualization,
which is infeasible in the current form.

Several other domain specific frameworks exist that
aim to raise the level of abstraction in programming.
For structured grids, with possible adaptive mesh re-
finements, they include KeLP [13], Paramesh [35], and
Chombo [8]. For computations on unstructured meshes,
frameworks such as Sierra [41] exist.

Since linear system solvers arise in many current par-
allel applications, several libraries provide good support
for them such as ESI [32] and PETSc [3]. Numerical li-
braries such as Ellpack [19] and Linpack [12] also help
enhance reuse.

Shared memory programming models, and especially
with its standardization via OpenMP, must also be con-
sidered. Via systems such as TreadMarks [30], such
models are now available on distributed memory ma-
chines. However, the claim that shared memory ab-
straction simplifies parallel programming has not quite
been substantiated. Although some programs look sim-
pler with shared memory, others get more complex, es-
pecially if they have to deal with race conditions. It is
possible that the full generality of a shared variable is
unnecessary, while limited use of shared variables, in
specific modes, might be productive (E.g. GA [37]).
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8. Productivity Metrics

We have not performed any quantitative studies of
improvement in productivity with Charm++/AMPI yet.
We will state some anecdotal evidence instead.

Clearly, when an application requires dynamic re-
source management, the savings in writing code are ap-
parent. For example, in multi-block codes, one has to
write by hand how the blocks should be distributed af-
ter new refinements. All that code is in the Charm++
runtime system, and is being reused.

Virtualization also confers benefits by reusing the
ability to migrate objects in different contexts. For ex-
ample, once one has written a Charm++ or AMPI pro-
gram with migratable objects, the runtime system can
automatically carry out efficient check-pointing, sup-
port out-of-core execution, change the set of processors
(shrink or expand) used by the application at runtime,
vacate a machine that is about to go down or needs to be
relinquished to the owner, and support fault tolerance.
All of these new functionalities can be available without
the user having to write new code. Of these, fault toler-
ance is still being worked on. Once the runtime imple-
ments this feature, it will be available for all applications
without significant new application code.

Further productivity enhancements are expected
when we are able to develop a “standard library for par-
allel programming” which will eliminate having to write
code for commonly needed parallel operations.

9. Conclusion and Future Work

We presented a research agenda, and our progress
along it, which has been explicitly aimed at improving
programmer productivity and computer performance on
complex parallel applications.

Processor virtualization was seen as a key to some
productivity enhancements. Via this, the runtime sys-
tem is empowered to carry out intelligent optimizations,
including dynamic load balancing and communication
optimizations, without programmer intervention. It also
leads to message-driven execution, and thus to the abil-
ity to concurrently compose multiple independently de-
veloped modules effectively without losing efficiency.
Separation of virtual processors from physical resources
in the programmer’s mind also leads to a separation of
concerns and better software engineering practices.

It can be argued that manual, application specific re-
source management can always do at least as well as au-
tomated techniques, in terms of performance. However,
with increasing complexity of applications, and the in-
creasing number of processors in large supercomputers,

we believe that automated techniques, culled from ex-
perience on a wide variety of applications, will be more
efficient than what most actual programmers accomplish
by themselves, even with a lot of effort.

Concurrent composition enables flexible reuse of par-
allel modules. But to make such reuse happen, reusable
parallel modules must be developed. Based on the idea
that a relatively small number of basic data-structures
account for a large number of application components,
we advocate the building of domain-specific frame-
works. If each such framework provides encapsulation
of a limited but useful capability, it becomes possible
to compose such frameworks into vertically integrated
problem solving environments.

Modules written in different parallel programming
paradigms can be integrated if they share common run-
time structures, and especially a message-driven sched-
uler (in case of virtualized or user-level thread based
systems). We described our experience with Converse,
an infrastructure explicitly designed to support interop-
erability and easy development of runtime systems for
new programming paradigms.

In this paper, we kept the focus on our research in
order to present a single point of view. There are many
other approaches aimed at productivity. Interaction and
cross-fertilization of ideas among them will lead to bet-
ter systems/approaches for the future. As an example,
we hope that the common component architecture effort
can be extended to permit virtual-processor based for-
mulations.

We have identified some additional future directions
towards productivity. The research on intelligent adap-
tive runtime systems, although quite fruitful, has only
picked the “low-hanging fruit”. We see potential for
much more sophisticated runtime techniques, based on
self-observing systems. In terms of low-level support,
co-processors that can handle remote requests (beyond
just puts and gets) are essential for effective deployment
of composable systems. At the higher end, it seems pos-
sible to include compile-time support in a comprehen-
sive approach aimed at productivity. The current obsta-
cles for this include the fact the compiler-support issues
that arise in this context are often considered mundane,
and are not the usual issues (such as automatic paral-
lelization) that are considered attractive by the compiler
community. Telescoping languages being proposed and
developed by several researchers might be able to bridge
this gap.

We also see potential to increase productivity via ad-
ditional language support. For instance, Jade [10], a lan-
guage based on Java, provides the ability to take advan-
tage of some of the simplifications in Java, such as the
use of references instead of programmer managed stor-
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age, while still having access to the features of Charm++
and the Converse runtime.

Also, we see potential in the ability to build systems
of composable parallel components. The Charisma sys-
tem [6] is a start in this direction, with the concept of
explicit runtime support for components. A future or-
chestration language, which will allow the interactions
among components to be defined in a scripting language,
will also improve the reuse of parallel components and
make the logic of parallel applications more explicit.
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[26] L. V. Kalé. The virtualization model of parallel program-
ming : Runtime optimizations and the state of art. In
LACSI 2002, Albuquerque, October 2002.

[27] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan,
and J. Yelon. Converse: An Interoperable Framework
for Parallel Programming. InProceedings of the 10th In-
ternational Parallel Processing Symposium, pages 212–
217, April 1996.

[28] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors,Parallel Programming using C++, pages
175–213. MIT Press, 1996.
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Abstract 

 
The goal of this project is to provide a 

publicly-available web site at which 
programming languages designed for high 
performance computing can be compared and 
discussed. A small number of important 
application kernels will be specified, and 
implementations of any of them in programming 
languages relevant to HPC can be submitted. 
Information will be collected and displayed 
regarding the performance time on various 
computer systems, as well as anecdotal 
information about how much time it took to 
implement a given kernel in a given language. 

 
 

1. Introduction 
 

The context of this work is Cray’s “Cascade” 
project. This is an effort to design and prototype 
a multi-petaflops supercomputer by 2010. 
Cascade, along with efforts by IBM and Sun 
with the same general objective, is funded by 
DARPA’s High Productivity Computer Systems 
program. Note that DARPA has emphasized 
productivity, not just performance, in the 
program’s title. The government is calling for the 
next generation of supercomputers to be 
substantially easier to program, debug and tune 
for performance. 

 
Cray’s intended contributions to 

supercomputer programming productivity are 
threefold: first, we are designing a multithreaded, 
single-address-space system, which we expect to 
be easier to program (and to compile for) than 
the current generation of distributed-memory 
architectures. Second, we are designing Chapel 
[2], a programming language aimed at spanning 
the gap between programming expressiveness 
and runtime performance. Third, we are offering 

the “application kernel matrix,” the subject of 
this paper, as a repository of comparative 
information relevant to the HPC programming 
language research community. 

 
2. Purpose of the Application Kernel 

Matrix 
 

The intent of the application kernel matrix 
(AKM) is to be a publicly-accessible repository 
of application kernel examples, each coded in a 
variety of HPC-oriented languages. We 
conceptualize it as a three-dimensional matrix, as 
described below: 

• The rows are application kernels.  We have 
selected an initial set of ten (see Section 3). 
They will be derived from important HPC 
applications, and selected to represent a 
variety of interesting parallel programming 
problems. We will provide a sequential, 
probably Fortran 95, implementation of 
each. We expect the F95 implementations to 
be at most a few hundred lines long – long 
enough to be nontrivial, but not so long as to 
discourage participation from the always-
busy research community. Standard data sets 
will be provided with each kernel, so that 
performance results (which will exclude file 
I/O) will be comparable on the basis of the 
same inputs. 

• The columns are programming languages.  
We will initially populate the matrix with 
columns for the widely-used HPC 
languages, such as Fortran/MPI [10, 11], 
Co-Array Fortran [12], OpenMP [5], UPC 
[3], etc., and we look for programming 
language researchers to add more columns 
for the new languages they are developing 
and experimenting with: Titanium [15], A-
ZPL [4, 14], Chapel, etc. 

• The third-dimension planes represent high-
performance computer systems. We 
envision each (i, j, 0) entry to be a 
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“portable,” or “generic” implementation of 
kernel i in language j. Each (i,j,k) entry for k 
> 0 would be an implementation of kernel i 
in language j, performance-tuned for 
computer system k. System vendors would 
be encouraged to add planes to the matrix, 
containing kernel implementations in the 
language or languages of interest to them, 
tuned for high performance on their 
hardware. 

 
There will be a monitored submission process 

to be used by researchers and vendors wishing to 
add entries to the AKM.  We will require each 
person or team submitting an entry to the AKM 
to provide information about their submittal, that 
we anticipate would be of interest to the HPC 
programming language research community. 
First, the source code of the implemented kernel 
will be posted on the web site. Second, each 
submitter will provide performance data with 
their submission, specifying the system on which 
the program was executed and which standard 
data set served as input.  In addition, each 
submitting person or team will be asked to keep 
an activity log and fill out a questionnaire.  They 
will use the activity log to record the time the 
programmer spent implementing kernel i in 
language j, broken down into these categories: 
studying the problem, designing the code, editing 
the code, debugging, and tuning for performance. 
The questionnaire will elicit information about 
each programmer: overall years of experience, 
amount of experience with this language, amount 
of experience performance-tuning for this 
hardware, etc. We make no claim that this 
information we collect in the AKM will have any 
statistical validity in terms of the inherent 
productivity advantages of one programming 
language or computer system over another. This 
data will necessarily be anecdotal. A separate 
group of researchers funded by DARPA, the 
HPCS Productivity Team, is expected to carry 
out carefully-designed, multiple-subject 
experiments in programmer productivity. The 
most we could hope to provide, by collecting 
information about time taken and programmer 
expertise in the AKM, is an early look at some 
interesting anomaly which the Productivity 
Team might choose to explore with a controlled 
experiment. We believe that even the data in the 
AKM that is less subject to issues of statistical 
validity, such as how many source lines of code 
of language j it took to optimize kernel i for 
system k, will still be debatable. However, we 
also believe that it will be useful for the 

community to have these comparative examples 
available in one place. We see the AKM as an 
extension of the kind of comparative study done 
in [6], which can now be sited on the Internet 
and expanded as participants submit more 
entries. 

 
3. Initial Kernel Selections 
 

We wanted to choose application kernels 
which are (1) relevant to important HPC 
applications, (2) interesting and somewhat 
challenging parallel programming problems, and 
(3) different from each other in terms of the 
parallel programming challenges they pose. Our 
initial selections are the following ten kernels: 

 
1. FT, the multidimensional FFT from the 

NAS parallel benchmarks [1] 
2. MG, the multigrid kernel from the NAS 

parallel benchmarks 
3. CG, the conjugate gradient kernel from 

the NAS parallel benchmarks 
4. the Smith-Waterman bioinformatics code, 

a dynamic programming algorithm [13] 
5. SWEEP3D, the ASCI benchmark [8, 9] 
6. a triangular backsolve for a dense matrix 
7. a triangular backsolve for a sparse matrix 
8. finding the connected components of a 

graph 
9. a first-order linear recurrence: given a 

vector of floating point values, find the 
maximum value, index of the first 
occurrence of the maximum, and prefix 
sum of the vector 

10. a branch-and-bound problem: the chip 
“floorplan” optimization problem from [7] 

 
4. Implementation Plans 
 

Our plan is to have the initial version of the 
AKM available on the Internet by the end of 
March 2004. Figure 1 is a sketch of how the 
matrix might be represented so as to enable site 
visitors to browse the submitted solutions.  
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Figure 1: anticipated  web site 
representation of the Application Kernel 
Matrix 
 

The darkened boxes would represent kernel 
implementations that had been successfully 
submitted. Clicking on one of them would take 
the visitor to a page that provided links to the 
source code, performance data and information 
about the programmer’s prior experience and the 
programming time required. Elsewhere on the 
web site, the visitor would be able to download 
the programmer’s questionnaire and 
programmer’s log forms, or participate in the 
monitored e-mail discussion forum. 

 
5. Envisioned Usage Modes 
 

We anticipate that designers of HPC 
programming languages and vendors of HPC 
systems will be motivated to submit entries to 
the AKM. Language designers will want to show 
that their language covers a broad spectrum of 
systems (portability) and kernels (generality), 
and that it performs well compared to standard 
languages. Vendors will want to show that they 
support a wide range of languages and that users 
can obtain good performance without requiring 
many changes from the reference 
implementation of a given kernel. 

