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Abstract

Although VLIW architectures offer the advantages of simplicity of design and high

issue rates, a major impediment to the use of VLIW architectures is that they are not

compatible with the existing software base. We describe new simple hardware featr.tres

for a VLIW machine we call DAISY (Dynamzcally Architected Instructzon Set fron
Y orktoutn).  DAISY is specif ic.al ly intended to emulate exist ing architectures, so that

all existing software for an old architecture (including operating system kernel code)

runs without changes on the VLIW. Each tirne a new fragment of code is executed

for the first tirne, the code is translated to VLIW primitives, parallelized and saved

in a portion of main mernory not visible to the old architecture, by a Virtual Machine

Mon,ztor (software) residing in read only memory. Subsequent executions of the same

fragment do not require a translation (unless cast out). We describe new very fast
conpiler algorithms for accomplishing the dynamic translation and paralielization
across multiple paths and loop iteration boundaries. We discuss the architectural
requirements for such a VLIW, to deal with issues including self-modifying code,
precise exc.eptions, and aggressive reordering of mernory references in the presence

o{ strong MP consistency and memory mapped I/O. We also show a rnethod for
approaching oracle parallelism levels in the same framework (trading of increased
compilation overhead). W" have implemented the dynamic paralielizaLtol algorithms
for the PouterPC! architecture. The initial results show high degrees of instruction
ievel parallelism with reasonabie translation overhead and mernory usage.
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Chapter t

Background and Motivation

Very Long Instruction Word (VLIW) architectures offer the advantages of design
simpiicity, a potentially short clock period, and high issue rates. Unfortunately, high
perfornance is not sufficient for success. One of the major impediments to using a

VLIW (or any new ILP machine architecture) has been its inability to run existing
binaries oi established architectures. It was argued (and not facetiously) in a recent
MICRO conferencekeynote speech lHwugal, that architectures which do not ru:n Intel
186 code may well be doomed for failure, regardless of their speed!

To solve the compatibility problem efficiently, there have been several proposals
beyond plain or caching interpreters [Halfhi l lg4].  One has been the object code trans-
Lat ion approach (e.g. iSi lbermarrEbcioglu93, Si lbermanEbcioglu92, Sites93, Thompson96j) ,
where a software program takes as input an executable rnodule generated for the old
machine, and profrle directed feedback information from past emulations, if available.
It then generat,es a new executable module that can run on the new architecture
(resort ing to interpretat ion in some di f f icul t  cases),  and that gives the same results
that plain interpretation would. Although many of the nasty challenges to static
object code translation (prograrns printing their own checksum, shared variables, self
modifying code, generating a random number and branching to it, and so on) have
been addressed, the stat ic object code translat ion solut ion st i l l  has sorne problems.

If object code translation is used to emulate applications written for one exist-
ing macir ineon another ( [Si tes93, Thompsong6]),  then many pr imit ives uray need to
be generated to emuiate one old architecture instruction, or unsafe simplifying as-
sumptions nray need to be made (e.g. about ordering of shared variable accesses, or
the nutnber of bi ts in the f loat ing point representat ion) to get more performance, in
which case full compatibility is sacrificed. This is typically because hardware features



to lielp compatibility wrth an "important" old architecture were not clesigned int,o the

new fast machine; compatibi l i tywas just not emphasized, or carrre as an afterthoughi.

For example, the set of condition codes marntained is often cluite diflerent il different

architectures. This object code translation approach does allow the r:onvenience of
running many important appl icat ions of the old architecture on the new rna.<'hine, but
does not provide a replacement lor the oid rnachine in terrns of speed and range o1
appl icat ions.

I f  the new architecture is ful ly compatibie with the old one by hardware design,
but does not run with the best performance on old binar ies, ( iSi lberrna,nEbcioghrgl} ,
Si lbermanEbcioglug2l) ,  and the new features of the new archi lecl ,rrre t t rat  i rnprove
perforrnance can be ut i l ized only by object c<-rde translat ion, or recompilat ion, t l re
solut ion is st i l1 not perfect.  Rapid adopt ion of new archite<turtr . l  I 'eatur:es for higher
perforruance may be possible under certain circunrstances; scient i f ic and technical
cornput ing is an example. But,  cornputer desrgners often underest jma.te tbe strong
inert ia of the user community and software vendors at large, and their  resistance tcr
change.

Another approach is to translate the old architecture instruct iorrs lo a new internal
representat ion (e.g. VLIW) at Icache miss t ime, by hardware lFrankl inSmotherrnang4,
MeivinEtAl8S, RotenbergEt.4lg6l .  This approach rs robust in the sense tJra.t  i t  i rnple-
ments the old architecture compietely.  But the opt imizat ions that can be perforrrrecl
by the hardware are l imited, compared to software opportunit ies. Also the conver-
sion l rom the old architecture representat ion in memory to lhe int ,ernal Icache rep-

resentat ion is complex (especial ly i f  one attempts to do re-orderirrg) and can reqrr i re
substant ial  hardware design investment,  and VLSI real estate.

As an al ternat ive we present DAISY (DynarnicaLlu Architecte.d,Inst ' ru,ct , t ,o 'n 5et

from Yorktown). DAISY employs software translation, whicir is attractive be<;ause
it  dispenses with the need for complex hardware whose sole purpose is to achieve
compatibi l i ty with (possibiy ugly) old archi tecture(s).  Given the approprjat ,e super-
set of features in the new architecture (e.g. condition codes tn 186, PowerP(), and
5/390 format), DAISY can be dynamically architected by software to efficiently em-
r,rlate any of the old architectures. Assuming that we can begin with a clean slate for
both hardware and emulation software, and adopt a simple design phiiosophy, what

architectural features and compiiation tec.hniques are required to make software trans-
lation efficient and 100% compatible with existing software? Finally, given the large
gap between the parallelism ILP machines are currently achieving and oracle paral-

Ielism, what does it take to increase ILP beyond its current levels using the software
emulation approach? These are some of the problems we attack in this work.



In the present paper, we will propose a simple VLIW architecture designed specif-

ically for emulation of existing architectures, that is fully compatible with existing

software inciuding operating system kernel code, while achieving high levels of ILP.
While DAISY and this paper focus mainly on a VLIW as the new architecture, the
same ideas can be applied any new superscalar design, and potentially to other new
ILP architectures that break binary compatibility as well.

Current VLIW compiler techniques are unacceptably slow for dynamic paralleliza-
tion, which requires real-time performance from a compiler, in order to make the
overhead imperceptible to the user. We will describe a new, significantly faster par-
allelization technique that does object code translation from the old binary code to
intermediate code, VLIW global scheduling on multiple paths and across loop itera-
tions. and final assembiy into VLIW binary code, all at once. We have implemented
this technique for lhe PouerPC and we report the initial encouraging ILP results.
Another feature of the new compiiation technique is the ability to maintain precise
exceptions, so the original instruction responsible for an exception can be identified,
whenever an exception occurs. While out-of-order superscalars use elaborate hard-
ware rnechanisms to rnaintain precise exceptions, in our case this is done by software
alone.

The paper is organized as follows: We first discuss our new fast dynamic compila-
t'ion a,lgorithm and various architectural features to support high performance trans-
lat ion in DAISY. We then describe the dynamic translat ion mechanism whereby the
VLIW runs the o1d software with minimal hardware support. Next we discuss the
mapping mechanisms from the old code to the VLIW code and back. We then pro-
vide some experimental results. This is followed by a Chapter on approaching oracle
oaral lel ism.



Chapter 2

The Compilation Algorithm

In this paper.  we cal i  the or iginal ,  old archi tecture that we ale trv ing t ,o ernulate,
the base archztecture. The VLIW which emulates the old architectule we cal led the
mtqrant ut"chttecture, fbl lowing the terminology of ISi lbemranEbcioglug3].  The base
architecture coulcl  be any architecture, but we wi l l  be giving exarnples rnost, ly f rorn
the IBM PouterPC)"

Tradit ional caching emulators may spend under 100 insl ;rrr<' t ions to trarrslate a
typical  base architecture instruct ion (depending on the architectural  misrrra.tch ancl
conrplexity of the emulated nrachine). So caching ernulators are very fast, Llrt <-1o nc,t
do much opt imizat ion nor ILP extract ion. 1 'r 'adi t ional VLIW compiler t ;echniqrres, on
the other hand, extract considerable ILP at the cost of mrrch more overhead. 'I\ 'tr.-

ditional VLIW compiler techniques first obtain the intermediate code fbr a program,
then perform control flow analysis and various global optimizations with many passes
over the code.,  and then, for each appropriate region (e.g. loops, superblocks) in the
prograrn, create VLIWs cycle by cycle, by examining which opera.t,ions are rea<ly arrd
choosing the ones to be moved into the current VLIW. Final ly register al locat, ior and
other opt imizat ions may be performed, and an object f i le or VLIW assembly f i le is
generated. The total compilation overheac.l with a traditional VLIW compiler may
become very high.

Our goal in DAISY is to obtain significant levels of ILP while keeping compila-
tion overhead to a minimum, to meet the severe time constraints of a virtual machine
implementation. For this reason we have developed a new) simple and fast compila-
tion technique that stil l has the potential to extract significant levels of ILP. Unlike
traditional VLIW scheduling, we examine each operation in the order it occurs in
the original binary code, and find which VLIW it can be placed in right away. Each



void TranslateOneEntry (EntryAddr)

CreatePathl ist  O;
AddToPathl ist  (EntryAddr) ;

whi l -e ( ! IsEmptyPathl ist  O) {
x = RemoveFromPathl ist  O;
CreateVlIVr lGroupForEntry (x)  ;

1

/****  Convert  the t ree form of

/*** t r  code, and Create a val id
AssembleVLIWsIntoBi-naryCode (  )  ;

/*  Create VLI l r ls  for  a group of  base

/* instruct ions start ing here,  and

/* put their  exi ts into the Pathl ist

VLIUs into actual  b inary ** , r* /

entry point  in th is page ****/

Figure 2.1: Algori thm to translate one entry point in a page.

operat ion is immediately scheduled in a VLIW (rnaintaining precise except ions),  as
soon as it is disassembled from the binary original code, and converted into RISC
primit ives ( i f  a CISCy operat ion).  The algori thm then generates binary code from
the VLIWs, and the iob is done.

The basic conpi lat ion algori thm used in DAISY is depicted in C-l ike pseudocode
in Figure 2.1. The algori thn f i rst  puts the entry point (EntryAddr) of  a page in a
Pathl- ist .  I f  only one base architecture executable program is being translated, the
first EntryAddr is just the entry point of the program. The algorithm then creates a
group of VLIWs for the set of base architecture instructions reachable from EntryAddr.
When a branch is encountered in the base architecture instructions, translation stops,
and the target address of the branch is placed in Pathl ist  (with certain restr ict ions
discussed below in Sect ion A.1.)  I f  the branch is condit ional,  the address of the
fal l - through instruct ion is also piaced in Pathl ist .  in addit ion, Pathl ist  stores
the VLIW path from which target or fall-through instruction came. The algorithm
then removes from Pathl ist  an EntryAddr and the VLIW path to which operat ions
start ing at EntryAddr should be appended. Operat ion proceeds as before, hai t ing
when Pathlist is empty. The newly created VLIWs are then translated into binary
( i f  this is not done direct ly) and the translator jumps to the start  of  this binary code
to begin execution of the translated program.

Figure 2.2 shows an example of PowerPC code and its conversion to VLIW code
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Figure 2.2: Example of conversion frorn PowerPC code to VLIW tree instructions

using the algori thm in Figure 2.1. Appendix C explains in detai i  eact]  step of t i re
conversion. Sect ion A.1 discusses the general  pr inciples of the conversion i"  . lerrr l .

There are however, four major points to note here:

o Operat ions 1-11 of the or iginal  PouterPC code are scheduled in sequen<'e into

VLIW's. I t  turns out that two VLIW's suff tce for these 11 instruct ions.

o Operations are always added to the end of the last VLIW on the current, path.

i f  input data for an operat ion are avai lable pr ior to the end of the last VLIW.

then the operat ion is performed as eariy as possible with the resrr l t  placed in
a renamed register ( that is not archi tected in tbe or iginal  archi tecture).  The

renamed register is then copied to the original (architected) register at the end

of the last VLIW. This is i i lustrated by the xor instruct ion in step 4, whose

resr: l t  is renamed to 163 in VLIW1, then copied to the or iginal  dest inat ion 14
in VLIW2. By having the result available early in 163, later instructions can be

moved up. For example, the cntlz in step 11 can use the result in 163 before

it has been copied to 14. (Note that we use parallel semantics here in which

ali operations in a VLIW read their inputs before any outputs from the current

G)
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VLIW are wri t ten.)

o The renaming scheme just described places results in the architected registers
of the base archztecture in original program order. Stores and other operations
with non-renameable destinations are placed at the end of the last VLIW on
the current path. In this way, precise except ions can be maintained.

o VLIW instruct ions are trees of operat ions with mult iple condit ional branches
ai lowed in each VLiW [Ebciogiu8S].  Al l  the branch condit ions are evaluated
priol to execution of the VLIW, and ALU/Memory operations frorn the resulting
path in the VLIW are executed in paral iel .

As this exanrple suggests, the instruction set of the migrant VLIW o"rch,itectut.e
shonld be a superset of lhe base archttecture for efficient execution. I This example
also raises several  quest ions. How is an OFFPAGE branch handled? How and why
is it different than an ONPAGE branch? How are indirect branches hanclled? These
quest ions are addressed in Chapter 3.

In Appendix A, we present a more cornpiete version of the proposed cornpila-
t ion algori thn, start ing with the CreateVlf l r lGroupForEntry funct ion invoked by
Translate0neEntry tn Figure 2.1. Appendix A describes only the essent ials of the
rescheduling algorithm. In order to achieve good perforrnance additional (inexpen-
sive) optimizations are necessary. Inclu<led in these are cornbinr.ng INakataniEbcioglu8g]
and sonre form of hardware and software support to deterrnine whether a speculative
ioad is aliased with a bypassed store [Moudgillg6]. C)onstant propagarron can also be
rrseful for converting irrdirect branches to direct branches (crucial for S/Sg0 where all
branches are indirect) .  Final ly,  speculat ive execut ion of operat ions by renaming the
result  register should include f loat ing point registers and condit ion code registers as
wel l  as integer registers. Through the use of combtntng and renaming condit ion code
registers, foral l  loops that in i t ia i ly appear to ser ial ize on the induct ion var iable can
achieve arbitrarily high degrees of parallelism.

TCIISC instruct ions such as
rnto simpler primit ives are an

LOAD-MULTIPLE-REGISTERS which can be directly decomposed
exception.

10



2.t Essential Architectural
sive Reordering

Features for Aggres-

The VLIW must have the usual support  for speculat ive execut ion and for nroving loa,ds
above stores opt imistrcal ly,  even when there is a cirarrce of overlap, as disc,uss.-d i rr  (e.g.

lMahlkeEtAlg2, I iathai lg4, Si lberrnarrEbcioglug3. Eb<:roglu88, Ebcic,gluClrovesg0j) .
In order to keep the paper sel f  contained, we br ief ly mention these here:

Each register of the VLIW has an addit ional except ion tag bi t ,  indicat ing that the
register c.ontains the result of an operatiori that caused an error. Flach opcode has
a sireculative version. A speculative operation that causes ern erlor dor:s nr,rt caLlse
an except ion, i t  just sets the except ion tag bi t  of  i ts resrr l l ,  regisl ,er ' l l :e c 'xcept ion
tag may propagate through ot i rer speculat ive operat ions Wheri  a regrster with t , i re
except ion tag is used by a non-speculat ive commrt operat ion. or an.v non-spr '<-r .r la. t ivt :
operat ion, an except ion occurs. I 'h is is i l lustrated below:

ORIGINAL CODE

bc L1

Load 13<- [Addr]

VLIInI  C0DE

foad 13'(-  [AddrJ
h- 11

copy 13(-r3 '

Register r3 '  is not archi tected in t l te base architecture. l lence when i t  is loaded, nr>
except ion occurs, even i f  this load would normal ly cause a page {aul1, or segrrrerrtat ion

violat ion. Instead the except ion tag bi t  of  13'  is set.  I f  the bc fal ls thrr-rugh. the
attempt to copy r3'  to r3 wi l l  result  in an except ion since r3 is archi tected in the
base architectut-e. However, if Uc is taken, then execution continues al)ac'e ancl no
excepl  ion is ever takerr .

As discussed above, loads may be moved above stores that cannot be proven not to
store into the same locat ion. I f  there does turn out to be al iasing between a speculat ive

load and a store i t  passed, or some other processor changed the memory locat ion,
the code must be retranslated start ing at the load. This al lows both the opt imist ic:
execut ion of loads on a single progrart ,  and also strong mult iprocessor consistency
(assuming the menrory interface supports strongly consist,ent shared mernory).

I t  is not always possible to dist inguish at compi le t ime which loads refer to I /O

space (I/O references should not be executed out of order). A speculative memory
mapped I /O space load, wi l l  be treated as a no-op) but the except ion tag of the result
register of the load operation will be set. When the load is committed, an exception
will occur and the load will be re-executed - non-speculativelv this time.

1i



Note that neither exception tags nor the nonarchitected registers are part of the
base architecture state; they are invisible to the base architecture operating system,
which does not need to be modified in any way, With the precise exception mecha-
nism, there is uo need to save or restore non-architected registers at context switch
t ime.

2.2 Architectural Features to Support Commonal-
itv

I f  i t  is s ingle base a,rchztecture one wishes to emulate in DAISY, the pr imit ives in-
struction operations required for implemention are straightforward. To have the prim-
i t ives to support  rnul t ip le archi tectures simultaneously and keep them fast and simple
RISC-like operations, is a harder problem. We have not solved all the problerns in this
area, bttt nevertheless we can give a partial list of the issues and potential solutions
below.

These issues and solutions are very architecture specific. Since they do not clirectly
relate to the main idea of how to irnplement a virtual machine in DAISY, they may
be passed over by the casual reader. We have not finalized the bit representation for
instruct ions in DAISY, but again the internal representat ion of the operat ions is not
essential to the main virtual nrachine idea presented here.

e Three input add operations are needed for rnaximum perfonlanc.e on S/Sg0 and
rB6 address calculat ions.

o An Effect ive Address Mask Register is neecled for implementingthe 31 and
24 bit modes of S/590.

r To support 186 and other architectures simultaneously, DAISY requires the
abi l i ty to take the condit ional f lags out of bi t  g,  16, 32, or 64 registers.

o DAISY mtrst have the abi i i ty -  depending on i ts current mode - to set the
carry? overf low, sign, zeroj  and pari ty bi ts of the 186, as wel l  as s/sg7
condition codes, and the unusual carry flag set by the arithmetic shift of po,1;-
erPC.

o To implement 5/390 access registers, DAISY must have the abiiity to specify
the address pref ix register in load/store instruct ions.

I2



o DAISY must have the abi l i ty to wri te into a substr ing of a regrster (x86)

r DAISY needs a common intermediate format fbr floating point registers to
deai with 5/390 hex and IEEE representatrons. Diflerent floating point load
and store operations must be architected to load and store in IEEE and Si'390
formats.

o For good eff ic iency, DAISY must support  Ercess 6 al i thlret jc .u 64 bi t  regrsters
for implementing S/390 decimal (BCD) operat ions.

o Since PowerPC and 5/390 use a big-endian representatron of rnulti-b-vte c1u;rnti-
t ies in lnelnory, and 186 uses i i t t le-endian, DAISY rnust support  both forrna,ts.
For peek etFictency, DAISY must support these lorntats in h;irdwale, everr for
ur ial igned accesses.

o Final ly,  DAISY must map l /O operat ions ol  var ious a.rchi tectures rntci  a srnrple
next generation PCi bus interf;r.c.e.
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Chapter 3

Page and Address M.pping
Mechanrsnls

ln this chapter, we describe the address space layout of the VLIW or migrant archt-

tecture arrd how it compares to that of tire base architecture. We then describe why

this layorrt allows a translation mec.hanism whereby the mrgrant architecfzre runs the
old base archztectu.re software with rninimal hardw:r.re support. We also discuss why

with this layout,  a page is a useful  uni t  of  t ranslat ion for dynamic translat ion. Final ly
we describe why 'our approach for DAISY is robrrst in the presence of self-modifying
or seif-re{erential code and why all possible entry points to a page need not be known
when translat ing from a part icular entry point to that page.

The VLIW (m.ryr'ant arclr.ttecture) has a virtual memory that is divided into 3 sec-

t ions, as i l lustrated rn Figure 3.1. The 1ow port ion, start ing from address 0, is mapped
with the identity mapping, where VLIW uirtual address : VLIW real address, and
is identrcal  to the base. archi tecture' .s physical  address space. ( i .e. ,  "real  memory" for

PoaerPC. "absolute memory" tor S/39A, "physical memory" f.or 186). In Figure 3.1,
tor example the base architecture virtual page at vrrtual address 0x30000 is mapped
to the base a.rchr, tecture physical  page at physical  address 0x2000 (which is the same
as VLIW vir t ,ual  address 0x2000 in the low port ion o{ t i re VLIW vir tuai  mernory),
tlrrough the normal virtual memory mechanism of the base arch.itecture.

The next,, rniddle portion of the VLIW virtual mernory address space, comprises
of (1) a read only store (ROM), which contains the Vir tual  Machine Monitor (VMM)

soltware ( t ,bal  accomplishes the dynamic transiat iorr  between base archztecture code
arrd VLIW code),  (2) arcadlwrrte area to store var ious data structures needed by the
VMM, and (3) a nonexistent memory area (a hole in VLIW vir tual  address space).
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The nr iddle sect ion (where present) is also mapped with the ident i ty mapping, l lLIW

utrtuaL :  VLIW real.

The third and top sect ion is the translated code alea, and starts at a lalge power

of 2 address cal led VLIW-BASE (e.g.0x80000000).  There are a"t  lea,st  two wa.1's iu

which thjs sect ion can be nrapped:

r For each page rrr  the physicai  menlory of the base machLrte, (-  t i re jow l)ort iL)n
of VLIW vir tuai  memor5.) there is an A' t i rnes larger page in t , l ' re t , ransla.ted
code area of the VLIW vir tual  address space. To achieve an eff lc ienl  rrrapping
between the base archztecture code and VLIW code, ly' should be a p,rwer' , 't ' 2,
so /y ' :4 seems a reasonable value for Poute.rPc, S/390 or :r ,86, ( l l 'he; l ' t r ia, l

code expansion can be larger or srnal ler,  as descr ibed in l t r ter sect ions.)  ' [ 'he

translation of a page at physical address n in the base e.r't ' lttt,t:ct'u,t'e: J,,h.ysical
memory, is at  VLIW vir tual  address rL x N + VLIW IIASI:1. ' fhe fransl ;r t ,ed
code area ts not mapped VLIW uzrtuaL :  V'LIW rr:n/  (srnce l ,hat worrLcl  re<1uire
a VLIW real rnemory area ly' times larger than the bo,sr: archlt.ectu,re memory).
Instead, the VMM translates pages when t i re f i rst  execut ion attenrpt occ-urs.
and maps it to a real VLIW page frarne frorn a pooi ol page franres in the ullper
part  of  VLIW leal storage (disc.arding the least recent ly used ones in t l ie pool
i{ no more page frames are available).

o An alternative is to maintain the top section of memory as a hash table of
translated entr jes. The hash table is indexed by the base arr:h.zt ,ect.ure physical

address and contains the real address of t ranslated VLIW crde. ' I 'h is h; ish lable
is maintained by the VMM, which adds entr ies to the hash t ,able as page errt lv
points are translated, and removes them as translat ions ol  new pages need lhe
space. This approach has the advantages (1) that code for a translat,et l  ptrge
can be cont iguous, (2) that code need never be moved when a new entry pr>irr t
is discovered, and (3) that there is iess wastage - no portion of a VLIW real
menlorypage need be wasted i f  the actual t ranslat ion requires less than an ly 'x
expansion. However, this second mapping is more complicated than the first
approach, and hence slower.