 
People browsing the AKM may prefer to do 

so across any of its dimensions:  
• An MPI programmer who needs to port a 

code to a new system might study the 
examples in order to learn how MPI codes 
are usually modified for performance on that 
system, and what kind of performance to 
expect. 

• A lab director whose users program in MPI, 
OpenMP, CAF and UPC might look for a 
system that supports all of these languages 
reasonably well without requiring 
substantial modifications from the reference 
implementations. 

• A programmer who is dissatisfied with the 
current generation of languages might look 
at each of the implementations of the kernel 
most similar to her own work, to see which 
of them seems easiest to learn and use 
without sacrificing much performance. 
 

Note that because, as in the second scenario, 
the AKM may be used to compare computer 
systems, it would be appropriate for a 
disinterested party, such as a government or 
academic lab, to assume responsibility for 
managing the AKM once Cray has completed the 
initial implementation. 

 
6. Acknowledgments 
 

This material is based upon work supported 
by the Defense Advanced Research Projects 
Agency under its Contract No. NBCH3039003. 

 
 

7. References: 
 
[1] Bailey, David H. et al, “The NAS Parallel 
Benchmarks,” in The International Journal of 
Supercomputer Applications, Vol. 5 No. 3, Fall 1991, 
pp. 63-73. 
 
[2] Callahan, David, et al., “The Cascade High 
Productivity Language” to appear in the 9th 

International Workshop on High-Level Programming 
Models and Supportive Environments, April 2004. 
 
[3] Carlson, William W. et al.,  “Introduction to UPC 
and language specification,” Technical Report CCS-
TR-99-157, Center for Computing Sciences, 
Bowie, MD, May 1999. 
 
[4] Chamberlain, Bradford L., The Design and 
Implementation of a Region-Based Parallel Language, 
PhD thesis, University of Washington, November 
2001. 
 
[5] Dagum, Leonardo and Menon, Ramesh, 
“OpenMP: An Industry-Standard API for Shared-
Memory Programming” in IEEE Computational 
Science & Engineering, Vol. 5, No. 1, January/March 
1998. 
  

54



[6] Feo, John, ed., A Comparative Study of Parallel 
Programming Languages: The Salishan Problems, 
North-Holland, New York, 1992. 
 
[7] Foster, Ian, Designing and Building Parallel 
Programs, Addison-Wesley, Boston, 1995. 
 
[8]http://www.llnl.gov/asci_benchmarks/asci/limited/s
weep3d/asci_sweep3d.html 
 
[9] Koch, K. R.  et al., “Solution of the first-order 
form of three-dimensional discrete ordinates equations 
on a massively parallel machine” in Transactions of 
the American Nuclear Society, Vol. 65, pp. 198–9,  
1992. 
 
[10] Message Passing Interface Forum, “MPI: A 
message passing interface standard,” in International 
Journal of Supercomputing Applications, Vol. 8 Nos. 
3–4, pp. 169–416, 1994. 
 
[11] Message Passing Interface Forum, MPI-2: 
Extensions to the Message-Passing Interface, July 
1997. 
 
[12] Numrich, R. W and Reid, J. K., “Co-Array 
Fortran for parallel programming,” Technical Report 
RAL-TR-1998-060, Rutherford Appleton Laboratory, 
Oxon, UK, August 1998. 
 
[13] Smith, T. F. and Waterman, M. S., “Identification 
of Common Molecular Subsequences,” Journal of  
Molecular Biology (1981) 147:195-197. 
 
[14] Snyder, Lawrence, Programming Guide to ZPL, 
MIT Press, Cambridge, MA, USA, 1999. 
 
[15] Yelick, Kathy et al., “Titanium: A High-
Performance Java Dialect” in ACM 1998 Workshop on 
Java for High-Performance Network Computing, 
1998. 
 

55



Managing Complexity in Modern High End Scientific Computing through
Component-Based Software Engineering

David E. Bernholdt
Oak Ridge National Laboratory

P. O. Box 2008, MS 6016, Oak Ridge, TN 37831-6016
bernholdtde@ornl.gov

Robert C. Armstrong, and Benjamin A. Allan
Sandia National Laboratories

7011 East Avenue, MS 9915, Livermore CA, 94550-0969
�rob,baallan�@sandia.gov

Abstract

The ever-increasing complexity of modern high-
performance scientific simulation software presents a
tremendous challenge to the development and use of this
type of software, with significant impacts on productivity.
Component-based software engineering is a means of
addressing complexity that has been developed primarily
in response to the needs of business and related software
environments, but which has not yet had a significant
impact on high-end computing. In this paper, we present
the Common Component Architecture (CCA) as a com-
ponent model designed to meet the special needs of
high-performance scientific computing, focusing on how
the CCA addresses issues of complexity. Unique among
component architectures is the technique presented here
by which a CCA component can act as a container to
encapsulate and control other components without itself
having to implement the functionality of a framework.

1. Introduction

Complexity of software is one of the greatest single chal-
lenges facing modern high performance scientific comput-
ing. It comes from several sources. As hardware manu-
facturers strive to provide ever faster systems, they become
more complex, with deep non-uniform memory access hi-
erarchies, CPU hierarchies (clusters of SMPs and similar
models), widely varying architectures and capabilities for
both interconnects and I/O systems. These “features” are
almost always exposed to the programmer, and in order to
achieve maximum performance, the programmer must take

responsibility for tuning their code to each platform of inter-
est. The second source of software complexity is the scien-
tific problem being addressed. As computers have become
more capable, and together with advances in software been
able to deliver interesting and useful results through simu-
lation, researchers demand more. So scientific simulation
software expands to encompass larger problems, higher fi-
delity simulations, and the coupling of simulations across
multiple time and length scales. In each case the complexity
of the software must increase to answer the new challenges.

Studies have shown that the human mind is able to han-
dle a limited amount of complexity [7, 13, 18], so that at
some point the complexity of HPC software will outstrip
the ability of programmers to deal with it and the pace
of software development will slow. Assembling teams of
programmers to create large-scale codes is a response to
the size and complexity of the software and the breadth
of knowledge required to successfully create it. How-
ever adding more workers, while necessary to deal with
complexity, is not sufficient. The coordination required
between workers imposes significant overheads that can
limit the software scalability for the same reasons that Fred
Brooks famously observed that “adding programmers to a
late project only makes it later” [11].

Facing similar problems of software complexity, other
communities, most notably the business and internet soft-
ware communities, have invested heavily in component-
based software engineering (CBSE) as a means to help
address these issues. CBSE is based around the idea of
software components, or units of programmatic function-
ality, that can be composed together to build an application.
Components effectively break the complexity into people-
sized chunks. Except to their developers, components are
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treated as black boxes which interact with other compo-
nents and the rest of the external environment only through
well-defined interfaces. In this way, components encapsu-
late complexity with which users of the component need
not concern themselves. Users create applications by com-
posing components together in a “plug and play” fashion
(which is very amenable to visual programming techniques)
based on their interfaces. This provides a new level of ab-
straction for most software development, and thus a means
of managing the complexity at a higher level.

The CBSE approach also provides a natural means to
help control the complexity that arises due to multi-person
interactions in team-developed software. Since interfaces
are the key to component interoperability, the initial design
of a component-based application can focus on the overall
architecture and “componentization” of the problem and on
defining the interfaces through which the components inter-
act. With this task completed, individuals or small groups
can then split off and focus on developing components con-
forming to the specifications without the need to interact
with the creators of other components.

Component-based software engineering may seem like a
natural approach to the creation of complex scientific soft-
ware, and can be thought of as an extension of widely used
approaches, such as the creation of software libraries, and
object-oriented programming. But CBSE has not yet made
significant inroads into HPC software, primarily because
the “commodity” component models currently available,
such as CORBA [14, 15, 23], COM/DCOM [19, 22], and
Enterprise JavaBeans [20] were developed primarily for the
business/internet software communities and do not address
the needs of HPC scientific software very well [6]. Most
commodity component environments have been designed
primarily for distributed computing, and do not recognize
or support the need for local performance and the use of
tightly-coupled parallel computing as being more impor-
tant than distributed computing. In scientific computing,
it is common to have large codes which evolve over the
course of many years, or even decades. Therefore, the ease
with which “legacy” codebases can be incorporated into a
component-based environment, and the cost of doing so, are
also important considerations. Additional considerations
include support for languages, data types, and computing
platforms important to high-performance scientific comput-
ing.

The Common Component Architecture (CCA) [6, 12]
was conceived in 1998 as a grass-roots effort to address the
need of the scientific community for approaches to address
the complexity of scientific software development and to
facilitate and promote the creation of reusable, interopera-
ble software for scientific high performance computing [3].
In this paper we describe features of the Common Compo-
nent Architecture which simplfy the management of soft-

ware complexity.

2. The Common Component Architecture

The Common Component Architecture is the nucleus of
an extensive research and development program in the Dept.
of Energy and academia. On the research side, the effort
is focused on understanding how best to utilize and im-
plement component-based software engineering practices in
the high-performance scientific computing area. In addition
to the definition of the CCA specification itself, the devel-
opment effort is aimed at creating practical reference imple-
mentations conforming to the specification, helping scien-
tific software developers use them to create CCA-compliant
software, and, ultimately, at creating a rich “marketplace”
of scientific components from which new component-based
applications will be built. Space constraints require that
we limit our presentation here to those aspects of the CCA
which bear directly on dealing with complexity: a de-
scription of the basic elements of the CCA’s component
model, and the mechanism by which components are cre-
ated, formed into applications, and executed. However, a
comprehensive overview will be published soon [10] and
tutorials are already available [1].

The specification of the Common Component Architec-
ture defines the rights, responsibilities and the relationships
between the various elements of the model. Briefly, these
are as follows:

� Components are units of software functionality that
can be composed together to form applications. Com-
ponents encapsulate much of the complexity of the
software inside a black box and expose only well-
defined interfaces to other components.

� Ports are interfaces through which components inter-
act. Specifically, CCA ports provide procedural inter-
faces that can be thought of as a class or an interface
in object-oriented languages, or a collection of sub-
routines, or a module in a language such as Fortran
90. Components may provide ports, meaning they im-
plement the functionality expressed in the port (called
provides ports), or they may use ports, meaning they
make calls on that port provided by another compo-
nent (called uses ports).

� The framework holds CCA components as they are as-
sembled into applications and executed. The frame-
work is responsible for connecting uses and provides
ports without exposing the components’ implementa-
tion details. It also provides a small set of standard
services, defined by the CCA specification, which are
available to all components. The BuilderService
and AbstractFramework ports are two of these
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standard services which are both central and novel with
respect to the way the CCA deals with complexity.

The CCA employs a minimalist design philosophy to
simplify the task of incorporating pre-existing HPC soft-
ware into the CCA environment. CCA components in-
teract with the CCA framework via the Services inter-
face, which provides the means for components to register
the ports they provide and use (addProvidesPort(),
registerUsesPort()), and to obtain “handles” to
ports so that they can be used (getPort()). This
makes it possible for the framework to effectively and ef-
ficiently mediate component connections. To be “CCA
compliant”, components are required to implement the
gov.cca.Component class, which includes just one
method: setServices(). This method is invoked by
the framework immediately after the component is instan-
tiated, passing in a CCA Services object (later referred to
as svc). The primary purpose of setServices() is for
the component to tell the framework what ports it provides
and uses.

The uses/provides design pattern for ports and the frame-
work’s role in mediating the connection of ports is also im-
portant in the CCA’s ability to transparently support both
local high-performance and distributed computing models.
Prior to actually invoking a method on another port, the
component uses the svc.getPort() method to obtain
a handle to the port. In the distributed computing case, the
handle would be a pointer to a local proxy for the provides
port created by the framework, and the framework is re-
sponsible for conveying the remote method invocations to
the actual provider, including marshaling and unmarshal-
ing arguments. In the local high-performance (also referred
to as “direct connect” or “in-process”) case, the frame-
work typically loads components into separate namespaces
within the address space of a single process, so in this case
the handle can be a pointer to the virtual function dispatch
table for the providing port. In this case the method invoca-
tions take place directly without intervention by the frame-
work and without CCA-imposed overheads beyond the vir-
tualization of the function call (common in object-oriented
languages anyway). Since the caller and callee share the
same address space, all arguments are commonly passed by
reference without the loss of performance indirection en-
tails. Measurements show that the CCA-imposed overhead
on calls between components in the direct connect case is
minimal, and does not impact performance relative to tradi-
tional (non-component) programs [9, 21]. In some cases,
the Bable language interoperability tool [8] may need to
translate datatypes between languages, but for most scien-
tific computing these overheads can be avoided.

In the high-performance parallel context, the CCA’s
model is that of many of the local high-performance “in-
process” component assemblies running in parallel across

Figure 1. A schematic representation of the
sequence of interactions between the com-
ponent and framework via the CCA Services
object that allow ports to be connected and
used.

many processors. Components in each process operate via
the usual CCA mechanisms, while the parallel instances of
a given component can utilize whatever parallel communi-
cations model they prefer, without any CCA-imposed over-
heads. Both single-component/multiple-data and multiple-
component/multiple data paradigms are supported, analo-
gous to SPMD and MPMD programs without any CCA-
imposed performance overheads [21].

Figure 1 illustrates more specifically the sequence
of interactions between the component and framework
via the CCA Services object that allow ports to be
connected and used. In step 1, Component 1 calls
svc.addProvidesPort() (and Component 2 calls
svc.registerUsesPort()) to express their intent.
The CCA Services object caches the information about the
port it got from addProvidesPort() (step 2). In the
third step, the framework connects the uses port to the pro-
vides port, and the framework copies information about the
provides port over to the user’s (component 2’s) CCA Ser-
vices object. Finally, when Component 2 wants to invoke
a method on the port provided by Component 1, it issues
a svc.getPort() call to obtain a handle for the port.
Not shown in the diagram is the svc.releasePort()
call, informs the framework that the caller is (temporar-
ily) done using the port. A port may be used only after
a getPort() call is made for it, and before its compan-
ion releasePort() call; getPort() and release-
Port() can be used repeatedly throughout the body of
the component. This is considered better CCA program-
ming practice than acquiring handles to all relevant ports
once at the beginning of the component execution and re-
leasing them only at the end, because it allows the use of
a more dynamic component programming model, through
the BuilderService port.
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In “normal” use of the CCA model, steps 1–3 would
take place during the “assembly” phase of the applications.
Specifically, steps 1 and 2 would take place with the compo-
nent’s setServices(), invoked by the framework when
the component is instantiated, and step 3 would take place
as the component instructs the framework how to connect
the uses and provides ports for the application. Step 4 would
take place during execution of the component’s code. Fi-
nally, when not within a getPort()/releasePort()
block, connections between uses and provides ports may be
broken, and components may be destroyed.

In general, components cannot use ports on other com-
ponents during the assembly phase (i.e. within the compo-
nent’s setServices() routine) because there is no guar-
antee that the components providing those ports have been
instantiated and connected to this component’s “uses port”.
There is one exception, however. As a reuse of concepts,
the CCA also casts framework services as ports, and such
services are available to components as soon as they have
been instantiated.

While this explanation has portrayed the phases of the
lifecycle as “collective”, with the entire application being
assembled, executed, and then disassembled, this is not nec-
essarily the case. Through the BuilderService frame-
work service port, applications can have extremely dynamic
behavior. The motivating example for the development of
BuilderService was the desire to be able to swap out
one numerical solver for another during a simulation be-
cause, for example, the solution might be moving into a
region where another solver would provide better perfor-
mance or numerical quality [16]. BuilderService, to-
gether with the AbstractFramework service also al-
low hierarchies of components to be created, encapsulating
many components and treating them as one.

3. Application Complexity in the CCA

While the CCA does a very good job of encapsulating
the complexity of thousands of lines of source code into
black-box components, the model, as described in Section
2, has only one level. Modern HPC scientific applications
often grow extremely large and involve the coupling of sim-
ulations at different time or length-scales. Eventually even
componentized versions of such applications become too
complex for software developers and users to deal with all
at once.

As an example, consider the study of a reaction-diffusion
simulation under varying numerical and geometric parame-
ters, where the user may be interested in performance, con-
vergence, and efficiency. Figure 2 shows the CCA “wiring
diagram” for a modestly complex “production quality” ap-
plication of this type, developed by Jaideep Ray, Sophia
Lefantzi, and their co-workers in the Center for React-

ing Flow Simulation lead by Sandia National Laboratory
[2, 17].

This figure, derived from a screen capture of the visual
programming interface currently available with the CCaf-
feine CCA framework [4, 5], shows the numerous compo-
nents as dark boxes decorated with smaller boxes represent-
ing the provides ports (left side of each component) and
uses ports (right side). Lines show connections between
uses and provides ports. The component layout is very
cluttered and quickly fills most of the screen. As is typi-
cal in component-based applications, multiple components
are used to implement the various high-level elements of the
application. In this case, three components together provide
the reaction kinetics functionality (heavy oval) and a second
group of four components that handle the diffusion equation
(heavy rectangle). These components dominate the work
area, but are of little interest to the planned study, because
they will not be changed in any way.

This example makes the visual case for the need to be
able to group components to further hide complexity. In this
case, our purposes would be well served if we could group
the three chemistry components together into one a single
ChemSolver, and the four diffusion components into a
single DiffusionIntegrator component. This would
simplify the visual programming picture, making it easier
to work with the remaining components, which are of inter-
est in the planned study. It may also be of interest to export
these groupings as components in their own right, available
for use in other applications. Flexibility of the mechanism
is important too: the target of the next study could be a com-
parison of the numerical and performance characteristics of
the CvodeSolver against other equivalent solvers, look-
ing for a possible replacement. In this case, we would want
to see all of the structure for the chemistry part of the appli-
cation, but could black-box other component groupings.

4. Reusing Component Concepts for Aggrega-
tion and Scalability

For a peer object model like CCA, there is really only
one option to deal with the need to provide multiple levels
of encapsulation: a peer container object for networks of
components. Although there are notable exceptions (e.g.
Visual BasicTM), it was considered a best practice to make
each container itself a component and therefore achieve a
self-similar answer to component aggregation.

Because the BuilderService port exports frame-
work functionality to the user, it serves two vital functions
that normally are under framework control: containment
and composition. Containment allows an entire compo-
nent composition (network of connected components) to
be black-boxed as a single component. Dynamic compo-
sition allows changes in the way a component network is
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Figure 2. Assembly diagram of a reaction-diffusion simulation using an implicit/explicit integration
scheme on an adaptively refined grid. The heavy lines highlight the components related to the
reaction kinetics (oval) and the diffusion equation (rectangle).

connected at any time during the execution of the program.

4.1. BuilderService: Component Containers in a
High Performance Setting

The BuilderService interface allows the high-
performance computational scientist the ability to take
on the role of the framework programmer. Builder-
Service is a standard framework service port and
the user requests this interface through the usual
CCA mechanism of svc.registerUsesPort() and
svc.getPort(). The entire interface for BuilderService
can be found on the web at http://www.cca-forum.
org/specification/. Figures 3–6 show an entire sce-
nario for containing a more complicated component net-
work within a controlling component that uses Builder-
Service.

The idealized scenario of these figures is to encapsulate
a two-component network, but proxy an unconnected pro-
vides port and an unconnected uses port on the outside of
the container making them available for connections by a
user. In the figures, a component called Container Compo-
nent is located and instantiated in the usual way of Section

2. Container Component requests a BuilderService
port (Fig. 3). Because BuilderService is a CCA ser-
vice port provided by the framework, it can be retrieved im-
mediately, during its initial setServices() call. During
the same call, two components are instantiated, and then
connected together through use of the BuilderService
interface (Fig. 4). Next the Container Component con-
nects the component network to itself by exporting the same
type of ports on itself (Fig. 5) and connecting them to the
contained network. Finally, the single Container Compo-
nent presents the two proxied ports encapsulating, in this
case a two component network (Fig. 6). The Container
Component here does not have any functionality other than
as a program to create an interior encapsulated network of
components, re-exporting provides ports and proxying uses
ports that are left unconnected.

It is worth noting that once all of the connections to the
containing component are made, there is no further involve-
ment by the container in the execution of the program. All
of the encapsulated components are dealt with directly. This
means that taking advantage of the CCA containment mech-
anism inflicts no performance penalty on the user’s applica-
tion.
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Figure 3. CCA Containment Mechanism Using Builder-
Service: Step 1: Create the container component.

�

�

�

�
Figure 4. CCA Containment Mechanism Using BuilderSer-
vice: Step 2: Container component composes a network of
components.

4.2. Using CCA from Main: AbstractFramework

Component-oriented programming implies that there is
an overarching framework that instantiates, manipulates,
and destroys components and otherwise manages compo-
nents on the behalf of the user. The downside is that
the user is unable to write or control the main() pro-
gram. In most cases a well-written CCA-compliant frame-
work will cover what 90% of the users would like to do.
However since high performance computing involves ever
more sophisticated hardware, and hence runtime environ-
ments, some setup may be needed ahead of the framework
to prepare it for queuing systems, message passing lay-
ers, or other nonstandard facilities that could not be antic-
ipated by the framework developers. The CCA’s answer
to this requirement is another interface called Abstract-
Framework. This interface is not a gov.cca.Port but
one that allows an instantiation of a CCA framework from
a library. Beyond creation and destruction there is only

one method on the interface: getServices() which
returns a Services object identical to the one received
in the setServices call by a normal component. The
getServices() call effectively creates an image of the
main program inside the framework allowing addPro-
videsPort() and registerUsesPort() calls from
the main program the same as any other component. From
then on the BuilderService interface can be requested
and the process can proceed as before. Listing 1 shows an
example of this in Python.
BuilderService and AbstractFramework in-

terfaces are considered by the CCA working group to be
“advanced” behavior, and would probably only be under-
taken by a user that is already well versed in CCA compo-
nent semantics and behavior. In essence the user is taking
over the role usually occupied by a CCA compliant frame-
work. It is important that the user of the BuilderSer-
vice containment be cognizant of what CCA components
are entitled to expect and to respect the component life cycle
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Figure 5. CCA Containment Mechanism Using BuilderSer-
vice: Step 3: Container component connects itself to un-
connected ports.

that the component writers depend on.

Mentioned previously, another important function of
BuilderService is the automation of the componen-
tized programs at the component level. For example, an
equation solver component used in the solution of a PDE
might work fastest with an LU preconditioner for some
number of time steps, but later in the calculation might
require a multigrid method. A component that monitors
the convergence behavior (possibly the condition number)
could disconnect the LU component and plug in the multi-
grid method as the need arises. BuilderService allows
high-performance components to be programmed dynami-
cally, as any other object in the calculation [16].

4.3. The Simplified Reaction-Diffusion Application

The mechanisms described in this section can be applied
to our reaction-diffusion simulation example, producing the
result shown in Figure 7. The core chemistry and physics
of the problem are now encapsulated within the black-
box ChemSolver and DiffusionIntegrator com-
ponents. The ErrEstAndRegrid and TimeInter-
polator components are readily accessible, and there is
enough screen real estate available to easily manipulate the
components of interest as needed.

5. Conclusions

A certain amount of complexity is unavoidable in high-
performance scientific computing due to the complexity of
the problems being solved. The Common Component Ar-
chitecture is design specifically to meet the needs of this
community, including the need to better manage complex-
ity.

Because CCA’s target developers are computational sci-
entists who wish to focus not on software development, but
on their scientific simulations, the tools and concepts of the
CCA must be both simple to grasp and scalable to the prob-
lems of interest to the computational scientists. Reuse of
concepts is an important means for the CCA to achieve this
necessary simplicity – in other words, to reduce the com-
plexity inherent in the CCA itself. An example is the use
of the uses/provides concept for ports to transparently en-
able both high-performance local component assembly and
distributed computing. In the parallel computing case, the
CCA’s approach allows the programmer to reuse the tools
and techniques with which they are most comfortable for
parallel programming, rather than imposing a new model or
tools on them.

The CCA also deals with software complexity directly.
At the first level, components provide black-box encapsu-
lation of complex pieces of source code so that the user of
the component (as opposed to its developer) need not be
concerned about its internals. Through the BuilderSer-
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Figure 6. CCA Containment Mechanism Using
BuilderService: Step 4: Finally, only proxied
ports are available for further connections.

Listing 1. Abstract Framework example in Python
# ! / u s r / b i n / py thon
import c c a f f e i n e . Abs t r ac tF ramework # load t h e framework
# Framework�s p e c i f i c p o r t i o n , i n t h i s case C c a f f e i n e :
a = c c a f f e i n e . Abs t r ac tF ramework . Abs t r ac tF ramework ( ) # c r e a t e i t
# i n i t i a l i z e t e l l i n g t h e framework what components we w i l l u se and
# where t h e y are l o c a t e d .
a r g s = ”��pa t h / home / rob / cca / l i b / components ”
a . i n i t i a l i z e ( a r g s )
# From here on , t h i s main program i s u s i n g on l y s t anda rd CCA,
# n o t h i n g i m p l e m e n t a t i o n s p e c i f i c .
# We c r e a t e t h i s main py thon program as a component i n t h e framework by
# g e t t i n g gov . cca . S e r v i c e s :
svc = a . g e t S e r v i c e s ( ” main” , ” MainComponent” , p r o p e r t i e s ) ;
myid = svc . getComponentID ( ) ; # t h i s i s our ComponentID
svc . r e g i s t e r U s e s P o r t ( ” bs ” , ” gov . cca . B u i l d e r S e r v i c e ” , p r o p e r t i e s )
p o r t = svc . g e t P o r t ( ” bs ” )
import gov . cca . p o r t s . B u i l d e r S e r v i c e
bs = gov . cca . p o r t s . B u i l d e r S e r v i c e . B u i l d e r S e r v i c e ( p o r t )
# From here on e v e r y t h i n g i s t h e same as i f i t were
# a ” normal ” CCA component .

vice and AbstractFramework interfaces, the CCA
also provides an approach to hierarchically encapsulate a
network of components as a single component, a design
pattern which is unique (as far as we know) in the world
of components.