For simplicity, we shali discuss oniy the mechanisms of the first mapping in the
Sections below. However, the second approach can be extended in a straightforward
rnanner to accomplish the actions described.
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Figure 3.1: VLIW Address Space Layout
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3.1 Creation of a Page Translation

Suppose a program running on the base arciutecture branches offpage t,o a ba,se u,r'-
ct t i tecture instruct ion, whose phvsicai  address is n. In the translated version of the
same program running on the VLIW. this branch will be executed by branching in1,o
\ILIW vir tual  address n x 1y'  + VLIW,BASE in upper area of the VLIW vir tual  ad-
dress space. Assume the beginning physical  address of this 4K byte base at 'cht, t t ' t : t ,u.re
physical  page was ?ro :  (nk,Oxtt t t f  000) ( in C notat ion).  i f  th is base a'rch,t t r :ctut,e
page has never been executed before, then the corresponding //x 4K byte page at
VLIW vir tual  address ( .no x 1t/  + VLIW,BASE) wi l l  not be mapped, and therefore
a "VLIW translat ion missing" except ion wi l l  occur,  which wi l l  be handied by t ,he
VMM. The VMM will create a translation for the 6ose archi,tectu"r'e physical page
at phvsical  address ns, and make the corresponding transiated code area page (whjch

begins at VLIW vir tual  address (ne x N iVLIW BAStr) and is l /x 4K bytes long)
mapped to some l/x 4K byte page lranre in the upper area of VLIW leai rne,rnory.
Then the jnterrupted translated program wi l l  be resurned to redo the branch to ad-
dress (n x l /  + VLIW-BASE), which wi l l  now succeed. When that f i rst  page ol  t , i re
base arch, i tecture progran] blanches to a physical  address n' in a second, di l ferent 6ase
architectut 'e physical  page that has not yet been executecl ,  that page wi l l  in turn be
translated and napped in the same manner.

As a concrete example, as shown in Figure 3.1, suppose the bo.se o'rchi.t,er:tu,re pro-
gram begins when the operating system branches to base archi.l,ecltt,r-e virtual adclress
0x30100 (part  of  the 4K page at 0x30000 - 0x30ff f  ) .  The base arr:h, i , teclure vir-
t rral  address 0x30100 has been mapped (via base architecture page tables) to 6ose
architecture physical  address 0x2100 (part  of  the 4K page frame 0x2000 r Ox2ff f  ) .
whose VLIW translat ion is at VLIW vir tual  address 4x0x2100+VLIWBASE :

0x80008400 (part  of  the 16K page 0x80008000 -  0x800Obff f ) .  In the t ranslat ,ed
code, t l re branch lo base architecture vir tual  address 0x30100 is real ly executed as a
branch to VLIW vir tual  address 0x80008400, which belongs to a 16K VLIW vir tuai
page that is not yet mapped. So this branch ini t ia l iv causes a "translat ion missing"
interrupt to the VMM. The VMM creates the translation of the hase architec-
ture 4K physical page frame 0x2000 - }x2fff , writes it into the VLIW 16K page
frame at (say) VLIW real address 0x02000000 - Ox02003ff f  ,  and maps the VLIW
16K vir tual  page 0x80008000 - 0x8000bff f  to this page frame at 0x02000000 -

0x02003ff f .  The interrupted translated program is then restarted, and now the
branch to VLIW vir tual  address 0x80008400 succeeds without an interrupt,  and
starts executing the translated VLIW code for the first page. Suppose the code in
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the first page of the program now branches to a second page, at base arcltitecture

virtual address 0x32200 (part of the 4K page 0x32000 - 0x32ttt) which is mapped

(via the base arcLtitecture page tables) to base architecture physical address 0x1200
(part  of  the 4K page frame 0x1000 - Ox1ff f  ) ,  whose translat ion is at VLIW vir tual
address (4x0x1200+VLIWSASE):0x80004800 (part  of  the 16K page 0x80004000
- 0x80007ff f) .  In the translated code, the branch to base architecture vir tual  ad-

dress 0x32200 is real ly executed as a branch to VLIW vir tual  address 0x80004800,
which is eventual ly mapped to VLIW real address 0x02004800 (part  of  the 16K page

frarne at 0x02004000 - 0x02007ff f  ) ,  v ia another interrupt to the VMM, that cre-
ates the translation for the second page and then restarts the interrupted translated
progra,nr.

This stil l leaves the question of how to handle an offpage branch in the 6ose
architecture to an address q on the sane 4K page as n, but where g was not identified
as a possible entry point during the translation starting from n. This problem is
addressed in Sect ion 3.4. Another concern is sel f-referent ial  code such as code that
takes the checksum of itself or code with floating point constants intermixed with
real code or even pc-relative branches. These are all transparently handled by the
fact that all registers architected in the base architecture -- including the prograTn
counter or instructzon address regzster - contain the values they would contain were
tlre progranr running on the base architecture. The only means for code to refer to
itself is through these registers, hence self-referential code is trivially handled. The
f inal  major concern -  sel f  modify ing code - is discussed below in Sect ion 3.2.

The above paragraphs describe the logical behavior of the address mappings. In
the actual implementation, these multiple levels of address mapping are collapsed
to one level, so cross-page branches can execute very efficiently, as will be seen in
sect ion 3.4.

3.2 lfow a Translation of a Page Gets Destroyed

Eaclt "unit" cfi buse architecture physical memory (low section of VLIW virtual mem-
ory) has a new read-only bi t ,  not known to the base archttecture. (The unit  s ize
is 4K for PowerPC, > 2 bytes for 5/390, ) 1 byte for 186 - perhaps 8 for both.)
Whenever the VMM translates any code in a memory unit ,  i t  sets i ts read,-on1y bi t
to a 1. Whenever a store occurs to a memory unit  that is marked as read-only (by
this or another processor, or I/O) an interrupt occurs to the VMM, which invali-
dates the translation of the page containing the unit. The exception is precise, so the
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bo..se arch,itect'ure machine state at the time of the interrupt corresponcls to the proint
just after cornpleting the base architecture instruction that modified the code (in case
the code modification was done by the program). After invalidating the aprpropriate
translation. the program is restarted by branching tc-r the translation ol tbe base a.r-
chi tecture instruct ion fbl lowing the one that modif ied the code. I f  the page currenl ly
execut ing was modif ied, therr retranslat ion of the page wi l l  occl l r  before the prograrn
can be restarted. Note that this rnechantsm natural ly handles l ,he'  r 'ase wherr a new
prograln begins execution in the base archttectu,r'e rnernory used Lry aii eztrlier proglarn
(e.g. via overlay programming techniques). When code rnodification events .:c,cur fu'e-
quent ly,  there are opt imizat ions tha,t  can be appl ied instead of retransiat ing the whoie
page. but we wili not cliscuss the'se during this initial conceptua.l explanaticrn of <.,rrr'
ideas for DAISY.

3.3 Communicating fnterrupts to Base Architec-
ture OS

All  except ions are f ie lded by the VMM. When an except ion occlrrs,  the \ /LJW
branches to a. fixed offset (based on the type of exception) in the VVIM zLrea. So
far we have described the "VLIW translat ion not present" and "c(>de modif icat i r . in"
interrupts, that are handled direct ly by the VMM. Another type of exceptron occrrrs
when the translated code is execut ing, such as a page fault ,  or t --xternal i r r l ,errrr l>t .
In such cases, the VMM f irst  determines the base architecture instruct ion that was
execut ing when the except ion occurred. (The translat ion is done maint,aining l rrecise
interrupts as was described in Chapter 2, so this is possible.)  The VMM then per-
forms interrupt act ions required by the base archr, tecture, such as putt ing values i rr
specific registers, Finally the VMM branches to the translation of the base c-,perat-
ing system code that would handle the except ion. When the base operat ing systerrr
is done processing the interrupt,  i t  execrrtes a return-f  rom-interrupt instrrrct ion
which resumes execut ion of the interrupted code at the translat ion of the interrrr tr l t ,ed
instruct, ion.

As an example, consider a page fault on the PowerPC. The translated code has
been heavily re-ordered. But the VMM still successfully identifies the address of
lhe PowerPCload or store instruction that caused the interrupt, and the state of the
architected PowerPC registers just before executing that load or store (see Chapter 2).
The VMM then (1) puts the load/store operand address in the DAR register (a register
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indicating the offending virtual address that lead to a page fault), (2) puts the addressof the PowerPC load/store instruction in.the snno register (a register indicating theaddress of the interrupting instruction) (3) puts the (.irr"nt emulated) powerpc IrsRregister (machine state register) into in. sinr ,"gi.i", (anothe*ur"-i"rtore register

,T:'.:lJi:T:oJi)' 
(a) fil]s appropriate bits in the"nsrsR register (a register indicating

rear rocatio" o"ro'ol,'f,i'';'::H:]:ii: flJ;ru^-:::,ffftili';;;ilrrii,^::{,3
for storage exceptions' If a translation does not exist for the interrupt handler at reaiPouerPC address 0x300, i t  wi l l  be created (but subsequent ly wi l l  not be casr out,  tohelp achieve fast interrupt response later on). 

r

For a' rS6 "segntent not plesent" faurt (interrupt number 11), e.g. arising froma far call to a procedure in a segrnent not currently in memory, the vMM finds the11th ent'rv in the IDT (rnter.rpt D"r..iptor Tabie, where pointers to handlers foreach itterrupt type are kept, as well u, othr. information). suppose that entry isa "task gate" that points to an interrupt handler task (the rg6 architecture can dotask switching by hardware).  The vMM performs the protect ion checks aDd statesavrng and restori'g fu'ctions associated with the task switch, and branches to thetranslation of the first instruction of the interrupt hur,ai". task. If the handler hasnot beeu translated, i t  wi l l  be, when a branch is made to i ts t ranslat iorr ,  a 'd i t  islbund to be unmappecl.
Not ice that themechanjsm described here does not reqrr i re any changes to the 6csea'rchitecture operating system. The 

'et 
resrrlt is that all existing software for the 6ase

iirSilJ[t|'ii:Y#il-,Ht*"::: 
operating svstem and appric.tions, runs unchanged,

3.4 Mapping a Base Architecture fnstruction Ad-
dress to a VI,IW Address

we mentioned that one could f ind the translat ion of a base archztecture insrructronat physical address n, 
.by 

branching to VLIW virtual address n x N + VLIW_BASE.so'  i f  an instruct ion is at of fset , r"  i r ,  th.  base architectr .repage, i ts t ranslat ion isat offset rr x 'Ay' in the VLIW translated code page. I' reality, not all entry pointsare valirl all the time in the vLIW page. In fact, initiarly, when a branch is first
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nlade to a translated cocle page. the page is created so that al l  entr ies are inv; l l id r '

There is a marker (e.g. a special  no-op, or a bi t)  that indicates a val id entrv point '

VLIWs have a special  cross-page (or indirect,)  branch pr imit ive, that must brancl i

to a valid entry point (or else there is an exception), as welL as int'ra'-page brarlclr

pr imit ives that do not have this restr ict ion. Ini t ia l ly,  when 1,he translat ion page is

created, ali entries are set to invalid. When a branch is rnade to an rnvalid entry point

at offset n x /y', an "invalid entry point" exception occurs; the VMM transiat,es the

base instructions starting at offset rl,, and lays out the VLIWs in mem-ctrv so that ttre

VLIW code for the group of base instructions starting at offset n, begins at rlffset

rz x ly' in the transiated code page, and marks the VLIW al n x N as a valid entr-v"

(Previorrsly created VLIWs rrray need to be moved around to create the new etttry

point) .  Secondary val id entry points on thrs page (e.g.,  at  the exi ts of the f i rst  glol ' rp

t t  Vl tWrl  may also be created during the translat ion process. The locat ions whtcir

are not valid entry points are used as plairr rnerrlory. For exatrtl-,Ie. a VLIW code

fragment will start at offset n x /y' with a valid entry oniy a,t thal ,' lf{set, and ntay tre

allocated sequentially in the translated code page thereafter. If fbr iiny reason there

is no space left on the page, one could brarrch to an overflow area to contirme. (We

must keep recorcls in order to free the overflow area when the translatiolr o{ t,his page

is destroyed by code modif icat ion, or cast out) .

Returl-frorn-interrupt (rf i) instru.ctions are effectively branches to sonte enbry

point in a page. I{ we created translations lor every target on a page that an rfi

branches to, and a suffi.cient nurnber of external interrupts occured, we could ettd r.tp

with too many entry points on a page. So ai tel  an emulated rf i  bratt t :hes into a'

t ranslated cod.e page, a good method is to interpret base instruct iotrs unt i l  the t text

subroutile call, cross page branch or backward branch is exer:ut,ed. This tecltniclue

iirnits the entry points to loop headers, normal page entry points, and irrdirect branch

targets, and guarantees that we will quickly leave the interpretive mode.

On the other hand when a plain indirect branch (probably a computed branch,

c++ virtual call, or procedure return) goes to a non-existent entry point, a valid

entry point shouid be created at the branch target, since computed branches may be

executed frequently.