In this way, application developers can manage the
complexity presented by their CCA-based applications in
a flexible and general fashion. It is hoped that by in-
troducing fewer new concepts, it will be easier to em-
ploy BuilderService in applications, making even
large-scale multi-physics applications more manageable.
An important side effect of this approach is that CCA-
compliant frameworks need to add little to support this
style of containment because most of the existing infras-
tructure can be reused. Because there are numerous CCA-

compliant frameworks specialized in various areas of high
end computing, a beneficial artifact of the BuilderSer-
vice/AbstractFramework approach is that disparate
frameworks can be linked together using only CCA ports.
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Figure 7. Assembly diagram of the simulation with reaction and diffusion black boxes.
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Abstract

In this paper, we qualitatively address how high-level
parallel languages improve productivity and performance.
Using ZPL as a case study, we discuss advantages that stem
from a language having both a global (rather than a per-
processor) view of the computation and an underlying per-
formance model that statically identifies communication in
code. We also candidly discuss several disadvantages to
ZPL.

1. Introduction

In the spring of 2003, we encountered a curious bug in one
of the NAS parallel benchmarks. To evaluate the scalability of
ZPL, we were comparing our ZPL implementation of the NAS CG
benchmark against the provided Fortran+MPI implementation on
an increasing power-of-two number of processors of a new 1024-
node cluster at Los Alamos National Laboratory (LANL). Both im-
plementations ran flawlessly on up to 512 processors but, on our
first 1024 processor run, the Fortran+MPI failed to verify cor-
rectly even as the ZPL worked. A day after we reported the failed
verification to NAS, they were able to produce identical erroneous
results on an IBM SP.1 It wasn’t a strange interaction between
LANL’s experimental cluster and ZPL, but rather a bug in the
long-standing Fortran+MPI benchmark...

* * *

ZPL is a high-level parallel programming language de-
veloped at the University of Washington. Our implementa-
tion is based on a compiler that translates ZPL programs
to C code with calls to MPI, PVM, or SHMEM, as the
user chooses. Since the first release of this compiler in
1997, there have been significant improvements as we have
evolved the language. This paper discusses some of the
lessons we have learned over this time.

1Personal Communication. Rob F. Van der Wijngaart. April 9, 2003.

Like Co-array Fortran, High Performance Fortran, Ti-
tanium, Unified Parallel C and other parallel languages,
ZPL offers scientists who are frustrated by MPI a much
improved parallel programming experience. The anecdote
above, which we will come back to later in this paper, il-
lustrates this point and is the sort of issue we will discuss
in this paper. The point of this anecdote is not that the pro-
vided Fortran+MPI benchmark was poorly written. Indeed,
the NAS benchmarks are well-known for being well-written
and highly-optimized. The point, as we will see later, is
that the high-level nature of ZPL virtually eliminates a wide
class of parallel programming bugs, thus making parallel
programming easier.

Focusing on ZPL, this paper addresses how high-level
parallel languages improve both productivity and perfor-
mance. Throughout this paper, we will present anecdotes,
code segments, and qualitative arguments as evidence of
this improvement. The purpose of this paper is not to ad-
vertise ZPL but rather to encourage researchers to explore
the space of language abstractions which ZPL champions.

This paper is organized as follows. In the next section,
we characterize the design space of ZPL. No introduction to
the language is offered; the interested reader is instead re-
ferred to the literature [4, 21]. In Section 3, we examine as-
pects of ZPL that increase productivity and performance. In
Section 4, we discuss limitations of ZPL and, in Section 5,
we conclude.

2. Characterizing ZPL

Figure 1 shows C+MPI and ZPL implementations of a
trivial benchmark. The idea behind the benchmark is to it-
eratively replace each element in a 1D array with the aver-
age of its two neighboring elements until the change be-
tween the values in the array on successive iterations is
small. Though admittedly contrived, the codes effectively
illustrate two important characteristics of ZPL.

First, ZPL is a global-view parallel language. The pro-
grammer writes code that largely disregards the processors
that will execute it. Thus array A is declared based on the
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# i n c l u d e < s t d i o . h>
# i n c l u d e < s t d l i b . h>

| # i n c l u d e ” mpi . h”

i n t n ;
double ∗A, ∗Tmp;
c o n s t double e p s i l o n = 0 . 0 0 0 0 0 1 ;

i n t main ( i n t a r g c , char ∗ a rgv [ ] ) {
i n t i , i t e r s ;
double d e l t a ;

| i n t numprocs , rank , m y s i z e ;
| doub le sum ;

| M P I I n i t (& argc , & argv ) ;
| MPI Comm size (MPI COMM WORLD, & numprocs ) ;
| MPI Comm rank (MPI COMM WORLD, & rank ) ;

i f ( a r g c ! = 2 ) {
p r i n t f ( ” usage : l i n e n\n” ) ;
e x i t ( 1 ) ;

}
n = a t o i ( a rgv [ 1 ] ) ;

| m y s i z e = n ∗ ( rank + 1 ) / numprocs −
| n ∗ rank / numprocs ;

A = mal loc ( ( m y s i z e +2)∗ s i z e o f ( double ) ) ;
f o r ( i = 0 ; i <= m y s i z e ; i ++)

A[ i ] = 0 . 0 ;
| i f ( rank == numprocs − 1)

A[ m y s i z e + 1 ] = n + 1 . 0 ;
Tmp = mal loc ( ( m y s i z e +2)∗ s i z e o f ( double ) ) ;
i t e r s = 0 ;
do {

i t e r s ++;
| i f ( rank < numprocs−1)
| MPI Send (&(A[ m y s i z e ] ) , 1 , MPI DOUBLE , rank + 1 ,
| 1 , MPI COMM WORLD) ;
| i f ( rank > 0)
| MPI Recv (&(A [ 0 ] ) , 1 , MPI DOUBLE , rank − 1 ,
| 1 , MPI COMM WORLD , MPI STATUS IGNORE ) ;
| i f ( rank > 0)
| MPI Send (&(A [ 1 ] ) , 1 , MPI DOUBLE , rank − 1 ,
| 1 , MPI COMM WORLD) ;
| i f ( rank < numprocs−1)
| MPI Recv (&(A[ m y s i z e + 1 ] ) , 1 , MPI DOUBLE , rank + 1 ,
| 1 , MPI COMM WORLD , MPI STATUS IGNORE ) ;

f o r ( i = 1 ; i <= m y s i z e ; i ++)
Tmp[ i ] = ( A[ i −1] + A[ i + 1 ] ) / 2 . 0 ;

d e l t a = 0 . 0 ;
f o r ( i = 1 ; i <= m y s i z e ; i ++)

d e l t a + = f a b s (A[ i ] − Tmp[ i ] ) ;
| MPI Al l reduce (& d e l t a , & sum , 1 , MPI DOUBLE,
| MPI SUM , MPI COMM WORLD) ;
| d e l t a = sum ;

f o r ( i = 1 ; i <= m y s i z e ; i ++)
A[ i ] = Tmp[ i ] ;

} whi le ( d e l t a > e p s i l o n ) ;
| i f ( rank = = 0 )

p r i n t f ( ” I t e r a t i o n s : %d\n” , i t e r s ) ;
| M P I F i n a l i z e ( ) ;

}

program l i n e ;

c o n f i g var
n : i n t e g e r = 6 ;

reg ion
R = [ 1 . . n ] ;
BigR = [ 0 . . n + 1 ] ;

d i r e c t i o n
e a s t = [ 1 ] ;
wes t = [− 1 ] ;

var
A , Tmp : [ BigR ] double ;

c o n s t a n t
e p s i l o n : double = 0 . 0 0 0 0 0 1 ;

procedure l i n e ( ) ;
var

i t e r s : i n t e g e r ;
d e l t a : double ;

begin
[ BigR ] A : = 0 ;
[ n + 1 ] A : = n + 1 ;
i t e r s : = 0 ;
[R ] repeat

i t e r s + = 1 ;
Tmp : = ( A@east + A@west ) / 2 . 0 ;
d e l t a := +<< abs (A − Tmp ) ;
A : = Tmp;

u n t i l d e l t a <= e p s i l o n ;
w r i t e l n ( ” I t e r a t i o n s : %d ” : i t e r s ) ;

end ;

(a) (b)

Figure 1. A trivial benchmark written to compare (a) C+MPI and (b) ZPL. This benchmark measures
how many iterations are needed for an array to reach a fixed point. The user sets n, the size of the
problem, at the command line. The program starts by initializing the array to zero with left and right
borders set to 0 and n+1 respectively. On each iteration, the elements in the array are replaced by the
average of their two neighbors. The program terminates when the sum of the changes is less than
the fixed constant epsilon. The number of iterations is reported. The use of the italics in the C+MPI
code indicates the changes that are necessary to make when parallelizing the sequential language
C using MPI. The vertical bars on the left indicate new lines of code; in addition, mysize replaces
occurrences of n.
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global bound of n + 1. In contrast, C+MPI is a local-
view parallel language, and array A is declared based on
per-processor bounds of mysize + 2. The highlighted
parts of the C+MPI code show the changes that needed to
be made from a sequential C code and the burden that is
placed on the local-view programmer. In addition to using
local bounds to size arrays on a per-processor basis, inter-
processor communication must be explicitly managed in te-
dious detail.

It is important to note the difference between global-
view languages such as HPF [14] and ZPL and local-view
languages with global address spaces such as Co-array For-
tran [19], Titanium [24], and UPC [3]. The latter are some-
times referred to as fragmented languages because they re-
quire programmers to divide the expression of their compu-
tation between the processors in an SPMD style of program-
ming. They are significantly easier to use than C+MPI be-
cause of their global address space but, unlike global-view
languages, they require the user to manage low-level syn-
chronization.

Second, despite its global view, communication is ex-
plicit in ZPL. The details of communication are managed
by the compiler, but the ZPL programmer is readily aware
of where communication is induced. This provides a sim-
ple, but powerful performance model called the what-you-
see-is-what-you-get (WYSIWYG) performance model [5].
The only communication in the simple ZPL program in
Figure 1 is induced by the at operator (@), which shifts
data across processor boundaries, and the reduce opera-
tor (op<<), which determines the sum of values distributed
across all the processors.

ZPL is the only language to offer both properties. In the
most well-known global-view language, High Performance
Fortran, the programmer achieves parallelism by supplying
directives of distribution and parallel computation. As a
parallel extension to Fortran 90, its easy to reason about
what is computed. However, communication requirements
for a given statement are invisible in the syntax, thus mak-
ing it a challenge for both programmers and compilers to
optimize communication. On the other hand, local-view
languages tend to make communication explicit but at the
expense of the global view of computation.

3. Advantages of ZPL

This section is composed of seven parts, each of which
addresses some aspect of the advantage of high-level paral-
lel programming languages. The first two parts look at ad-
vantages of having a global view of computation; it makes
parallel programming easier and provides for more general
parallel programs. The next two parts focus on language ab-
stractions; structural abstractions improve programmability
while orthogonal abstractions make it easy to tune paral-

lel codes. The fifth part discusses how a high-level perfor-
mance model makes it easy to maintain fast code, and the
sixth part discusses how high-level languages stop program-
mers from over-specifying code and keeping the compiler
from making effective optimizations. In the final part, we
show some performance results which suggest that the bot-
tom line of high-performance is still achievable.

3.1. Global-view languages make parallel program-
ming easier

As a case in point, we will elaborate on our introduc-
tory story. The NAS Parallel Benchmarks (NPB) [1] have
long served as a way for us to evaluate the performance of
ZPL. These benchmarks were designed to assist in evalu-
ating the performance of parallel supercomputers. Derived
from Computation Fluid Dynamics (CFD) applications and
implemented in Fortran or C and MPI, they are “intended
to be run with little or no tuning, [and] approximate the
performance a typical user can expect for a portable par-
allel program on a distributed memory computer.” [1] This
statement is actually too modest. These benchmarks are
highly-tuned and represent the upper end of achievable per-
formance with a message-passing library. The benchmarks
are well-written, stable programs that garner a substantial
degree of respect in the high-end computing community.

The NAS CG benchmark estimates the largest eigen-
value of a symmetric positive definite sparse matrix by the
inverse power method. The bug we encountered on 1024
processors was all the more curious because of the relative
age of CG. Not only did the CG benchmark run flawlessly
on up to 512 processors, but it had also been used for years
in evaluating parallel systems. The 1024-processor bug was
found to be in the initialization and was fixed by the NAS
team within a week.2 What happened was that an array used
later in the computation and treated as scratch in the initial-
ization was sized based on the problem size divided by the
number of processors. As the number of processors grew, it
became too small to fit the initialization data.

Because of the local view of computation, the array was
sized based on local per-processor bounds. Given a global-
view language like ZPL, that same array would be sized
based on the global bounds. Had the programmer made a
similar array sizing mistake in ZPL, the benchmark would
have failed on any number of processors, not just when the
number became large. Thus global-view languages make
the development of working parallel programs easier.

Global-view languages make parallel programming eas-
ier for many other reasons too. Here is another story of
using ZPL.3 A professional programmer at HP with over “5
years of experience ... doing regular product development

2Personal Communication. Haoqiang Jin. April 10, 2003.
3Personal Communication. George Forman. December 5, 2003.
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Figure 2. Charts showing line counts of the
Fortran+MPI and ZPL implementations of the
NAS CG and FT benchmarks. The counts are
subdivided into lines used for communica-
tion, declarations, and computation. These
counts are being reprinted from a previous
paper which can be consulted for more de-
tailed information on the ZPL implementa-
tions of these benchmarks [11].

work” wrote a code to test clustering algorithms. “It was a
code he cared about and had cultivated for many research
experiments over the course of a year+ for testing different
kinds of clustering. It was tuned for performance, because
he had to do many runs for research significance.” The core
of the computation was 355 lines but, by describing it in
Matlab, the programmer was able to explain it to a second
HP programmer easily.

This second programmer, having worked on ZPL in the
past, was eager to try writing the code in ZPL. Sequential
runs took copious amounts of time, and both researchers ex-
pected they could achieve near linear speedup. In roughly
6 hours, the second programmer had the ZPL code work-
ing. It was 73 lines. Not only did it show nearly linear
speedup [25] but, to the C programmer’s surprise, its se-
quential performance was better than that of the optimized
C code. This application helped the HP researchers demon-
strate that clustering code across continents, even with bad
network latency, is better than shipping data to local clus-
ters [13].

Though lines of code is not an ideal metric for evaluat-
ing a parallel programming language, it does provide some
quantitative measure of programmability. Figure 2 counts
the number of lines of code in the timed portions of the
NAS CG and FT benchmarks. The ZPL codes require less
than half the number of lines used to write the equivalent
Fortran+MPI. Inspecting the codes reveals similar complex-
ities and simplifications as in this paper’s examples, yet on
a larger scale. This is a testament to how much easier it is
to use ZPL.

3.2. Global-view languages provide for more gen-
eral parallel programs

To keep MPI programs from requiring even more lines
of code, they are often written with assumptions about the
problem size or the number of implementing processors.
For example, these may both be required to be powers of
two. For the provided Fortran+MPI implementations of the
NAS CG, FT, and MG benchmarks, the number of proces-
sors is required to be a power of two. In contrast to this
restriction to the Fortran+MPI versions, the ZPL program
can run on a non-power-of-two number of processors.

These assumptions in MPI are not surprising. They
greatly simplify the implementation and permit optimiza-
tions that would not be possible in the more general case.
However, there are times when one wants to run on a non-
power of two number of processors. For example, given
a 64 processor machine, scientists might not want to wait
for a 16 processor job to finish if their programs could run
on the 48 available processors sooner. Also, due to budget
constraints, machines are often not composed of a power-
of-two number of processors.

Modifying an MPI code to introduce such flexibility can
often impact all aspects of the code. Moreover, as illustrated
in Figure 6 and seen in the literature [7], running the more
general ZPL version of the CG, FT, and MG benchmarks
on a non-power-of-two number of processors results in im-
provements over the next smallest power-of-two number of
processors for the Fortran+MPI benchmark.

3.3. Structural abstractions improve programma-
bility

Sparse problems comprise a challenging and crucial
class of computation in high-end computing. Yet it is im-
portant to remember that the sparsity of an array or matrix
relates to its potential for optimized implementation rather
than the fundamental operations it supports. As an exam-
ple, matrix-vector multiplication is a mathematical oper-
ation whose definition is independent of whether the ma-
trix operand is sparse or dense; its sparsity merely provides
an opportunity for reducing the computational and storage
overheads of the operation.

Most languages fail to support abstractions for sparse
data structures, placing the effort of exploiting sparsity on
the programmer rather than the tools. Programmers must
build their own data structures to represent sparse arrays and
this change in representation forces a corresponding change
to the computation itself. As an example, consider the For-
tran codes in Figure 3(a) which implement matrix-vector
multiplication for a dense array and for a sparse array us-
ing compressed row storage. Note that the change from
sparse to dense is pervasive in the code. The 2D array a
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DENSE SPARSE

(a)

r e a l p ( n ) , w( n )
r e a l a ( n , n )

do j = 1 , numrows
sum = 0 . d0
do k = 1 , numcols

sum = sum + a ( j , k )∗ p ( k )
enddo
w( j ) = sum

enddo

r e a l p ( n ) , w( n )
r e a l a ( nnz )
i n t e g e r c o l i d x ( nnz )
i n t e g e r r o w s t r ( n )

do j = 1 , numrows
sum = 0 . d0
do k = r o w s t r ( j ) , r o w s t r ( j +1)−1

sum = sum + a ( k )∗ p ( c o l i d x ( k ) )
enddo
w( j ) = sum

enddo

(b)

reg ion R = [ 1 . . n , 1 . . n ] ;
RowVect = [ ∗ , 1 . . n ] ;
ColVect = [ 1 . .m , ∗ ] ;

var M: [ R ] double ;
V : [ RowVect ] double ;
S : [ ColVect ] double ;

[ ColVect ] S := +<<[R ] (M ∗ V ) ;

reg ion R = [ 1 . . n , 1 . . n ] where /∗ p a t t e r n ∗ / ;
RowVect = [ ∗ , 1 . . n ] ;
ColVect = [ 1 . . m , ∗ ] ;

var M: [ R ] double ;
V : [ RowVect ] double ;
S : [ ColVect ] double ;

[ ColVect ] S := +<<[R ] (M ∗ V) ;

Figure 3. Dense and sparse implementations of matrix-vector transpose in (a) Fortran+MPI and
(b) ZPL

becomes a 1D array of values with two integer vectors to
provide directory information. This forces the inner loop to
be restructured to iterate properly over the directory, index
a, and index into p using an indirect index. This represents
a substantial modification to the code considering that the
mathematical operation being expressed has not changed.
The problem is exacerbated in parallel codes where com-
munication code must also be rewritten to deal with sparse
structures.

In contrast, ZPL supports sparse arrays and matrices as
a fundamental concept, allowing programmers to specify
an array’s sparsity as part of the declaration of its size and
shape [8]. This results in minimal impact on the compu-
tation itself. Consider the ZPL implementations of sparse
and dense matrix-vector multiplication in Figure 3(b). By
isolating the impact that such a simple conceptual change
has on the code, the programmer can easily switch between
sparse and dense representations with little penalty. For ex-
ample, in the NAS MG benchmark, the input array V is
truly sparse, containing only 20 non-zeroes in its 512

3 el-
ements for class C. Using a sparse representation can im-
prove the space and computational costs associated with V ,
yet making this change requires significant effort in most
languages and as a result, most implementations do not
bother. In ZPL the change is trivial, reducing the overall
memory footprint of the program by 1/3. As a second ex-
ample, the NAS FT benchmark checks its results by taking a
sparse walk through a dense array. Representing this subset
of values directly using a sparse region is a simple change in
ZPL and improves performance by making the parallelism

more explicit.
By separating the specification of sparsity from its use

in computation, the compiler is also given increased flexi-
bility in its choice of sparse data structure implementations.
The ZPL compiler automatically tunes its sparse represen-
tation based on the requirements dictated by its usage in the
code [4]. One could furthermore imagine allowing the user
to specify a preferred sparse data structure as part of the ar-
ray’s declaration. In conventional languages where the user
must manage sparsity explicitly, such changes tend to affect
every line of code that refers to the array, violating the gen-
eral principle of separating data structure from algorithm.

3.4. Orthogonal abstractions make it easy to tune
parallel codes

Significant changes in performance can be realized by
fine-tuning a parallel code after it is written. For example,
a programmer could want to change the ratio between the
number of processors in the column and row dimensions of
a 2D processor grid. In the NAS CG benchmark, this re-
sults in improved performance when the data-to-processor
ratio is large. In the Fortran+MPI implementation, this is a
difficult change but, in the ZPL implementation, it is trivial.

Figure 4 shows the code involved in transposing a row
to a column in Fortran+MPI and ZPL. Because the row
and column arrays are replicated across their dimension of
the transpose array, it makes sense, for performance of the
transpose, to use a 1:1 or 2:1 row-to-column processor lay-
out in the 2D processor grid. The 1:1 ratio is always ideal,
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i f ( l 2 n p c o l s . ne . 0 ) then
c a l l m p i i r e c v ( q , e x c h r e c v l e n g t h ,

d p t y p e , e x c h p r o c , 1 ,
mpi comm world , r e q u e s t , i e r r )

c a l l mpi send (w( s e n d s t a r t ) , s e n d l e n ,
d p t y p e , e x c h p r o c , 1 ,
mpi comm world , i e r r )

c a l l m p i w a i t ( r e q u e s t , s t a t u s , i e r r )
e l s e

do j =1 , e x c h r e c v l e n g t h
q ( j ) = w( j )

enddo
e n d i f

[Row ] W : = P #[ Index2 , s r c i n d e x ] ;

(a) (b)

Figure 4. NAS CG transpose code in (a) Fortran+MPI and (b) ZPL.

but if we want to run on an odd power-of-two number of
processors, e.g. 8, then sometimes we need to use a 2:1
ratio, e.g. a 4 × 2 processor grid. In these cases, the com-
munication pattern is one-to-one. Each processor needs to
send data to only one processor and needs to receive data
from only one processor.

The Fortran+MPI code, because of its low-level of ab-
straction, cannot keep the processor grid orthogonal to the
computation. Thus the one-to-one communication pattern
is unyielding. In ZPL, on the other hand, if the processor
grid has a 2:1 or 1:1 ratio, the one-to-one communication
pattern is achieved, but the processor grid is not restricted
to having this ratio. This is useful for the part of the code
that implements the sparse computation. It turns out, for
the sparse computation, that a 1:2 or even a 1:4 ratio, im-
proves the performance of this part of the code. If the data-
to-processor ratio is high then the overall performance of
the code improves since the sparse computation, rather than
the transpose, is the bottleneck.

3.5. A high-level performance model makes it easy
to maintain fast code

Wavefront computations are common in scientific appli-
cations. A wavefront computation is one in which the value
of each data element is dependent on one or more values
computed in previous iterations of the loop nest. Though
inherently serial, pipelining is a well known, but tedious,
technique for efficient parallelization of wavefront compu-
tations [9, 23, 15].

The Accelerated Strategic Computing Initiative’s (ASCI)
SWEEP3D benchmark solves a three dimensional neu-
tron transport problem. Figure 5 compares the ASCI For-
tran+MPI and ZPL implementations of the core computa-
tion. The Fortran version is simplified for improved clarity.
As always, the reduction in code size is dramatic (over three
times). Here we will focus on the pipelining itself.

The Fortran version assumes that the problem is only dis-
tributed over two (i and j) of the three dimensions. Conse-
quently, the k dimension is treated differently than the other

two when the computation is actually the same. For exam-
ple, the first twelve lines in the main loop deal with initial-
izing the inflows. Notice a subtlety in the initialization of
the i- and j-inflows; they are actually performed within the
pipeline loop (kk). In other words, there is communication
in the inner loop of the computation. This has a profound
performance implication, yet the code looks nearly the same
as a very simple data parallel array operation. To fix this
problem, the kk loop should just be moved down below the
inflow initialization.

The wavefront computation in the ZPL version begins
with the interleave keyword. This forces the state-
ments within its scope to execute in an interleaved man-
ner by fusing the statements into the same scalarized loops.
The encompassed “prime at” references ’@ indicate to the
programmer and the compiler that the operations within the
statement block may require serialization of the computa-
tion. The compiler can and does implement pipelining as
described above, thus relieving the programmer from wor-
rying about the details of the implementation including the
tile size to use for pipelining. These special prime at refer-
ences explicitly indicate that those referenced values are de-
pendent on values computed in previous iterations, resulting
in serialization. Notice that in the Fortran version, indexing
withstanding, it is not at all clear which references cause the
serialization. Moreover, if these references were to change
such that no serialization were necessary, the programmer
should explicitly move the i- and j-inflow initialization out-
side the kk loop for fully parallel execution. Not doing so
would not necessarily result in an incorrect program, just an
inefficient one.