A variety of VLIW primitives can be used to perform a cross-page branch. We first

d.iscuss a high-performance implementation of the primitive, G0-ACR0SS-PAGE which

requires some hardware support. Below we discuss some alternatives which may have

lThe remainder of this

Chapter 3 is used instead

paragraph does not apply when a hash table, as described at the start of

of rz x l[ + VLIW-BASE.
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lower performance, but require less hardware. The syntax of CO-ACROSS-PAGE is:

c0-ACROSSfAGE off  set  ( reg)

The offset is added to the register reg to obtain an effective address of the base

architecture. That effective address is first translated to a physical address of.lhe buse
architecture; then i t  is mult ip l ied by l /  and VLIW-BASE is added to i t ;  then i t  is
translated to a VLIW real address, which is finally the address of the branch target

VLIW. If the base o,rchitecture physical address is not available, a base a'rchrtecture
instruction page fault exception occurs (to a handler in the VMM -- all exceptions

are f ie lded by the VMM). I f  the transiated VLIW code for this page is not avai iabie,
a translation missing exception occurs. If the target VLIW is not marked as a valid

entry, an in ualid entry exception occurs. Otherwise execution proceeds with the target

VLIW instruct ion.
The above descript ion may give the impression of a daunt ing CISC instruct ion,

brrt  Figure 3.2 i l lustrates how i t  can be implemented. Assume the VLIW Instruc-
t ion Translat ion Lookaside Buffer ( ITLB)maps the base arch, i tectut 'e 4K vir tual  page
numbers djrectly into VLIW 1/x 4K real page lrame numbers that contain the trans-
Iated c-c.,de. The software could guarantee that the low order 12 bits of reg is 0, or
t ;he off  set is 0,  so the low order 12 bi ts of the effect ive address reg+off  set is inr-
nrecliately available. The low order 12 bits of the effective address are shifted left by
lort2(1,{)  bi ts,  and appl ied to the Icache (14 bi ts al lows a 64K cache, i f  4 way associa-
t ive).  At the same t ime the upper bi ts of the effect ive address are sent to the ITLII .
If a VLIW real address that comes out of the Icache directory rnatches the VLIW
real address that conles out of the ITLB, no miss occurs. Tire target VLIW is then

checked for an valid entry marker on the next cycle, whiie optinristically executing
the target VLIW as if it were a valid entry (and recovering belbre any side effects

occur,  and causing an except ion, in case the target VLIW is an i rrval id entry).  Note
that the ITI,R and lCache funct ion as a hardware version of the hash table descr ibed
at,  t l re start  of  Chapter 3, mapping base architecture instruct ion addresses to rnzgrant
VLIW instruct ion addresses.

If oniy an lcache miss occurs, hardware handles it. One could handle an ITLB miss
by hardware sequencers, but using a yet lower levelof software to implement a "nicro-
interrupt" ITLB miss handler is s irnpler,  and more in l ine with the phi losophy of the
present design. (Note that all software in a VLIW is like horizontal microcode, so no
part  of  the VLIW software is necessari ly s lower than horizontal  microcode.) Here is
how the ITLB miss can be handled with a "rnicro-interrupt": If the base archztecture
is not in real address mode, the VMM "ITLB miss micro- interrupt handler" searches
the bose arch,it,ectu,re page tables to find the base archttecture physical address. If this
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GO_ACROSS_PAGE off  set  ( reg)

Figure 3.2: Implementation of cO-,qcROSS-PAGE Instruction.
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search fails, a base archttecture instruction page fault is fielded by the VMM, which
in turn communicates the page fault to the base arch,itecture OS first ievel interrupt
handler. Next, the ITLB miss handler multiplies the base architecture physical address
by l /  and adds VLIW-BASE to i t ,  and then searches the result ing VLIW vir tual
address in the VMM virtual-to-real page mapping tables, finally obtaining a real
VLIW page frame address. If the latter search fails, a translation missing exception
is fielded by VMM. Otirerwise, an entry mapping the effective address page number
to the VLIW real address page frame number is placed into the ITLB. An extra
bit is appended to the effective address sent to the ITLB, that indicates if lhe base
architecture is currently in physical address mode. (Thus, for exampie, mappings for
base page no. 10 physical  and base page no. 10 vir tual  may coexist  in the ITLB.)
Whenever the assumptions that caused an ITLB entry to be created change, that
ITLB entry urust be inval idated. Examples of this inc. lude TLB-inval idates by base
archztecture, code modif icat ion events, and cast-outs of VMM translat ions.

Other types of branches are:

o G0T0 offset just branches to the VLIW at offset in the current page (no
check for a valid entry). Ordinary intra-page branches between VLIW's use this
branch.

o G0T0 1r,  G0T0 long-offset branch to the VLIW at the real address given by
a l ink register,  1r or the long offset.  There is no check for a val id entry,  and
the ITLB is bypassed. Branches to an overflow area may use these primitives.

The G0-ACR0SSJAGE primit ive, ITLB implernentat ion, and vai id entr ies mecha-
nism described above are intended for reducing the latency of a cross page branch. If
we give up the simultaneous ITLB lookup, we could first do the address translation
in a pr ior VLIW, and then send a VLIW real address to the Icache, which has some
advantages in Icache design.

LRA r l ,of fset(reg) Translate (reg + of fset)  to physical  address n.
The VLIW real-  address for VLIW vir tual  address
n * N + VLIW_BASE is then placed in 11.

G0-ACROSS_PAGE2 r1

We can also give up the
for a base archztecture page

Branch to VLIW real address
Check for a val id entry.

valid entry point approach. Let
consist of a vector of pointers.

in 11.

the translated code page
For a base instruction at
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offset n in the base architecturePage, vectol element n will contain the real address ot

the VLIW cod.er or in case the entry at offset n has not yet been creatc'd for this page,

the real address of a transiator rout ine. that wi l l  create the corresponding vLIW

code. This costs another level of indirection. but is simpler to nranage'
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LRA tl ,of fset(reg) Put t ranslated reg + of fset  in t l .
==) t1 contains real-  address of pointer

to the VLI! , I  code for this entry.

L0AD-REAL r t ,0( t1) ;  Load pointer to VLIW code into 11.

UU I U :  Go to real  address of  VLIW code.

;  Make no check for vaf id entry.

F-or additronal simplicity, we could even give up the ITLB and simulate a big direct
napped ITLB in VLIW real memory by software in a nanner similar to the software
hash table described at the start of Chapter 3. ln rnany cases the operations for doing
the hash lookup of VLIW real address can be scheduled into VLIW instructions like
other operations. Less than 10 VLIW instructions normally suffice for the lookup.
These 10 VLIW's may be shared with normal program code, thus hiding their  latency.

3.5 Mapping from VLI\M Back to Base Instruction
Addresses: IIow to Find the Original Base In-
struction on an Exception

As we rnent ioned, when an except ion occurs in VLIW code, the VMM shoukl be
abie to lrnd the base archr,tecture instruction responsible for the interrupt, and the
register and rnernory state just before execut ing that instruct ion.

The simplest way to ident i fy the or iginal  instruct ion that caused an except ion is
t;o place the offset of the base instruction corresponding to the beginning of a VLIW
at as a no-op inside that VLIW, or as part  of  a table that relates VLIW instruct ions
and base instruct ions. associated with the translat ion of a page.

If the VLIW has an exception semantics where the entire VLIW appears not to
have executed, whenever an error condit ion is detected in any of i ts parcels,  then
the offset identifies where to continue from in the base code. Interpreting a few base
instructions m.ay be needed before identifying the interrupting base instruction and
the register and mem.ory state just before i t .

If the VLIW has a sequential semantics (like an in-order superscalar, where in-
dependent ly executable operat ions have been grouped together in "VLIWs") so that
ail parceis that logically preceded the exception causing one have executed when an

r1
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Base Architecture Code l 'L l l l ' ( 'ode

VLTWl
I

i 
cmpi

t load

b vl,rw2

r r l l=r? / l

rq,  =f l  /  r? t

0x0
0x4
0x8

cmpr.  cr0=r3,  0
bc crO. eq. Ll
load r5=0 (13 )

VLIW2

I
, / \  bc cr0.eq

copy r5=r5,2- \
bL2 bL1L2:

Figure 3'3: Findin g t'he base u'rch.ttectu,re instruction respc)rlsible {9r an ex(:ept;ror}

except lon is detected, the ident i f icat ion of the onginal base i .strr , ict ion does .ot re-
quire interpretation. Assuming the base ur<:/tztecture code page offset cor.resp()rrdrrlg
to the beginniDg of the VLIW is avai lable, the onginai base instruct ion r . . - :spossr[r ie
for the exception can be found by rnatching the assignrnents to architectecl res.;r,rrcr-s
from the begiDning of the VLIW instruct ion, to those assrgnr)ents rn the base r:or le.
starting at the given base code offset.

One way to avoid tables and point,ers to the original base urch.it.e:cty,r: insr,rrrcr,ro.s
al together is as fol lows: Let us assume the VLIW has secluent, ial  sr:rnant ic s,  ancl
except ions occur at a parcel of  VLIW, (as opposed to a VLIW trc,urrdary).  In t6is
scheme there are no offsets in the VLIW code that relate it to the husr: arch.t,t.rr:lttrr.
nor any tables. When an except ion occurs? f ind a backwarcl  path from lhe exc:eJrt igu
causing parcel to the entry point of  the group of VLiWs, which is known ro have
an exact correspondence with a base archite,cture instruction (If the beginning of the
Sroup is at offset N x n in the translation page, the original base instruction rnlst be
at offset n in the buse o,rchl,tectu,re page).

We describe the scheme with the help of the example in Figure 3.3. Assume
that the load at address 0x8 causes a page fault. 'Io determine the base architecture
address of the exception-causing instruction, the VMM finds the backward path
from the exception causing parcel to the entry point of the group of VLIW's. The
except ion is registered in vLIW2 in the copy r5=r5, instruct ion, when the except ion
bits associated with r5'  are acted upon. Thus the VMM traces from this parcel to
the start  of  vt twr,  the entry point of  this group of VLIW's. I f  VLIWs are laid out
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in a topological order from the entry point, a backward scan in the binary code from

the interrupting parcel to the nearest entry point should be able to rapidly identify

the path from the entry point to the interrupting parcel.

As the backward path is scanned, { .opy,  bc,  VLII^I2 ,  b VLIW2 ,  Ioad, cmpi ,
VLMl),  the VMM remembers the branch direct ions taken by condit ional branches,

in this case the fact that bc crO. eq is not taken. Upon reaching the top of the

backwards path, the base archztecture address corresponding to VLIl,tl is caiculated:

VLIhl l -addr/4 VLIW-BASE i f  the code has 4x expansion. In this case the calcu-

lation yields address 0 in the base architecture. Now the same path is foilowed in

forward order,  {Vf fWt,  cmpi,  1oad, b VLIW2, VLIW2, bc,  copy}.  There has to

be a one to one correspondence between assignments to architected registers, condi-

t ionai branches and stores in the VLIW code path, and assignments to archi tected

registers, conditional branches and stores in the bo,se code path. Thus the cmpi as-

signment to crO is matched f i rst .  The l-oad to r5'  is passed over since 15'  is not

architected in the base architecture. The next correspondence is the bc at address

0x4 in the base architecture. The VMM recorded that this branch was not taken,

so the VMM moves to instruction at 0x8 in the base archttecture. The f oad to r5

in the base architecture is matched to the copy to r5 in the VLIW. Since the VMM

recorded tha,t  this copy caused the except ion, i t  determines that the load at 0x8 is

the offending instruction. The VMM then puts 0x8 in the register used by the base

archttecture to identifv the exception. and branches to the VLIW translation of the

except ion handler.

3.6 Dealing with Restartable CISC Instructrons

Sometimes architectures (186, 5/390) require that if there is an error condition (e.g.
a page farrJt) during the execution of an instruction, that instruction appears not
to have executed, and is restarted after the operating system brings in the page and
returns to the interrupted program. In this case the translation of such an instruction
requires pre-testing some of the memory operands to see if they will lead to a page
fault, before commencing the emulation of the instruction. For example an 5/390l4YC
(move characters) or AP (add packed decimal) instruct ion has to touch the upper end
of the memory operands first, before starting the move (or decimal addition) from the
lower end of the operands. This way, either there is a page fault before the instruction
has had a chance to cause side effects, or the instruction continues until completion.
For reaily complex operations such as TR (Translate) in 5/390 where the translation
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table is within 256 bytes of a page boundary (danger o{ a page {auit) ,  we c.rn dcr
a trial execution of the instruction without causing anSr srde effects to archjtected
resources; and rf  that does not cause a page fault ,  we can proceed wrth the a.c: tual
emulat ion of the instruct ion. I f  any rnterrupt other than a page fault  occurs drrr ing
the instruct ion, a "rnicro-1evel" interrupt handier may need to single step operat ions
in the VLIW code, unt i l  a val id base instruct ion boundary is reached. That boundary
can be found, because of the correspondence rnechanisms between the VLIW cr. ,de
and the base code, descr ibed above.

For the PouterPC, this is not arr issue since there are no complex menrory t,o
memory instruct ions. For example, the architect,ure specif ic.s t [ ral ,  a Po'LuerP(]  st<-rre
multiple instruction may have modified some of the memc.'ry belirre ca,using ir l)age
fauit ,  but can st i l l  be restarted by the operat ing systern"

3.7 Dealing with Real-Time Requirements

Programs are not supposed to be timing dependent (architectures such as 5/390
state that a program should not be timing dependent to run c-,n all rnodeis). But
unfortutrately they can be. Vir tual  rnachines have in generai  unpror l ict ,a,ble t i rning.
so real time performance is a challenge for the present proposal .

Let us first consider the case of programs that mrrst tiike less ttian a, giverr tirne
l i rni t .  One can do the fol lowing to al leviate the real t ime consl,raint ,s in this case:

1. Use heurist ics to pin translat ions of certain memory areas in nrelrroryr so they
will not be cast out (e.g. the interrupt handlers and other code fragrnent,s known
t,o need real t ime perlormance).

2. Offer an exact method to comnunicate to the VMM indicat ing that the trans-
lation of a routine should be pinned. This requires a software change.

Similarly, for code fragments that nust t;ake exactly a given amount of time, not
less or more (e.g. loops for waiting for exactly rru milliseconds), one couid offer a
version of dynamic translation that tries the emulate the timing of an old machine
by padding the code with delay operations. However, such exact timing dependent
programs would suffer with any faster implementation of the base architecture.

Real t ime interrupt response (to I /O events) is also important.  So external in-
terrupts should be enabled during translation (to the external interrupt handler the
program will appear to be at the point just before executing the entry instruction of
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the page being translated). When an externai interrupt occurs during transiation, one
shouid not throw away the ongoing translation (if the interrupts are frequent enough,
one can imagine never completing the translation of this page). One approach is to
continue making progress with the transiation for a while, and then save the compi-
Iation state and take the interrupt. When a return from interrupt instruction tries
to execute the entry instruction of the partially transiated page again, the VMM
continues from where it left off. This way, we can get both forward progress in the
translation, and good external interrupt response time.
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Chapter 4

Data Memory Access
Requirements for a Virtual
- l t r  I  .

rvracnlne

The data nlemory accesses by the translated code rnust go thr,r igh the i ranslat ion

mechanism of the base archttecture. For this purposel a di f lerent da,ta,  t ranslat ion
lookaside bu{fer (DTLB) can be rrsed, mapping a base o.rchitecture Virtual Page Nr-un-
ber to a bu-se arch,ztectu,re Physical Page Number. If the data space reiocat,iol js cLrr-
rent ly turned off  for lhe base arch.t tectu're ( i t  is in real  address nrode,1, i t  is st i l l  r . rseful
to use the DTLB to restrict access to real rnemory locations the &r.r,scr o,r'ch.dtt:t.u.re is
not supposed t ,o access ( i ike the real rnemory area where the VLIW translat ions are
kept),  and to implement some special ized protect ion funct ions (such as key prot,ect iorr

in the 3/390 --  each 4K block in 5/390 real memory has a 4-bi t  protect ion key) that
have not been implemented in the actual VLIW hardware. An ud,d,rcss prt:Jir regzster

that,  contains bi ts indicat ing whether data space relocat ion is enabled (and PSW kev

for 5/390 and so on), can be prepended to the effective address generated by a load
or slore when accessing the DTLB ( i .e.  the address sent to the TLB has more bi ts
than the virtual page number). This way the sarne effective address will correspond
to di f ferent entr ies in the DTLB depending,€.8.,  on whether data space transiat ion
is enabled or not. If the base processor tries to access an out of bounds page during
real mode, a DTLB miss will occur) and the VMM will communicate an appropriate
storage exception to the base architecture operating system.

The VMM wiil also need some storage space of its own. For example infrequently
used registers of lhe base arch'itecture, or storage keys for 5/390, may be emulated in

o1
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memory locations. To access these without interfering with the data of the executing
program, the processor will need LoADI,EAL and STORE-REAL instructions that always
bypass the DTLB, and access the VLIW real memory directly. The loads and stores
that access real VLIW memory will need to be intermixed with normal loads and
stores that use the DTLB, without any mode changes in between; that is why we
need them.
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Chapter 5

Experimental Results

We have implernented the incremental cornpilation technique for t,lrc tt5/6000. which
is essent ial ly the same as PowerPC' '  for our purposes. ' fhe present.  version ol ' t l re
incremental  compi ler rs incomplete in a nrrmber of wa,ys. Fc'r  exanrple, the "t)oor-
bir t ing" opt i rnizat ion includes only a smai i  subset,  of  ai i  cornbining possrbi l i t ies, and
software pipelining is not implernented" Nevertheless, we plovide hele sorne prelirni-
nary results on a few AIX ut i l i t ies, arr  Erastothenes'  Sieve program {or l indi lg pr irne
numbers (a Stanford integer benchmark),  SPECintg5 compress and SPECintg. ' r  gcc,
a large appl icat ion.

In our implementat ion of DAISY we have assumed a VLIW machine with pr irrr i -
t ives simi lar to the PowerPC, but with 64 integer and f loat ing point regrsl ,ers,  ra, ther
than 32. To measure the amount of paral lel ism extracted by DAISY, we began wrth a
very large VLIW machine with a total of 24 fixed point operations (orrt of whictr B <:a,n

be stores),  and a total  of  7 condit ionai branches (8 way branching) can be execut,er l  in
each VLIW, which fol iows the tree instruct ion model.  We then looked smal ler inrple-
rnentat ions, and in part icular at  a machine which can issue B ALIJ/Mem opera.t ions
- of which at most 4 can be memory operations, and which can have 3 condit jonal

branches in addition. Efficient hardware implementations of the tree VLIW have been
described elsewhere (e.g. [Ebcioglu88]).  The implemented incremental  compi lat ion
algorithm is similar to the one discussed in this paper, although instead of generating
binary VLIW code, an assembly level listing is produced.

Since our irnplementation runs on RS/6000 machines, a set of RS/6000 simulation
instructions (in direct binary form) is also generated for each VLIW. These RS/6000
instructions emulate the actions of each VLIW. In effect we use a compiled sirnulatr,on
rnethod similar to.Shade fCmelikKeppelg3] for simulating our VLIW machine on the
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Program PowerPC Ins
per VLIW

Average Size of
Translated Page

compress b. l l I4K
l-ex +.7 27K
fgrep 4.8 17I<

3.0 13K
cmp J.O 10K
sort 3.7 231<
c_s I  eve +.o 2K
gcc 3.0 36K
MEAN 4.2 18K

Table 5.1: Pathlength reductions and Code Explosion moving front PowerPC to
VLIW,

RS/6000. During transi t ions between VLIWs, a counter is incremented for each
VLIW flowgraph edge. From the edge counts and from information about the static
propert ies of each edge, ALU usage histograms and other stat ist ical  data can be
obtained at the end of the run. A call to a kernel routine is translated to a real
ca1l,  so kernel rout ines are not simulated in this implementat ion. But since there are
many AIX applications that spend most of their tirne in user and library code, we
can learn significantly about available ILP, and tradeoffs in compiler techniques, frorn
the current incremental compiler tool.

Tabie 5.1 contains the pathlength reductions achieved on various AIX utilities,
the Erastothenes sieve program, and SPECintg5 compress and gcc. The pathlength
reduct ion is equal to the number of operat ions in the RS/6000 execut ion trace divided
by the number of VLIW instruct ions in the VLIW execut ion trace. The pathlength
reductiorr can be viewed as an abstract measure of the infinite cache instruction
ievel parallelism for the program. Figure 5.1 indicates how the pathlength reduction
changes with the number of resources available in the mzgrant VLIW machine. These
benchmarks all achieved ILP around 2 for the most primitive machine, which issues
4 instruct ions per cycle, 2 of which may be ALU operat ions, another 2 of which may
be memory ops, with only 1 branch allowed per cycle. Performance diverges for the
high end machine with ILP of up to 6.5 achieved for compress.

By way of cornparison, Table 5.2 compares the performance of DAISY with a tra-
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Arc h itec lu re Co n I i g u ratio n s ̂
<Arch #>. # lssue -  #ALIJ 's #Menr Acc -  # Branches

10.24-168.7 5 I  8.4-3
9. l6-1t t  8-7 4:  6 '6.3 3
B 12 12 8. .7 :3 4.  4-4.3
7: 8- 8-8-7 2 4 '4 2-2
6: 8 8-4-7 1 4.2-2 1

--*-
".""""lf'

---t.-
--e*
---]-
---X-
---o-

COI\,4PRESS95

C SIEVE
FGREP

LEX

CMP
siotrT
WL)
GCC

56789rO

Arch i tectu re Conf i g u rati o n

Figure 5.1: Patirlength reductions fbr Different Machine Clonfigurations

sort OK 5.1
c_s].eve 4.O 3.9
MEAN AA

:.4 5.8

Table 5.2: Comparison of ILP from DAISY and traditional VLIW compiler.

DAISY I Trad
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ditional VLIW compiler performing a great number of sophisticated optimizations. 1

As can be seen, the ILP achieved by DAISY is less than 25% worse than that
achieved by the traditional compiler on these benchmarks, albeit with much individ-
ual variation among the benchmarks. For c-sieve, DAISY actually outperformed
the tradional compiler.

This performance was achieved at quite low cost. In the current experiments,
DAISY required an average of 4315 RS/6000 instructions to compile each PowerPC
instruction. However, note that our implementation is currently a research proto-
type intended for flexible experimentation. We can expect to reduce this number
significantly with straightforward tuning, and further with an eventual rewrite of the
increnental  compi ler,  when the design matures. As a rough guess, under 1000 base
instructious per base instruction seems achievable for implementing our aggressive
compiler techniques. Our traditional VLIW compiler breaks our profiling tools, but
in order to compare our compilation speed to a standard optimizing compiler, note
that the -gcc compiier executes an average of 65K RSi6000 instructions to generate
each rnachine instruct ion in i ts output.

Although we have not implemented a detailed timer so as to obtain precise pipeline
and cache effects, our implementation of DAISY does include a sirnpie cache simu-
lator. We have measured the benchmarks the following cache configuration:

o 64 kbyte first levei data cache with 4-way associativity and 256-byte lines, 0
cycle latency.

o 64 kbyte hrst level direct mapped instruction cache with 256-byte lines, 0 cycle
latency.

o 4 Mbyte second level combined cache with 4-way associativity and 256-byte
l ines, 12 cycle latency.

o Main Memory, 88 cycle latency

Table 5.3 measures the reduction in ILP from using finite caches. Overall, per-
forrnance drops by a little over 20To from infinite cache levels, aithough individual
benchrnarks, such as gcc fare much worse. (In gcc's case, the large increase is due
to a I9To miss rate in bhe f i rst  level instruct ion cache.) The ILP attained is st i l l

'Because our traditional compiler
ble 5.2 represents performance for the
differ from those in Table 5.1.

deais only with compilable user
user portion of the benchmarks.
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Table 5.3; Reduction of ILP frorn finite caches and comparison to Po'werP(! 6U1I!

signi f icant ly higher than ihat achieved by a PowerPC 60lE with 128 Mbytes r ,r i  mern-
ory, with a mean of 3.3 versus only 0.7 1or these benchma,rks ' -  almost,  a f ive f t r l r l
improvement.  Even the di f f icul t  gcc benchmark achieves 60% higher l l ,P in I)AISY
tlran on fhe 60/E.

Table 5.4 indicates that most VLIW instruct ions do not conttr in loads ca,usrng
cache misses. Hence stal ls should be relat ively rare. F igure 5.2 indicates the rrr iss
rates for the di f ferent benchmarks. Most of the miss rates are quit ,e low, with lhc:
except ion of the second level cache for c sieve, cmp and wc and the Ica.che for gcc.
The high rates on the second levei cache reflect cold start misses - there dre very
few accesses to the second level cache since these three benchrnalks are srrrall and
have their needs satisfied by the first level cache. The high gcc lcache nriss rate is
a more serious concern and reflects the large working set of gcc and ttre fact that a
cross-page jr-p occurs on average every 10 VLIW instructions.