3.6. High-level languages stop programmers from
over-specifying code

Though the key advantage of a high-level language for
productivity is that it frees the programmer from the heavy
burden of writing low-level implementing code, there is a
further advantage: The compiler is freed from having to use
that implementation. That is, low-level code over-specifies
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do mo = 1 , mmo ! o u t e r a n g l e s loop ( b a t c h e s o f mi a n g l e s )
< i n i t i a l i z e K−i n f l o w s −− t r i p l y n e s t e d loop>

do kk = 1 , kb ! o u t e r p l a n e s loop ( b a t c h e s o f mk−p l a n e s )
i f ( ew\ r c v . ne . 0 ) then ! I−i n f l o w s f o r block

<r e c e i v e bounda ry v a l u e s>
e l s e

<i n i t i a l i z e I−i n f l o w s −− t r i p l y n e s t e d loop>

e n d i f
i f ( ns\ r c v . ne . 0 ) then ! J−i n f l o w s f o r block

<r e c e i v e bounda ry v a l u e s>
e l s e

<i n i t i a l i z e J−i n f l o w s −− t r i p l y n e s t e d loop>

e n d i f
! JK−d i a g o n a l s wi th MMI p i p e l i n e d a n g l e s
do i d i a g = 1 , j t +nk−1+mi−1

do jkm = 1 , n d i a g
do i = i 0 , i 1 , i 2 ! I−l i n e r e c u r s i o n

c i = mu(m)∗ h i ( i )
d l = ( s i g t ( i , j , k ) + c i + c j + ck )
d l = 1 . 0 / d l
q l = p h i ( i ) + c i∗ p h i i r + \

c j∗ p h i b j ( i , l k , mi ) + \
ck∗ph ikb ( i , j , mi )

p h i ( i ) = q l ∗ d l
p h i i r = 2 . 0 d+0∗ p h i ( i ) − p h i i r
p h i i ( i ) = p h i i r
p h i j b ( i , l k , mi ) = 2 . 0 d+0∗ p h i ( i ) − p h i j b ( i , l k , mi )
ph ikb ( i , j , mi ) = 2 . 0 d+0∗ p h i ( i ) − ph ikb ( i , j , mi )

end do ! i
p h i i b ( j , l k , mi ) = p h i i r

end do ! jkm
end do ! i d i a g
<compute and send o u t f l o w s>

end do ! kk
end do ! mo

[R ] begin
[ l a s t i of R ] p h i i b : = 0 . 0 ; −− boundary i i n f l o w
[ l a s t j of R ] p h i j b : = 0 . 0 ; −− boundary j i n f l o w
[ l a s t k of R ] ph ikb : = 0 . 0 ; −− boundary k i n f l o w

c i : = mu ∗ h i ;
c j : = e t a ∗ h j ;
ck : = t s i ∗ hk ;
d l : = 1 . 0 / ( S i g t + c i + c j + ck ) ;
i n t e r l e a v e

q l : = p h i + c i∗ p h i i b ’ @ l a s t i +
c j∗ph jb ’ @ l a s t j +
ck∗ph ikb ’ @las tk ;

p h i : = q l ∗ d l ;
p h i i b : = 2 . 0 ∗ p h i − p h i i b ’ @ l a s t i ;
p h i j b : = 2 . 0 ∗ p h i − p h i j b ’ @ l a s t j ;
ph ikb : = 2 . 0 ∗ p h i − ph ikb ’ @las tk ;

end ;
−−− f i n a l i , j , and k o u t f l o w s

[ l a s t i in R ] l e a k a g e [1+ i 3 ] + = wmu ∗ p h i i b ∗ d j ∗ dk ;
[ l a s t j in R ] l e a k a g e [3+ j 3 ] + = weta ∗ p h i j b ∗ d i ∗ dk ;
[ l a s t k in R ] l e a k a g e [5+ k3 ] + = w t s i ∗ ph ikb ∗ d i ∗ d j ;
end ;

(a) (b)

Figure 5. Core computation of the ASCI SWEEP3D benchmark in (a) Fortran+MPI and (b) ZPL.

an implementation, possibly limiting the compiler’s ability
to optimize.

Many researchers have shown that message passing is
often the wrong choice for efficient communications (e.g.,
[22, 16, 18]). Regardless, most parallel programs written in
low-level languages such as C or Fortran use message pass-
ing, partly due to the fact that a standard interface exists
(MPI) but also to the fact that it is easier to use than other
proposed interfaces. In fact, these other interfaces were pri-
marily designed as targets for libraries and compilers for
high-level languages rather than programmers.

The reason these alternative communication libraries
perform better than message passing libraries is that the
exposed interface more closely matches the implementing
hardware. For example, Striker et al. [22] showed that the
synchronization required of message passing limits perfor-
mance compared to one-sided communication on the T3D, a
machine that provided hardware support for one-sided com-
munication via the SHMEM library [2]. ARMCI [17] gen-
eralizes the low-level libraries of modern PC network inter-
face cards (such as Myrinet, Quadrics Elan, and Infiniband)
to provide efficient one-sided communication. ARMCI has
been shown to perform well on high-performance clus-
ters [18], a platform generally accepted as one for message
passing.

Like other high-level parallel languages, programmers
do not write interprocessor communication commands in
ZPL. Rather, the compiler determines where communica-
tion may be required and it inserts into the object code the
appropriate calls to the ZPL runtime library. The compiler
actually generates calls that describe the non-local data de-
pendences, not explicit communication calls. The calls in
this interface, called Ironman [6], describe four important
locations in the object code. Two are for the destination
(DR/DN), and the other two for the source side (SR/SV).

Destination Ready (DR). The locally cached copy of the
non-local data will not be read again (until DN). These
memory locations on the destination processor are now
ready to be overwritten with new values.

Source Ready (SR). The values needed on the destination
processor have just been written. The source processor
is ready to transmit the values.

Destination Needed (DN). The locally cached copy of the
non-local data will be read. The non-local data is
needed at the destination.

Source Volatile (SV). The values needed on the destina-
tion processor will be overwritten. The values are now
volatile and must be transmitted by this point.
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These Ironman calls are bound to a specific communi-
cation library (MPI, SHMEM, etc.) at link-time. This late
binding enables the use of the most appropriate communica-
tion mechanisms for a given platform without changing the
user’s program itself. For example, for MPI, DR and DN
bind directly to MPI Irecv and MPI Wait, and SR and
SV bind to MPI Isend and MPI Wait. For a put-based
implementation of a one-sided communication library such
as SHMEM or ARMCI, SR puts the data from source to
destination, DR and DN perform loosely-coupled synchro-
nization with SR, and SV is not needed.

When programmers write MPI message passing code di-
rectly, it is the semantics of message passing not the in-
dividual implementations of MPI that ultimately limit per-
formance. For example, data that is irregularly laid out in
memory, must be marshaled and brought together into a
contiguous message buffer before it can be sent. However,
some libraries (such as SHMEM and ARMCI) and PC net-
works interfaces (such as Dolphin SCI and Quadrics Elan)
expose via their native communication library remote di-
rect memory access (RDMA) to remote addresses. These
do not require the extra copy and memory overhead. An
implementation of MPI using these facilities has no control
over this data marshaling because the code to perform this
operation is embedded in the program itself. If a ZPL pro-
gram is to be run using MPI, then the ZPL libraries for MPI
would perform the marshaling; on a machine with efficient
RDMA, no marshaling would be performed.

By removing the burden of writing low-level implement-
ing code such as communication calls, the compiler is able
to better optimize communication using data dependence
information. Moreover, the late binding to the native com-
munication library allows for the most efficient communi-
cation library to be used without penalties incurred when
using a particular library.

3.7. High-level languages achieve high-performance

Performance is the bottom line of parallel programming.
The whole reason to parallelize a code is to make it run
faster. If the high-level language hurts either the sequen-
tial performance or the program’s ability to scale to higher
numbers of processors, then it loses its value.

Figure 6 shows the performance of the NAS CG and
FT benchmarks in ZPL and Fortran+MPI across three plat-
forms. These platforms are representative of the diversity
of machines. The T3E provides a top-of-the-line network
for low-latency interprocessor communication whereas the
cluster has much higher latency, but faster processors.

Note that the generality of the ZPL implementation is
apparent in the 176-processor run on the IBM SP. Here the
ZPL code can improve its performance further even though
the Fortran+MPI code was not written to run on a non-

power-of-two number of processors.

4. Limitations and Evolution

A very reasonable observation to make about ZPL is
that for all of its convenient features and abstractions, it
does not support arbitrary models of parallel programming.
While ZPL’s support for parallel computation using sparse
and dense multidimensional index sets supports a wide
variety of high-end applications, it lacks similar abstrac-
tions for other paradigms such as distributed hash tables,
graph-based data structures, and nested parallelism. Other
desirable features such as user-defined data distributions
and task parallelism are only now being added to the lan-
guage [10, 12].

Our explanation for this lack of generality is one of phi-
losophy. While many languages strive for complete gen-
erality from their inception, these languages tend to either
provide a very low level of abstraction, to never get all of
their features implemented, or to never achieve good perfor-
mance for more than a narrow range of features. In contrast,
our approach has been to start with those facilities we know
how to compile well and then add generality to the language
as our understanding and experience grow. As a result,
we have managed to achieve good performance through-
out ZPL’s lifetime while keeping the language’s concepts
elegant and interoperable.

The downside to this approach is that it has taken a long
time to acquire the knowledge. At times, ZPL’s evolution
has been slow and incremental. To reduce the effects of
this problem, we are currently in the process of produc-
ing an open source release of ZPL in hopes of engaging a
broader community in its support and development (previ-
ous releases have contained the compiler and runtime bina-
ries without their sources). A private release of the source
to colleagues at U. Mass-Lowell has already allowed ZPL
to be ported to the unusual Mercury-Race architecture [20].

We also anticipate that the open source release should
allow us to support a broader community of parallel pro-
grammers, since many potential users in the past have ex-
pressed their unwillingness to base their research on a lan-
guage whose implementation they could not access directly
(in part for fear that we would cease to support it in the fu-
ture). Meanwhile, our evolution of the language progresses
as does our enthusiasm for it, particularly as we look beyond
the NAS parallel benchmarks to consider more challenging
applications that push the limits of what we are currently
able to express cleanly and efficiently in ZPL.

5. Conclusions

There is a growing consensus that the bottleneck for
productivity in parallel computing lies with the low-level

73



(a)
0 32 64 128 256

Processors

0

12

24

36

48

S
p

ee
d

u
p

 o
ve

r 
b

es
t 

8-
p

ro
ce

ss
o

r 
ti

m
e

(2
91

4.
57

 s
ec

o
n

d
s 

in
 C

G
 F

+M
P

I)
CG Class C -- Cray T3E

Total Time

linear speedup
F+MPI
ZPL (MPI)

(b)
0 16 32 64 128 176

Processors

0

6

12

18

24

S
p

ee
d

u
p

 o
ve

r 
b

es
t 

8-
p

ro
ce

ss
o

r 
ti

m
e

(3
93

.2
5 

se
co

n
d

s 
in

 C
G

 F
+M

P
I)

CG Class C -- IBM SP2
Total Time

linear speedup
F+MPI
ZPL (MPI)

(c)
0 128 256 512 1024

Processors

0

64

128

192

256

S
p

ee
d

u
p

 o
ve

r 
b

es
t 

4-
p

ro
ce

ss
o

r 
ti

m
e

(1
48

6.
16

 s
ec

o
n

d
s 

in
 C

G
 F

+M
P

I)

CG Class C -- LinuxBIOS/BProc Cluster
Total Time

linear speedup
F+MPI
ZPL (MPI)

(d)
0 32 64 128 256

Processors

0

1

2

3

4

S
p

ee
d

u
p

 o
ve

r 
b

es
t 

64
-p

ro
ce

ss
o

r 
ti

m
e

(1
99

.3
3 

se
co

n
d

s 
in

 F
T

 F
+M

P
I)

FT Class C -- Cray T3E
Total Time

linear speedup
F+MPI
ZPL (MPI)

(e)
0 16 32 64 128 176

Processors

0.0

1.5

3.0

4.5

6.0
S

p
ee

d
u

p
 o

ve
r 

b
es

t 
32

-p
ro

ce
ss

o
r 

ti
m

e
(1

89
.9

2 
se

co
n

d
s 

in
 F

T
 F

+M
P

I)

FT Class C -- IBM SP2
Total Time

linear speedup
F+MPI
ZPL (MPI)

(f)
0 128 256 512 1024

Processors

0

16

32

48

64

S
p

ee
d

u
p

 o
ve

r 
b

es
t 

16
-p

ro
ce

ss
o

r 
ti

m
e

(1
79

.0
8 

se
co

n
d

s 
in

 F
T

 F
+M

P
I)

FT Class C -- LinuxBIOS/BProc Cluster
Total Time

linear speedup
F+MPI
ZPL (MPI)

Figure 6. Graphs showing the total speedups of class C of the NAS CG and FT benchmarks across
three platforms. The first column shows results on Yukon, a 272 processor Cray T3E with 260 user
processors. Each processor is a 450 MHz Alpha processor with 256 MB of memory. The second
column shows results on Icehawk, a 200 processor IBM SP with 176 user processors. The SP2 is
composed of 44 nodes with 2 GB of memory per node. Each node contains four 375 MHz power3
processors. The third column shows results on up to 1024 processors of Pink, a 2048 processor
cluster built with the LinuxBIOS/BProc technology. Pink is composed of 1024 nodes with 2 GB of
memory per node. Each node contains two 2.4 GHz Intel Xeon processors. These results are being
reprinted from a previous paper which can be consulted for more detailed information on the ZPL
implementations of these benchmarks [11].

programming models that users must rely on to express
their programs. In this paper, we explored the benefits
of languages that provide the programmer with a global
view of their computation rather than a local per-processor
view. In addition, we discussed why it is beneficial to al-
low programmers to reason about the implementation of
their codes. In ZPL, this is achieved by making all commu-
nication requirements visible in the source code, allowing
both the programmer and the compiler to reason effortlessly
about this bottleneck of parallel computing.