For comparison, we also measured the performance on the 8-issrre machine de-
scr ibed at the start  of  the Chapter (8 ALU /Mem ops per cycle of which at most 4
can be memory operat ions, plus 3 condit ional branches).  In doing so) we also reduced
the size of the first level instruction and data caches from 64 kbytes each to 4 kbytes
each, while moving tire 64 kbyte caches to the second level, and the 4 megabyte cache
to the third level as summarized beiow.
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ff
3hs
bq

50.000

23.208

10.772

5.000

2.321

1.077

0_s00

0.232

0.108

0.050

0-023

0.011

0.005
gcc compress sorl

Figure 5.2: Cache Miss Rates for Benchmarks
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ffi r
j  i  

VLIW i VLIW I Load i Sto'" 1 M.,,,or_" j
i  i  i  iMissesiN,f i r . " .  lNl , r r" ,  i

compress i  1.39compress ;  I  .39 3.19 |  165 lg. f {*r i

: fex ;  1.77 0 46 --iTpgz 
l-o.tgl-l- ' -____ - . !

j  fgrep
i l -ex i  L.((  I  L l .4b i9,092 i6,193 I  3,684 I
- -  

_ 1 ,____l

j  fgrep t  1.27 i  0.33 I  18,02b !  49,295 i  rg,Z:0 i
l___=f__-_:_#__l  ____l

i  wc i  0.65 I  r ) .002 I  t3 695 I  ar  rnn i  t0 'szt  il - - - j - - : -#-- l  - - - - l

i  " .  i  0.65 I  0.002 i  13,695 j  41,086 i  t } ,Zt t  i
T---- __-_:- i__]j  cmp |  1.29 i  O.OOS I  16,528 85.000 j  tg,sgz j
F-1-,- l -_+___+_! _r
i "o.t i tE---a-,, 0 84---i 4rx 

-r,os3 iTlz3 llsort  ,  '2.41 i  0.84 i  401 r1.683 1 : )2J
f___+_ -+___
I  c-s ieve |  0.89 |  0.63 |  92,500 1 ! ) , t )24 8.222 i
E---I-'_!- _l__q.qr_Fqr1_lqtl-".0' -

' Iable 5.4: 7 'oad, Store, First-Level Cache C'haracter ist , ics of Benr:hnialks

641.'

256 I

Table 5.5 indicates the results.  Inf ini te cache paral lel ism is reduced frorn 4.2 for.
the 24-issue machine to 3.0 for the 8- issue machine - c lear ly the 8- issue machjne is
making more efficient use of its resources. Finite cache parallelisn-r drops by a sirnil;rr
amount from 3.3 to 2.2. (The large drop for gcc is the result  of  large lcache miss
rates.  )

Code explosion stat ist ics for the benchmarks are also in Table 5.1. The average
code expansion per actual ly translated page is I8Kl4K :  4.5X (this is just the VLIW
code size; empty wasted space on pages due to the 4X fixed expansion rnay lead to
additional overhead, uniess used for something else). We have placed little ernphasis
in our implementation on controlling code explosion and expect to reduce the ex-
plosion in future implementations. Notice that only the actually executed pages get
translated, so code explosion may be less than that of a static VLIW compiler that

LevlDCachel  4K
Lev 2 ICache
Lev 2 DCache
Lev3JCache I  +U
Main Memory
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Program o Cache Finite Cache
conPress 4.1 2.5
l -ex ol

J. _t 2.2
fgrep 2.8 2.r

2.6 2.5
cmP J.J 3.0
sort 2.6 t .7
c_s t-eve tA

d . ' i 3.3
gcc , )A 0.6
MEAN 3.0 2.2

Tabie 5.5: Peformance of 8 Issue Machine.

translates all pages of the executable.
Another rneasure of interest is the nurnber of crosspage branches executed. As dis-

cussed in Sect ion 3.4 crosspage branches can be expensive, part icular ly in low-end irn-
plenrent,ations of the VLIW. Table 5.6 breaks down the number of crosspage branches
in t i re seven benchmarks. PowerPChas 3 dist inct types of crosspage branches: (1) di-
rect branches, (2) branches via the Link Register,  and (3) branches via the Counter
Register. Notice that there is wide variety among the different benchmarks as to
the fraction of instructions which are crosspage branches. From viewing these and
other benchmarks, it seetns to be the case that larger benchmarks have significantly
nlore cl 'oss-page branches with up to 1 in 9 VLIW instruct ions ending with sqch a
branch.

Our implementat ion of DAISY moves loads above stores, unless a simpie al ias
analysis reveals that a load must al ias with a store ( in which case the load is replaced
withacopyof thesourceregisterof  thestore).  Thisspecuiat ivemovementof  l -oads
exacts a pr ice when a load and store turn out to be al iased during execut ion of
the program. In this case, the value must be reloaded and execution re-commenced
from the point of  the load (with al l  speculat ive work discarded).  Clearly for high
perlormance it is important that runtime aliasing be a reiatively infrequent event.
Table 5.7 indicates that for most benchmarks undiscovered aliasing is rare, with the
possjbie except ion of compress (one fai lure every 65 VLIW's) and sort  (one fai lure
every 107 VLIW's). For benchmarks with high amounts of runtime aiiasing, ar] enrry
point could be retranslated with movement of loads above stores inhibited. However

40



Pro6lram
Branch fype

j v ia Linkreg i  v ia CounterDirect Total ' I ir l ,al VLIWS Exec' /

,074

' Iable 5.6: Number of crosspage branches in difi 'erent benchmarks.

Program R,unt ime
Aliases

VLIWS
Exec

# VLIWS
Aliases

comPress 9023 588K 65
lex 2595 24M 9333
fgrep 4216 2169K
UC 4 1438K 359,616
cmp 6 1190K 198,394
SOTT 94,359 10. iM r07
.  Q]OITA 0 370K OO

gcc 734,709 406M 552

Table 5.7: Number of VLIW's Der runt ime load-store al ias

compress 796 791. i  253
166,981 i  48,

8i4
269 i L.t

Iex 255,573
fgrep 25
WC 167
cmP 498 490
sort

. -
c st  eve

5344q1_
U

_!'ry77_ Il20
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Figure 5.3: ILP versus stze of input page

our i tnplementat ion of DAISY does not yet have this feature.
Il is also instructive to consider performance changes with page size. For tire

results presented thus far,  we have assumed a 4096 byte page size, in keeping with
the value used for PowerPC. However, the VMM could be made to use page sizes
either larger or smal ier than 4096 bytes. In part icular,  we are interested irr

1. Whether st,gnzficant addztzonal ILP can be ertracted by ustng larger pages. With
the except ion of c-sieve, Figure 5.3 indicates that the answer is no. The
clramatic change in c-sieve moving from 256-byte to 1024-byte pages is because
a cr i l ical  loop is no ionger spi i t  between two pages. We are st i l l  invest igat ing the
anamoly for wc in which 256-byte pages produce better ILP than larger pages.

We suspect that with larger pages) DAISY is fil l ing VLIW's with operations
frorn a less frequent paths and crowding out operations from more frequent
paths.

2. The amount o.f reductxon Ln toto.l code size by moaing to s'maller pages. Fig-
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Table 5.8: Overhead of Dynamic Comprlat ion

ure 5.4 indicates that code size general ly increases slowly wit [ r  page size.

3. The change trt th,e number of drect. crosspage.l uTTLps.fronl. ch,o.rtqtn.q t.h.e paq. sr;(
This measure is of part icular i rnportance in low-end inrplementat iols where srrclr
jumps can be expensive. This relat ionship is depicted i l  l ' igure 5.5. arrd i t  is
difficult to ascertain a general rule.

5.1 Analysis of Compiler Overhead

Table 5.8 indicates the extra runt ime of a two second program, r l rre t , . : r  dynanric

cornpi lat ion, assuming a VLIW machine mnning at I  GHz and assrrrrr ing that t -rot ,h
the incremental compiler and the program have an average ILP of 4 instmctiorrs per
cycie.

Table 5.8 was devised using a rough formula for relat ing the amount o1'rerrse
needed of each page (or instruction) in order to make a VLIW with an increment,al
compiler faster than the base architecture in executing a particular program. Let

Py

fp

g

t
7,,

Tp

T

-  4 :  Avg ILP achieved by VLIW

- 1.5 :  AvB ILP achieved by Base Architecture

: Number of pages touched during program execution

: Time ( in cycles) to translate one page

: Time to execute VLIW code

: Time to execute Base Architecture code

= Reuse factor (average) per page
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i : 7024 : Number of instructions per page

Then
rx9xz

po- 
: T, (Time to execute Base Architecture code)

rxgxz
- 

,"-  
I  g x t  :  Tv (Time to execute VLIW code)

We want the value of r when Ta: Tv:

,"xgx?'-r-qxt : '^ ! ' i  
(5.1)

Pv 'Y/ \u-  Pn

or

t : rx,"( : - : )  (52)
\Pn Pv /

I f ,  as above i  -  1024, PR:1.5,  and Py :4.0,  then

t:427 x r

Since,

o We require 3900 instruct ions to translate and schedule one instruct ion.

o There are i  :  1024 instruct ions per page.

o We assume the translator has parallelisrn Pv : 4.

the arnount of time I taken to translate one page is

(5 3)

3900 x 1024
l, 

--
:  998,400

Plugging this in Equation (3) yields the reuse r needed to match the base architecture
with the "realistic" assumptions above:

998,400 :  427 x r  or  r  :2340

In a multiuser system with l/ users running identical (but separate) programs, the
anrount of tirne required for an individual user's program to complete must account for
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the compilation time required by all users. Whereas befbre we had ':fft + q x t. = 7'y,
now we have

rxgx,L
pt,  + g x t  x N :  Tv (Time to exectrte VLIW code)

This in turn changes Equat ion (2) to

?.\ l  /  1 I  \

'=-A'  
t ( ' 'pr-  

P;)

In other words /y' times as much reuse rs needed to break even with the original
maclrine. We found that a reuse factor of r - 2340 was sufficient for a single rrser irr
the example above. Were this a 1V : lO-user machine a reuse of r .. '2:1 ,400 worrld
be needed. This is perhaps unrlecessari ly pessimist ic however,  as on - large nrul t iuser
machines, the large major i ty of users are typical ly execrrt ing a few shared progranrs.
not l /  individual custom appl icat ions.

Alternatively, we can obtain a rorrgh lower bourrd ori the reuse r by rnaking op-
t imist ic assumptions about the VLIW and translator,  arrd pessimist ic assumptions
about Lhe base archztecture. Let,

Pp

Py

200

Then from Equat ion (2)

assuming that although
is only 5. Plugging I  :

11 l r
ro24(* ' )

\  I .C .X)/

XT

1f ( low ILP for Base Architecture)

(infinite iLP for VLIW)

(number of instructions to transLate one instnrction)

t  -  rx

:  683

(5 4)

(5 5)

The amount of time taken to translate one page is

200 x 1024
t - :  40,960

the ILP of the application is Py :

40,960 into (5),
oo, the ILP of the compi ler
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Dynamic Ins
Executed

Stat ic Code Size
in Ins Words

Ins Reuse
Factor

INTEGER
go 28,494,390,204 135,952 209,672
m8Sksim 74,250,235,201 84,520 878,493
ccl 530,917,945 357,1 66 1 4R6
compress95 46,447,459,569 52,772 890,276
li 67,032,229,90I 67,094 qqQ 9,R

i jp.g 23,2+0,395,306 88,834 26r,616
per l 3r,756,257,79r 138,603 229,777
vortex 81,194,315,906 2r2,052 382,899
FLOATING F OINT
tomcatv 19,801,90i ,946 81,488 243,003
swlm 23,285,024,299 81,041 287,324
su2cor 24,970,592,779 94,390 263,977
hydro2d 35,720,255,5r2 95,668 367,106
mgrid 52,075,609,242 83,119 626,579
applu 36,216,574,505 99,526 363,990
turb3d 67,056,3r2,2r3 90,411 675,320
apsl 21,I94,979,390 119,956 176,690
fpppp 97,972,804,r25 91,000 r ,076,624
wave5 25,265,952.275 120,091 210,390
MEAN 41,657,557 ,272 116,276 452,420

Table 5.9: Reuse factors for SpEC9S benchmarks
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i .e" in a very opt imist ic case, a reuse factor of at  least r '  = 60 is needed to make the

VLIW t ime faster than the Base Architecture.

However.  this rs r iot  a problem for two reasons. First ,  as detai led in Table 5.9,

large programs such as those in the SPECgs benchmark sui te have very high relrse
f 'actors wi th a mean of  over 450,000 ' r .

A f inal  i l lustratrve example i l lustrates the second reason. Considel a worst casc:
program that jumps from page to page, never repeat ing code. I f  the nurnber of unique
code pages execrrted is reasonable (say 200),  the iarge percentage irr t rease rrr  tune is
probably impercept ible,  as we expect only a mi l l isecond wrl l  be required to translat,e
each page. I f  the number of unique code pages is large, the overhead is l ikelv to be
dorninated by the base a'rch, i tecture OS paging act iv i ty" Of course, thrashing due t ,c-,
a translated code area that is not iarge enough, wi l l  lead to extreme slowclowl ,  a.nd
mrrsl  be preverr led.

2The stat ic code sizes were obtained on a PowerPC using the instal led C compiler. The dynamic
execution counts are actual ly an underestimate, as only a subset of the complete SPEC9S reference
input was used for most benchmarks. We thank Mark Charney, Tom Puzak, and Ravi Nair for these
numbers and constructine the tools with which to obtain them.
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Chapter 6

fdeas for Reaching Oracle
Parallelism

The dynamic compi lat ion ideas described here can also be used to measure and
approach oracle parallelr,sm, t.e. the arnount of parallelism possible in a mactrine
with unl imited resources and which schedules every operat ion at the earl iest pos-
sible tirne aiiowed by control and data dependences. Earlier approaches by con-
trast have collected a trace of program execution and ee post facto scheduied all
operations from the trace into the earliest cycle allowed by control and data depen-
dences fTheobaldE t  A]92, Wal l91].

In Chapter 2 (and Appendix A) the guessing of branch direct ions impl ic i t ly as-
sunred ei ther compi ier predict ion based on heurist ics iBal l larusg3] or t radi t ional pro-
lile directed feedback (e.g. passed to the VMM through static prediction bits in
PowerPCl branches or otherwise). If, instead, the compiler were interpreting each in-
struction after decoding it, then a potentially more accruate form of branch prediction
ca,n be obtained. Notice that since we are decoding the base archztect'ure instructions,
interpreting them at that point would add only a srnall overhead.i

In DAISY's interpretive compilation approach, the first time an entry pornt to
a page is encountered, the instructions in the page starting at the entry point are
interpreted and the execut ion path reveaied by the interpretat ion (say path A) is
cornpi led into VLIWs, unt i l  a stopping point is encountered on path A. I f  the group
is entered aga,in, and it takes the same path A, performance will be high since it

rOur interpretive compilat ion idea
Nair lNairHopkins]. Related ideas have

in this section was inspired by a suggestion by Ravi
been also been used in caching emulators fHalfhil l94]
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executes VLIW code solely. If on a third time entry, the code l,akes a dilferent pa1,h
B emanating from the prevrous path A, the instruct ions of path B at the exi t  of  the
path A are a.iso interpreted, arrd scheduled into e.xisting VLIWs of the same group
whenever there are resources, unt i l ; r  stopprng point is encounterc,:d on path B. So
the next t t t t te the same VLIW group is entered. i l  wi l l  t r -y to exer:ute operat i t , rrs
speculat ively {ronr both paths A and B. The incremental  i r r terpret ive cornJr i la, t iorr
can be repeated with di f ierent inputs to the prograrn, unt i l  the cornpi led \ /LIW gets
more stable- i .e.  gets into interpret ive execut ion less f i 'equent ly.  The aggressiveness
of dynamic compi lat ion parameters nray be reduc'ed wherr "shipping" the trarrslat , jon
of a prograrn that was trained this way, to reduce poterrt ia l  cornprlat ion overht:ad i rr
the {ield if the prograrr takes a new path it ha.s rlever seen before.

We are current ly already fol lowrng muit iple paths and scheclul i rrg t ,herrr  to the sarrre
VLIWs. However,  with the interpretat ion approach. srnce i t  focrrses orr the execir t ,ed
i trstruct iotrs and ignores those that are never executed, we can afforcl  a larger wirrr l - rw
size and may hrt  code explosion i imits iater than the stat ic ( i .e.  nc.rn- int ,erpret ive)
compi lat ion approach.

Also, interpretat ion has advantages irr  compi l ing rndirect brzr.nches. l l  an i rrcLrect
branch is encountered to the l ink reArster 1r.

(G0T0 l - r )

and the current value of lr is 1000, therr the current code can be schecirrled as:

( fF ( l r==1000) goto 1000)
(G0T0 1r)

In the rescheduled code, no ser ial izat ion occurs on the indirect branch. Whrle tech-
niques already exist for avoiding serialization on indirect branches for perlornring
procedure returns (e.g. plain constant propagat ion wi l l  turn the indirect branch ior a
return into a direct branch, in an "inlined" routine, when incremental compilation is
allowed to pass procedure boundaries), this approach could be useful, e.g. for avoid-
ing serialization due to virtual calls in object oriented C*+ programs, and optimizing
the most common cases for a C switch statement.

Also, if cache misses are also simulated during interpretation (assuming we are
wi l l ing to r isk the overhead),  and a cache miss is detected in a load instmct ion, a touch
instruction can be placed an appropriate number of VLIWs ahead of this instruction.
So memory latencies may be reduced. This is important for transaction processing
code where much time is spent in cache misses.
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We are already optimistically moving ioads above stores, even if there is a chance
of overlap, but with run-time information such guesses can be more accurate.

Some of the same results discussed here may also be obtained by excellent branch
prediction. But interpretation during compilation leads to an especially unexpected
advantage, not shared by any branch prediction mechanism (uniess with infinite his-
tory): If one completely interpreted the entire trace (ignoring page boundaries) and
compiled it into VLIW code, and the VLIW had sufficiently large resources and reg-
isters, then oracle parailelism can be achieved during the second execution of that
prograrl with the same input. With different inputs, more interpretation and com-
pilation lrray occur, to accommodate the different traces into the VLIWs. Oracle
parallelism can actually be achieved for smali programs, and the present proposal
rnay be the most practical way to achieve it (among the more theoreticai aiterna-
t ives. e.g. lWal lgl l ) ,  because of the low overhead in the generat ion of the execut ion
trace by interpretation, followed by fast scheduling of the operations on the trace for
maximum ILP.

However, oracle parallelisrn may require a very large code size and long compila-
tion time. So what are the practical interrnediate points on the way to oracle level
paral lel isnr ?

One rnethod is to have an ILP goal, and each time a potential stopping point is
reached on a path (" .g.  u loop header),  stop i f  the ILP goal has been achieved and
the ILP has stopped increasing since the last potent ial  stopping point on the path.
Here the r isk is that in the future the ILP may start  increasing again.

For a given number of resources, even the oracle parallelism will be limited. We
plan to study these methods to increase paralleiism, and compare them to the actual
oracle parallelism limits in the near future.
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Chapter 7

Comparison to Previous Work

Virtual  machine concepts have been used lbr many years. for example in lBNf 's VM
oirera,t ing systems [BuzenGagl iardiT3],  but v ir tual  nrachines have so far i rnplementecl
a virtrral architecture on almost the same architec.tur" (".g. 5/360 or S/370, 809fi ort
y '86,whereas in DAISY we support  a very di f ferent vir tual  archi tectule()r)  a VLIW
Caching emulators are commonly used for speeding up emulation. For exarnple. each
instruct ion is individual ly translated and the translat ion is c;r .ched fbr re-trse. 'n 'hen
the instruct ion is emulated again lHalfhi l lg4].  However,  in this approach, there is
no sophist icated reordering, and thus no consequent drf f icrr l t  issues to deal with,
for maintaining precise exceptions. We are also inspired by VLIW conrpiler resealclr
(e.g. the Moon-Ebcioglu compi ler techniques fMoonEbcioglug2]),  but in this paper we
have proposed a new dynamic compilation algorithm that is rnuch faster tha,n existing
VLIW compilat ion techniques, and which achieves good run-t ime perlor lnance.

Our ini t ia l  page-based translat ion ideas were inspired by the work of f  ConteSathayeg5l
which proposed a translation at page fault time. However, their approach is intenclecl
for achieving object code compatibility between different generations of the same

family of VLIW machines, and is not intended for emulating an existing archit,ec-
ture. Conte and Sathaye's approach has a clever encoding which grrarantees tha,t .
the size of the code does not change during translat ion. However this guarantee
does not ]rold for general virtual machine impiementations. Dynamic translation

to an internal VLIW representation at Icache miss time fFranklinSmothermang4,
MelvinEtA188, RotenbergEtAlg6, NairHopkins] achieves a similar purpose, but re-
quires complex Icache miss preprocessing hardware, and does not allow sophisticated

compiler techniques that can be done in software. Static translation of executable
modrrles was done in fSilbermanEbcioglug3, Sitesg3]. However, static translation does
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not address the problem of achieving 100% compatibiiity with the old architecture,
including operating system code. So, although there are many influences to our line
of thought, we believe that the combination of the ideas presented here constituie a
new solution for an important compatibility problem.
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Appendix A

The Compilation Algorithm

In this appendix, we first describe six functions that are at the heart of the compilation
algorithnr for converting code from the base arclritecture to VLIW. Note that these
functions are greedy - always scheduling operations as early as possible, and never
perform any backtracking. Such limitations seem necessary in order to minimize the
overhead and m.rke the proposed approach practical. We then provide additional
detai l  orr  the actual  creat ion of  VLIW's in Sect ion A.1.

The CreateVl lWGroupForEntry funct ion in Figure A.1 fbl lows 6ase architecture
code fronr some entry point,  schedul ing each instruct ion in a VLIW as i t  is seen. The
DecodeAndScheduleOnelnstr  funct ion in Figure A.2 checks i f  the current instruct ion
is a stopping point (e.g. the end of the page).  I f  i t  is not,  the instruct ion is decoded
and scireduled into a VLIW by a routine specific to the instruction type, for exampie
Scheduf eThreeRegOp for add.

' Ihe Schedul-eThreeReg0p in tr ' igure A.3 and i ts subrout ines Scheduf eThreeReg0pnut0rder
in Figure A.4 and Schedul-eThreeRegOpJn0rder in Figure A.5, f ind the earl iest
VLIW on the <--urrent path, at  which data dependences al low an instruct ion to be
scheduled. I t  then moves forward on the path looking for the f i rst  VLIW in which
sufficient resources are available to rnsert the instruction. If that VLIW is earlier
than the last VLIW on this path, the result  is piaced in a VLIW register that is not
architected in the base architecture. For example, a result may be plac.ed in 163 if the
base architecture ts PowerPC with only 32 integer registers. Then in the latest VLIW
on this path, a copy operation is inserted to move the value from the non-architected
register to the architected register.

The ScheduleBranchCond funct ion in Ir igure A.6 handles condit ionai branches.
I t  destroys the current path, and in i ts place inserts entr ies in the Pathl ist  corre-

58



vord Createvl lWcroupForEntry (x)  ;
/*  create a group of  v l rh ls for  group of  base arch instruct lons

start ing at  address x * /

{
/*  create an empty path wi . th contrnuat ion x,  put  : . t  rn pathl ist  * /
Pathl , is t  = CreatePath ( , /*conttnuat lon=* /  x,  /  *probabl l i ty=*/1 .  0,

/*nextpath=*/NULL);
r" 'hr1e( Pathl istr=NULL )  {

, /*  First  entry in the pathl ist  is  the most probable path * , /
/*  DecodeAndScheduleOnelnstr  may change the pathl l .st  * /
DecodeAndScheduleOnefnstr  (pathLrst)  ;

)
1

Frgrrre A.1: The funct ion CreateVLIInlGroupForEntr.v.

sponding to the target and fal l - throlrgh of the condit ionai branch. ' lhe target lnr l
fal l - through are assigned execut ion probabi l i t ies, so tha.t ,  instruct ions {ro1r rnqre p16b-
able paths can be scheduled f i rst .

A.1 Actual creation of VLIWs

Itl order to keep cornpilation time down, the translator works on only a. srlall chunk r'lf
lhe base urc'hi'tectur€ program at a tirne. This helps lirnit the amount, of cocle tirat is
needlessly translated, i .e.  that is t ranslated but neverexecuted by the prograrn. ! t / [en
the program jumps to an untranslated locat ion, another smal l  chunk rs translated
start ing at the j rrmped to locat ion. As wi l l  be explained in more detai l  in Chapter 3,
one page is a suitable chunk and is easily supported by simple hardware structures.

To reduce slowdown effects due to branch mispredictions, the translation algo-
r i thm in Figure 2.1 pursues mult iplepaths. The rnult ip lepaths through an i ld iv id-
ual VLIW tree instruct ion provide for this,  as does the fact that VLIW instruct jons
starting from a page entry point themselves form a tree. The root VLIW instruction
of the tree of VLIW instructions corresponds to the page entry point. The algorithm
in Figure 2.I for creat ing the tree of VLIWs maintains a l ist  of  paths, pathl ist ,  that
is sorted in decreasing probability order.