By supporting a global view of computation with com-
munication cues, ZPL provides programmers with a simpler
programming model which allows for rapid development,
evolution, and tuning. ZPL also makes the programmer’s
intentions clear to the compiler so that it can implement the
code efficiently using a variety of data structures and com-
munication protocols on any modern architecture.
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Abstract 

The complexity of modern scientific simulations 
combined with the complexity of the high-performance 
computer hardware on which they run place an ever-
increasing burden on scientific software developers, with 
clear impacts on both productivity and performance.  We 
argue that raising the level of abstraction of the 
programming model/environment is a key element of 
addressing this situation.  We present examples of two 
distinctly different approaches to raising the level of 
abstraction of the programming model while maintaining 
or increasing performance: the Tensor Contraction 
engine, a narrowly-focused domain specific language 
together with an optimizing compiler; and Extended 
Global Arrays, a programming framework that integrates 
programming models dealing with different layers of the 
memory/storage hierarchy using compiler analysis and 
code transformation techniques. 

 

1. Introduction 

The role of computational simulation in science and 
engineering has blossomed in recent years to the point 
where it is now recognized as a peer to experimental and 
theoretical approaches and has become an indispensable 
tool to the progress of modern science and technology.  
Moreover, the pace of change and improvement in 
scientific high-end computing has been tremendous: more 
powerful computers allow researchers to perform larger 
and higher fidelity simulations, which in turn inspire the 

need for yet larger and faster computers.  However this 
progress has not been without cost.  Software developers 
have had to face increases in the complexity of 
algorithms and methods concomitant with the increases in 
problem size and fidelity compounded by increases in 
software complexity required to tease the maximum 
performance out of hardware with deeper memory 
hierarchies, higher degrees of parallelism, and other 
“features”.  The result of this burgeoning complexity is 
that more and more of the software developer’s effort 
goes into dealing with the details, with obvious impacts 
on overall productivity.  
Any measure of productivity for a developer and user of 
software must take into account both the time required to 
develop the software and the time it takes to run, or the 
performance. A “productive” programming environment, 
therefore, is one that allows the programmer to easily 
express computational problem (i.e. a programming 
model which provides a high level of abstraction) while 
providing the highest possible performance.  Based on 
our collective experience in high-performance scientific 
computing and our assessment of progress in the field 
over the last 10-15 years, we argue that raising the level 
of abstraction available to the developer has become a 
crucial factor in the effort to increase software 
productivity in scientific computing. After discussing the 
idea of abstraction in high-end computing, this paper 
presents the Tensor Contraction Engine (TCE) and 
Extended Global Arrays (XGA) as examples of efforts 
that take different approaches toward the goal of raising 
the level of abstraction while maintaining high 
performance. 
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2. Abstraction, Scalability, and 
Generality in High Performance 
Programming 

For the programming model on which the software 
development effort is based, a key factor is the level of 
abstraction offered to the user.  This term covers a 
number of factors, including the ease of expressing the 
(essentially mathematical) problem to be solved, and the 
ease of expressing the (parallel) algorithms necessary to 
solve it. We use NWChem [14, 16] as an example to 
highlight the importance of the model’s level of 
abstraction in enhancing productivity in developing 
complex high-performance software. NWChem is a large 
(over a million lines of code) computational chemistry 
package that provides high-performance, scalable 
implementations of a broad spectrum of methods in 
computational chemistry.  Development of NWChem 
began in 1993, at a time when the chemistry community 
had experimented with parallel computing, but had 
produced few general, scalable, high-performance 
parallel algorithms. Experience had shown that many 
quantum chemical methods could not be implemented 
easily in the traditional message-passing programming 
model. In addition, effective abstractions and parallel I/O 
techniques were needed for out-of-core chemistry 
algorithms. These challenges led to emergence of novel 
parallel programming tools that enabled rapid 
development and implementation of scalable algorithms 
in this science domain, namely the Global Array (GA) 
toolkit [1, 26], Disk Resident Arrays (DRA) [21], and 
Shared Files [22, 13]. When coupled with algorithms that 
appropriately consider the non-uniform memory access 
(NUMA) nature of modern high-performance computers, 
the GA model augmented with DRA has proven both 
very high performance and very expressive for algorithms 
of the type that appear in quantum chemistry.  Indeed, at 
present, essentially all scalable parallel quantum 
chemistry packages utilize Global Arrays or an equivalent 
programming model rather than the two-sided message-
passing programming model that dominates most other 
scientific domains. Though no quantitative data is 
available, the qualitative experience of the NWChem 
effort (now ten years old, and embodying far in excess of 
100 person-years of effort) is that the high-level 
abstractions provided by GA, DRA, and Shared Files 
were found invaluable in rapid development of scalable 
algorithms for this scientific domain, and quickly enabled 
scientists without prior experience in parallel 
programming to become productive contributors in this 
large software development effort.  As previously noted, 
despite the continued popularity of the message-passing 
model in other fields, all scalable quantum chemistry 
codes use GA-like programming models. 

In addition to level of abstraction and scalability of a 
programming model, a third, related, dimension is the 
generality of the programming model – whether it is 
appropriate to a narrow or broad range of computational 
problems and scientific domains. 

While it is hard or impossible to precisely quantify 
abstraction level, generality, and scalability of various 
programming models without reference to a particular 
class of problems and other factors, it is possible to 
estimate rough relative positions of various programming 
models within this three dimensional space. By way of 
example, Figure 1 presents such an assessment:  
• MPI [3] provides a very general, but rather low-level 
programming model and generally supports a high degree 
of optimization and tuning, making it possible to obtain 
performance close to the raw capabilities of the 
underlying hardware. It thus scores high with respect to 
model-generality and scalability, but ranks low regarding 
the abstraction-level offered to the software developer. 
• The Global Arrays [1, 26] library-based approach 
offers a global shared view of multi-dimensional array 
objects that can be accessed by processes via block 
get/put/update operations. It inter-operates with MPI and 
provides comparable performance and scalability. 
Through its shared global view of array objects, it offers a 
higher level of abstraction to the programmer. However, 
since it only applies to array objects, the GA model is less 
general than MPI. 
• OpenMP [4] is a completely general parallel 
programming model that offers a shared-space view of 
arbitrary data structures. Thus it ranks very highly along 
the dimension of generality, on par with MPI. We rank it 

Figure 1. Relative classification of programming 
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slightly higher than MPI and GA with respect to 
abstraction-level (referring in this case just to the ease of 
expressing the parallelism of the problem) However, 
scalable implementations of OpenMP for large-scale 
systems are yet to be realized.  
• Automatic parallelization of standard sequential 
C/Fortran programs: Standard sequential programming 
languages like C, C++ and Fortran have been heavily 
used for developing scientific and engineering 
applications. There has been a long history of efforts to 
automatically parallelize sequential programs. Although 
there was great optimism in the early days of parallel 
computing that compiler techniques could be developed 
to automatically parallelize sequential programs, today 
the prospects of achieving such a goal seem very dim. 
Several vendors have marketed commercial auto-
parallelizing compilers, but their effectiveness has been 
limited, especially in the context of highly parallel 
systems. 
• PETSc (Portable Extensible Toolkit for Scientific 
computation [5]) is an example of a class of tools that 
facilitates the parallel (as well as serial), numerical 
solution of PDEs that require solving large-scale, sparse 
nonlinear systems of equation. The user creates and 
manipulates matrix objects, whose underlying 
representation and distribution among nodes of a parallel 
machine are transparent to the user. A variety of linear 
and non-linear solvers are implemented. The level of 
abstraction is very high, since both the data distribution 
as well as the parallel nature of the underlying solvers can 
be completely transparent to the user. It ranks rather low 
with respect to generality, since the high level of 
abstraction is only available for the set of numerical 
methods implemented. 
From the viewpoint of the scientist/software developer, 
one might describe the “holy grail” of productive 
scientific computing as being able to write the equations 
for the problem to be solved in a form that is close or 
identical to the way they would be expressed in a 
scientific paper and have tools turn this input into 
efficient, high-performance code.  From the computer 
science viewpoint, the “holy grail” would be a 
programming model that maximizes all three axes (high 
abstraction/high generality/high performance), this is a 
daunting challenge (even for sequential computing!). 
However in order to address the looming crisis of 
software complexity, it is imperative to make progress 
toward solving this problem.  
Such efforts typically try to move along one or more of 
the three dimensions, while maintaining the level of the 
remainder. In the remainder of this paper, we present 
examples of two efforts, taking different paths in the 
effort to raise the level of abstraction while preserving 
scalability.  One involves the development of a high-level 

language and optimizing compiler called the Tensor 
Contraction Engine (TCE) for a class of problems in 
computational chemistry, and the other an effort to 
generalize the Global Array programming model to 
transparently manage multiple layers of memory 
hierarchy.  

3. The Tensor Contraction Engine 

The Tensor Contraction Engine (TCE) is a domain-
specific program synthesis system [6] being developed by 
a team of computer scientists and computational 
chemists. It is a system to automatically transform a high-
level description of a quantum chemical model expressed 
in terms of complex tensor contraction expressions 
(essentially generalized matrix products on 
multidimensional arrays) into optimized parallel 
programs. A primary reason for the development of the 
system was to significantly decrease the amount of time 
needed to develop high-performance codes implementing 
accurate models for correlated electronic structure 
methods in computational chemistry packages. In this 
case, the level of abstraction (particularly the ease of 
expressing the problem itself) is so high that writing a 
program in the TCE environment is little more than 
writing out the tensor contraction expressions that define 
the method to be implemented and the parallelism is 
implicit in that input, but of course the TCE is limited to a 

Figure 2.  A schematic representation of the 
Tensor Contraction Engine’s architecture 
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narrow class of problems, as shown in Figure 1. Figure 2 
provides a high-level picture of the transformation 
system. A brief description of the components of the 
system follows.  

3.1. High-level language 

The input to the synthesis system is a sequence of tensor 
contraction expressions (essentially sum-of-products 
array expressions) together with declarations of index 
ranges and symmetry and sparsity of matrices. The high-
level notation offers two significant advantages: 
1. For the user, the high-level representation makes it 
extremely convenient to express complex tensor 
contraction expressions.  
2. For the compiler, the high-level representation 
provides essential information that facilitates domain-
specific optimizations; such information would be 
difficult or impossible to extract out of code 
implementing such expressions in a language such as 
Fortran or C. 
Figure 3 shows an example of a TCE program 
representing a term in a tensor contraction expression. It 
is shown along with a larger expression from a coupled-
cluster [19, 20] model, shown in a notation used by 
quantum chemists in describing the computation. The 
tensor contraction expressions for accurate electronic 
structure models can have hundreds of such terms, and 
the Fortran codes implementing them often have tens of 
thousands of lines of code. 

3.2. Algebraic transformations 

Input from the user in the form of tensor expressions is 
transformed into a computation sequence. The properties 
of commutativity and associativity of addition and 
multiplication and the distributivity of multiplication over 
addition are used to search for various possible ways of 
applying these properties to an input sum-of-products 
expression. A combination that results in an equivalent 
form of the computation with minimal operation cost is 
generated. The problem of determining an equivalent 
operation-minimal form of the expression is NP-
complete, but efficient pruning-search procedures have 
been developed that are very effective in practice [18]. 

3.3. Memory minimization 

The operation-minimal computation sequence 
synthesized by applying algebraic transformation might 
require an excessive amount of memory due to the need 
to use large temporary intermediate arrays. The Memory 
Minimization step seeks to perform loop fusion 
transformations to reduce the memory requirements. 

Optimal loop fusion is also an NP-complete problem 
[12]. An abstraction called the fusion-graph has been 
developed and has served as the basis for a search process 
used to evaluate alternate the loop fusion choices in the 
context of the TCE [17]. The loop fusion transformations 
along with array contractions to minimize memory are 
done without incurring any increase on the number of 
arithmetic operations. 

3.4. Space-time transformation 

If the memory minimization step is unable to reduce 
memory requirements of the computation sequence below 
the available disk capacity on the system a space-time 
trade-off is performed. This is done by exploring different 
ways of adding redundant loops that enable additional 
fusion and array contraction. The redundant loops 
increase the amount of computation, but additional array 
contractions so enabled might reduce space requirements 
of intermediate temporaries. Loop tiling can be used with 
the redundant loops to allow additional space-time trade-
off. The fusion graph framework has been used to 
develop a search procedure to seek the best choice of 
redundant loops and tile sizes that can fit the computation 
within the available storage while incurring a minimal 
computational overhead due to the redundant loops 
introduced [9]. 

3.5. Storage and data locality optimization 

If the space requirement exceeds physical memory 
capacity, portions of the arrays must be moved between 
disk and main memory as needed, in a way that 
maximizes reuse of elements in memory. The same 

range V = 3000; 
range O = 100; 

index a,b,c,d,e,f : V; 
index i,j,k : O; 

mlimit  = 1000000000000; 

function F1(V,V,V,O); 
function F2(V,V,V,O); 

procedure P(in T1[O,O,V,V], in T2[O,O,V,V], out X)= 

begin 
    X == sum[ sum[F1(a,b,e,k) * F2(c,f,b,k), {b,k}] 

     * sum[T1[i,j,c,e] * T2[i,j,a,f], {i,j}], 
     {a,e,c,f}]; 

end 
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Figure 3. An example of the typical representation
of tensor contraction expressions used in the
scientific literature (inset) together with sample of
the input language for the Tensor Contraction
Engine for one term in the inset expression 
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considerations are involved in minimizing cache misses 
— blocks of data are moved between physical memory 
and the space available in the cache. Loop blocking is 
used to minimize disk-to-memory transfer overhead. The 
issue of tile-size optimization is discussed in [11].  

3.6. Data distribution and partitioning 

This component determines how best to partition the 
arrays among the processors of a parallel system. We 
assume a data-parallel model, where each tensor 
contraction is distributed across the parallel machine. The 
arrays are to be disjointly partitioned between the 
physical memories of the processors. The data 
distribution pattern that minimizes the total inter-
processor communication in executing a sequence of 
tensor contractions is determined. The data partitioning 
issue is discussed in [10]. 

3.7. Code generation 

The back end of the synthesis system provides the output 
as pseudo-code, Fortran or C code. The generated code 
can be either serial or parallel, using Global Arrays (GA). 
Though targeting a traditional message-passing or other 
programming model is also quite feasible, we have found 
that the abstraction of globally-addressable shared data 
provided by the GA programming model greatly 
simplifies conceptual and code generation issues involved 
in the interface between the TCE-generated code and the 
supporting infrastructure provided by existing quantum 
chemistry packages, such as NWChem. Depending on the 
circumstances, the synthesized code could also call 
highly-tuned, machine-specific Basic Linear Algebra 
Subprograms (BLAS) libraries, or optimized low-level 
functions from the existing quantum chemistry packages. 
The TCE approach has already demonstrated tremendous 
productivity gains.  Using the prototype version of the 
TCE, which does yet incorporate several optimizations, 
more than 20 different quantum chemical methods have 
been implemented in just a few weeks, many receiving 
their first-ever parallel implementation in this way [15].  
At a very conservative estimate of three months of effort 
each it would have required more than five years of effort 
to implement all these methods by hand, representing a 
productivity increase on the order of 50-100 fold, not 
including the improvements in time to solution due to the 
availability of parallel implementations. The ratio size of 
the synthesized Fortran code to the input tensor 
contraction expressions (measured as number of 
characters of source code, excluding comments) is also 
typically around two orders of magnitude. Work is 
underway on the fully optimizing version of the TCE to 
implement optimizations targeted at enhancing the 

performance and scalability of the synthesized parallel 
Fortran code.   

4. Extended Global Arrays 

A logical step to raise the level of abstraction of the 
GA+DRA model is to integrate the management of three 
layers of memory hierarchy -- distributed main memory, 
shared memory on the SMP node of a cluster, and 
secondary storage -- under a single programming 
interface in an environment which automatically manages 
the hierarchy through extensions to the compilers for 
traditional programming languages. This effort, which we 
call “Extended Global Arrays” (XGA), is currently in the 
design stage. 

4.1. Global Arrays 

The Global Arrays toolkit presents to the application 
developer a distributed data structure as a single object 
and allows access as if it resided in shared memory. 
These features help the developer raise the level of 
composition and increase code reuse. A higher level of 
composition reduces the amount of code that must be 
written and enables scientists to program in terms of 
physically meaningful concepts rather than low-level 
manipulation of distributed data and explicit 
communication.  Thus, it makes scientists more 
productive and permits more time to be spent optimizing 
performance-critical algorithms and application kernels. 
GA programming model includes as a subset message 
passing; in particular, the programmer can use full MPI 
functionality on both GA and non-GA data. The library 
can be used in C, C++, Fortran 77, Fortran 90 and Python 
programs.  
GA implements a shared-memory programming model in 
which data locality is managed by the programmer 
through explicit calls to functions that transfer data 
between a global address space (a distributed array) and 
local storage.  In this respect, the GA model has 
similarities to distributed shared-memory (DSM) models 
that provide an explicit acquire/release protocol. 
However, GA acknowledges that remote data is slower to 
access than is local data and therefore allows data locality 
to be explicitly specified and hence managed.  Another 
advantage is that GA, by optimizing and moving only the 
data requested by the user, avoids issues such as false 
sharing or redundant data transfers present in some DSM 
solutions.  The GA model exposes to the programmer the 
hierarchical memory of modern high-performance 
computer systems, and by recognizing the 
communication overhead for remote data transfer, it 
promotes data reuse and locality of reference.   
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The GA toolkit provides extensive support for controlling 
array distribution and accessing locality information.  
Both task-parallel and data-parallel programming styles 
are possible.  Task parallelism is supported through the 
one-sided (non-collective) copy operations that transfer 
data between global memory (distributed/shared array) 
and local memory.  In addition, each process is able to 
access directly data held in a section of a global array that 
is logically assigned to that process.  Atomic operations 
are provided that can be used to implement 
synchronization and ensure correctness of updates of 
overlapping array sections.  The data parallel computing 
model is supported through the set of collectively called 
functions that operate on either entire arrays or sections 
of global arrays.  The set includes BLAS-like operations 
interfaces to the parallel linear algebra libraries such as 
Scalapack as well as the TAO optimization toolkit [7]. 

4.2. Disk Resident Arrays 

The disk resident arrays (DRA) model extends the GA 
model to another level in the storage hierarchy, namely, 
secondary storage [NF1996]. It introduces the concept of 
a disk resident array - a disk-based representation of an 
array. It provides functions for transferring blocks of data 
between global arrays and disk arrays. Hence, it allows 
programmers to access data located on disk via a simple 
interface expressed in terms of arrays rather than files. 
The benefits of global arrays (in particular, the absence of 
complex index calculations and the use of optimized 
array communication) can be extended to programs that 
operate on arrays that are too large to fit into memory. By 
providing distinct interfaces for accessing objects located 
in main memory (local and remote) and on the disk, GA 
and DRA render visible the different levels of the 
memory hierarchy in which objects are stored. Hence, 
programs can take advantage of the performance 
characteristics associated with access to these levels.  

4.3. SMP Arrays 

So-called SMP Arrays (SA) can be used as a shared 
memory cache for latency sensitive distributed arrays in 
cluster environments based on collection of Symmetric 
Multiprocessor (SMP) nodes. Due to its cost 
effectiveness, SMP systems are used as building blocks 
for both commodity clusters as well as custom 
architectures (e.g., IBM SP, SGI Altix, NEC SX, Cray 
X1). SA arrays resemble global arrays except their scope 
is limited to an SMP node rather than entire parallel job 
running on a cluster. SA are related to the mirrored 
arrays, that were initially introduced as an extension to 
Global Array model in context of wide-area-network grid 
computing environments [23, 24, 25] and recently 
proposed for reducing communication overhead on 

clusters [27].  In the latter context, shared memory 
mirroring is used to cache entire global arrays on every 
SMP node. The arrays are replicated across cluster nodes 
and distributed within each node. The goal is to take 
performance advantage of the shared memory, which 
constitutes the fastest interprocessor communication 
protocol, and use it as replacement for more expensive 
network communication.    In the mirrored approach, the 
user is responsible for managing consistency of the 
cached data and collective operations on arrays are 
globally synchronized. The SA arrays do not involve 
global synchronization in collective operations and are 
created and managed independently on each SMP node. 

4.4. Integrated Programming Framework 

The evolution of programming models is driven by the 
fundamental tradeoffs between high productivity and 
performance requirements in context of evolving scalable 
architectures. On one hand, high productivity demands 
high-level of abstractions that insulate the programmer 
from specificity of the underlying hardware details and 
allow describe the underlying mathematical model in 
terms of collection of algorithms and appropriate data 
structures. However, achieving high performance and 
scalability is difficult if the essential characteristics of the 
hardware, in particular the memory hierarchy, are 
ignored.  
Intelligent and automated management of data movement 
is a fundamental and unifying theme for the Extended 
Global Array interface we are developing. The goal is to 
have a single interface for managing data and high level 
representation of the mathematical algorithms operating 
on multidimensional arrays while the details on the 
underlying data movement between secondary storage, 
distributed memory, shared memory, and local memory 
are handled by the XGA implementation.  XGA attempts 
to address this problem while relying on three elements: 
• Compiler analysis and code transformation 
• Performance model for GA, SA, DRA operations 
• Information on resource availability and configuration 
(disk space, memory, processor affinity). 
The basic idea is to translate XGA programs into 
SA/GA/DRA code while orchestrating data movement, 
caching, and redistribution so that the performance is 
maximized while satisfying the constraints on the 
available resources. XGA would allow from a single 
source to generate in-core and out-of-core codes while 
reducing the programmer effort and maintenance costs. 
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5. Discussion 

In this paper, we have discussed two efforts that we are 
currently engaged in, that seek to raise the level of 
abstraction offered to the developers of high-end 
software. Although message-passing with MPI can be 
used to develop and tune parallel programs in any 
application domain, we believe that the effort required to 
develop, validate and maintain very complex high-
performance software is a deterrent and an impediment.  
Historically, in the quantum chemistry domain, the need 
for higher-level abstractions to aid in coping with the 
complexity led to the development of the GA and DRA 
libraries; these libraries provide a programming model 
that has found many uses outside of the quantum 
chemistry domain as well.  In the newer efforts described 
above, we are investigating other approaches to raising 
the level of abstraction while maintaining scalability and 
performance. The TCE is, once again, motivated by the 
needs of the quantum chemistry community, though in 
this case, the result is applicable to a relatively narrow 
domain because of the extremely high level of abstraction 
provided by the high-level language used.  However, we 
believe that many of the approaches developed for the 
TCE can also be applied in the context of other more 
broadly applicable efforts at raising the level of 
abstraction in programming models for high-end 
computing. An example is the automatic memory 
hierarchy management aspect of XGA.   
Figure 4 shows the relationships between these models in 
the two-dimensional abstraction/generality space. The 
third dimension of scalability can be made implicit when 
only considering models that achieve satisfactory levels 
of performance/scalability. The TCE uses GA in its 
implementation, but is not an extension of the GA model. 
The XGA effort, on the other hand is specifically an 
effort to extend the GA model to higher levels of 
abstraction. The two very different approaches to raising 
the level of abstraction of the programming model we 
have presented here have clear benefits to software 
productivity (some already realized, in the case of the 
TCE, and more expected following further development, 
in the case of both TCE and XGA). They also 
demonstrate the transferability of ideas in this space 
(automatic memory hierarchy management from TCE 
moving into XGA). Although the “holy grail” of a 
programming model with high level of abstraction, high 
generality and high scalability may be a distant goal, 
broad exploration of this space is likely to yield many 
new ideas with broad applicability and lead to the 
development of programming models that raise 
programmer productivity while delivering high 
performance.   

In the future, we plan to explore ways of moving along 
the dimension of generality, while again maintaining 
scalability. Other approaches might seek to proceed along 
different paths in the three dimensional space of 
generality, abstraction-level and scalability, with the 
ultimate goal of developing very general-purpose 
programming language frameworks that offer high levels 
of abstraction and high scalability. However, there is a 
potential problem with approaches where the initial 
starting point has inadequate scalability, as exemplified 
by the experience with High-Performance Fortran [2]. A 
significant problem with HPF was that users were unable 
to achieve high performance for many applications with 
the initial releases of the compilers from vendors. This 
was because challenging compiler optimization problems 
had to be solved before performance could be delivered 
for a range of applications and this resulted in a vicious 
cycle. Vendors did not see it worthwhile investing in 
compiler optimization technology unless they perceived 
user demand; there was insufficient user demand without 
scalable performance. 
The end goal of programming language models that rank 
high in all three dimensions is an extremely challenging 
one. Significant advances in compiler technology will be 
essential in achieving high scalability with general-
purpose programming models offering high levels of 
abstraction. The sustained vision and support of 
governmental funding agencies towards this goal will be 
crucial. It will be very important for funding agencies to 
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Figure 4: GA and TCE are programming models at 
different levels of abstraction and generality, 
developed to make high-end software development 
easier than using MPI. XGA is a proposed model to 
further raise the level of abstraction above GA 
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engage in a long-term plan to support a variety of efforts 
that seek to advance the state-of-the-art in programming 
models offering high levels of abstraction, generality and 
performance. Progress will be greatly facilitated by 
sustained and strong interaction between application 
developers and systems software developers in vertically 
integrated teams, with expertise cutting across multiple 
layers: from the applications layer, programming 
models/frameworks layer, run-time layer, 
communications layer and hardware architecture.  
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