Ini t ia l ly there is one dummy path in Pathl ist ,  whose cont inuat ion is the entry
base address (EntryAddr),  and whose probabi l i ty is 1.0. Later,  because of the sched-
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voi .d DecodeAndscheduleonelnstr  (T_PATH *p)

{
/*  I f  path at  stopping point  stop extending this path * , /

i f  ( IsStoppingPoi.nt  (p,p->cont inuat ion))  {
RemoveFromPathl  is t  (p)  ;
/*  I f  cont inuat ion of  the path is in the current page, add

i ts cont inuat i"on address to workl ist  ( i - f  not  a l ready there) , t , /

r f  (p->cont inuat ionl=UNDEFINED 8t8t

InCurrentPage (p->Cont inuat ion) &&

WasNever ln l , iorkt  is t  (p-)cont inuat ron) )
AddTo1llorkl- ist (p->cont inuat ion) ;

rerurn;

]
else {  , /*  Cont inuing to extend the probable path. . .  t r /

/*  Fetch instruct ion * /

] .ns = *(p->cont inuatron) ;
/*  Decode instruct ion,  and cal f  a scheduler rout ine for  each RISC

prlmit ive resul tJ.ng from the lnstruct j .on * /

switch (OPCODE(ins))  {
case :

case OP_ADD :  Scheduf eThreeRegOp (p,  0P_ADD, RT (  ins ) ,  RA (  ins ) ,  RB (  ins )  )  ;
break:

case OP_BC: Schedul ,eBranchCond(p,OP-BC,TEST(ins),CC(ins),TA&GET(rns)) ;

break:

Figure A.2: The funct ion DecodeAndScheduleOnelnstr .
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voi .d ScheduleThreeRegOp (T-PATH *p, int  opc, int  r t , int  ra, j .nt  rb)

t
/*  Schedul j -ng r t=opc(Ta,rb) 1r/

/*  Frnd the f i rst  VLI ln l  v where both operands are avai labl-e * /

/*  p->avai l [ rJ gives the ear l iest  VL]hl  # on this Path,  I there

an instruct ion using regi .ster r  can be scheduled */

v = MAX (p->avai1 l ra l  ,  p->avai l  [ rb]  )  ;

/*  I t  v > LastVLIhl  on thrs path,  open new emPty VLIIds so LastVLIVI<=v +/

whi l -e (p->LastVLIW <=v) OpenNewVLILI (p,P->lastVLIW) ;

/*  v is the earLiest  VLfW where op can be scheduled-

Start ing f rom v,  fook for a VLIhI  on the path that  has;
(1) enough resources to accommodate the op,
(2) a nonarchi tected dest inat ion reSl-ster that  rs f ree

untr l  the end of  the Dath * /

whi le(v<p->LastVLI l l l  && !  (AluResourceOk(p->vl- i t t [v]  )  &A
(p->vl iw[v]->FreeGprsUnt i lEnd))  )  v++;

/*  v is the VLIW where op wi l l  be 1ega11y scheduled */

i f  (v < p->LastVLIW)

ScheduleThreeReg0p-Out0rder (p,  u,  opc,  r t ,  ra,  rb) ;

e lse ScheduleThreeReg0p-InOrder (p,  oPc, r t ,  ra,  rb) ;

/*  Increment the cont inuat ion address of  th is path * l

p->cont inuat ion += 4;
ro l t ) rh.

L

Figure A.3: The funct ion ScheduleThreeRegOp.
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void ScheduleThreeReg0p_0ut0rder (T_PATH *p, v,  opc, r t ,  ra,  rb)
{

/*  Schedul i -ng r t=opc(ra,rb) out of  order at  VLIW v on path p*/
/*  PicU. a sui table non-archi- tected register to use as dest.  reg*/
dst=CountLeadingZeros (p->v1iw Iv]  ->FreeGprsUnt i lEnd) +FIRST_NONARCH_REG;

/* Need to bave op use non-archi tected dest.  reg dst ,  and
possrbly renarned source regs. p->vlrw[v]->map[ra]  is  the
name of ra j .n VLIhI # v*/
AddToVLIWTrp(p->vlrw [v]  ,  opc,  dst  ,

p->vl iw [v] ->map [ra] ,  p->v1i.w [vJ ->map [rb] ) ;
Increment AluRe s ource (p->v1 iw [vJ )  ;

/*  Now schedule the commi-t  dst->rt  in the last  VLIhI ,
(or  one VLIW after r t ,  i f  l -ast  v l iw is fu l l )  * , /

i f  (  |  (AluResourceOk (p->v1iw [p->LastVLIW] )  )  OpenNewVtiw(p) ;

AddToVLI WT rp (  p->v I  rw [p->Las t  VLILT],  0p _COIr{ l { IT,  r t ,  dst  )
f  ncrementAluResource (p->v1 iw [p->LastVLI lJJ )  ;

/*  r t  ts mapped (renamed) to dst  af ter  v unt i l  the last  v l - j .w */
/*  dst  1s not f ree af ter  v unt i -1 the last  v l iw * /

for  (v1=v+1; v l  <= p->LastVl- l l l ;  v1++) {
p->v1iw[v1J->map[r tJ = dst i
p->v1iw [v1]  ->FreeGprs &= -  (ox8oooo000>> (dst-FIRST_NoNARCH_REG) )  ;

]

/*  Update the regs that are f ree in each vl iw
unt i l  the end of  the path * , /

for  ( t  = -1,  v1 = p-)LastVLIW; v l  >= 0;  v1--)  {
t  = t  k p->v1i .w [v1J ->FreeGprs ;
p->v1ir ' r  [v1]  ->FreecprsUnt i lEnd = t  ;

]

, /*  The dest inat i .on regi-ster r t  is  avai lable af  ter  v * /
p->avai l  [ r t ]  = u*1 '

Figure A.4: The funct ion ScheduleThreeReg0p-0ut0rder.
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void ScheduleThreeReg[p_In0rder (T_pATH *p,  opc, r t ,  ra,  rb)  {
, /*  Schedul-e op r t=opc(ra,rb) rn order (af ter  aI1
1ogica1ly preceding ops have commrtted resul- ts)* , /
/*  Commj. t  resul t  d i rect ly to archi_tected. reg .  r : -* /

/*  I f  the last  VLfW cannot accommodate op, open a ne[,  VLfW */
i f  (  t  (AluResourceOk (p->v1rw[p->LastVLIhrJ )))

0penNewVl iw(p);

/*  Add op to last  VLIW */

/*  Source registers may be renamed, dest reg 1s not * /
AddtoVLI[ iTip (p->vl lw[p->LastVLIW],  opc, r t ,

p->vI  rw [p->LastVLIW] ->map [ra] ,
p->v1iw [p->LastVLIW] ->map [rb]  )  ;

IncrementAluResource (p,  p->Lastvl l i , l )  ;

/* FreeGprs not upd.ated., map not upd.ated */
/*  r t  is  avai . lable af ter  last  Vl fh l  * /

)  

p->avai1 l r t ]  =p->LastVLI l l , l+1;

Figure A.5: The funct ion ScheduleThreeReg0p_fn0rder
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voi .d ScheduleBranchcond (T_PATH *p,  opc, test ,  cc,  target)
, /* Schedule a condi.t ional branch *,/

{
/*  Branches, stores are scheduled in last v lr l , i  - -  later,  i f  dep */
v = MAX (p->avai l  [cc]  ,  p->LastVl l t i )  ;

, /*  IJ branch has to be scheduled. af ter  the last  VLIW,
open a new Vlf l i  and update last VLIhj pointer */

whi le (p->LastVl I i , j  < v)  OpenNewVl lw (p);

/*  i f  not  enough resources in the last  VLIW, open a new VLIW */
i f  (  lBrResourceOk (p,  p->Lastvl , l l^ t ) )  0penNewVl iw (p);

/*  Cfone the path * , /

p2 = NewPatfr  O;
CopyPath (p2, p,  p->LastVl l l , l ) ;

/*  Add the i f  * /

AddffToTreePath (p->vI i -w [p->lastVLIht ] ,
test  ,  cc,  p2->v1iw [p->lasIVLIW] )  ;

/*  Guess the branch probabiJ- i ty * , /
BrProb= GuessBranch (p->cont lnuat ion) ;
p2->prob -  p->prob * BrProb;
p->prob -  p->prob * (1.o-BrProb);

/+ p conttnues with fa l l through instr ,  p2 wi th branch targ * /

P->cont inuat ion += 4;
p2->cont inuatron = target;
IncrementBrResource(p,  p->LastVLIht)  ;

/*  Add the two new paths to pathl ist  in probabr l j . ty ord.er * /
RemoveFromPathlrst  (p )  ;
AddToPathl ist(p);  /*  Maintain probabi l i ty  order *7
AddToPathl- ist(p2);  /*  Haintain probabj . l j . ty  order * /

1

Figure A.6: The funct ion Schedul-eBranchcond.
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ul ing of condit ional branches, more than orte path rnay be present i rr  the Pathl i -st  at

a given t ime. The paral iel izat ion algori thrn always picks the rnost probable path i rL

pathl ist ,  and extends i t  at  the end of the path by adding to i t  the base instnrcttc i t l

that is the cont inuat ion of this path'

As noted above, when a condit ional branch is scheduled on a par. th,  both the

branch target address and fal l - through address are added to Pathl ist .  A probabrl i tv

is assigned to the branch. The probabi i i ty can be a compi le t ime guess. or con be

provided by stat ic.  predict ion bi ts in lhe base archttecture binary ( l ikc the Y-bi t  rrr

PouerPC), or can use some other means like profile directecl feeclba,ck The prol,abiirl,"-

of  a path is the product of the probabi l i t ies of the act ions of brartches ort  the pat ' l t

( t r .g.  i f  there is a taken branch 61 fol lowed by an untaken bra,trch 62 on the path,

the probabi l i ty of  the path rs Prob(b.1 taken) x (1 -  Prc,b(b2 laken)),  assurr i t rg we

use simple independent branch probzr.bi l i t ies).  ' Ihe probabiht ies oJ t ,he two t tew 1>a,ths

result ing frorn the condit ionai branch is computed aud t tre two new l laths trre i r tsertecl

into the Pathl ist ,  whi le maintaining i ts ordering by path probabi l i t ies.

By picking the path with the highest probabi l i ty of  execut ion. the resources of the

VLIW's are preferably spent on the operat ions on the rnost probable paths, making

those paths run faster.  Operat ions scheduled tn early VLIW's in the grol lp tend to

come from probable paths. Note that our approach does t tot '  pena, l ize less probable

paths as much as trace schedul ing, s ince operat ions from a Less probable path can be

moved into the rnost probable path.

Another question is how the scheduler avoids entering an infinite loop when schecl-

uling program loops. A conditional branch at the end of a progranr loop aclds twtr

values to the Pathl ist  i1 Figure 2.1, the fal l - through exi t  of  the loop and the 1o1r

of the loop. Without addit ional terrninat ion condit ions, the head of the loop r" , ' i l l  re-

peatedly be added to Pathl ist  in a manner corresponding to unl imited unrol l ing. ' Ib

avoid this problem, the algorithm terminates for a given entrY point when all paths

are closed, and Pathl ist  becomes empty. Closing paths at the lbl lowirrg stopping

points guarantees that eventually all paths will be closed:

o A cross page branch or indirect branch (mandatory stopping points),

o A join point that we have already visited ,b times. (This is a throttle on code

explosion and guarantees that a base instruction will not belong to more than

,t + 1 vLIWs),

o A join point where the number of instructions scheduled on the path since the

entry point has exceeded a window size limit (another throttle on code explosion,
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as well as register pressure and compilation time),

r A loop header where the ILP has not improved significantly since the last visit
to this loop header (to avoid useless unrolling).

o Another rule related to stopping: if a loop exit (a conditional branch inside a
loop that goes out of i t ) ,  or a loop header which is not the same as the entry
point of the group, is seen, the remaining window size budget on this path is
decreased (in order not to pull in too many operations from the exit of a loop
into a loop, or from an inner loop into an outer loop).

Note that loops and join points are identified incrementally as each branch is seen.
As noted, the schedui ing of a base instruct ion at the cont, inuat ion of a path,

c:ortsists of convert ing the instruct ion into RISC primit ives, and then schedul ing each
one into an exist ing VLIW on the current path, or,  fai l ing that,  creat ing a new VLIW
and appending i t  to the current path, and schedul ing the RISC primit ive in the new
VLIW.

To be more precise, f i rst  the base instruct ion that is the cont inuat ion of the path
being extended is decoded, and converted into RISC primit ives. Then each pr imit ive
(say r1:=r2+r3) is sc:heduled as fol lows: Find the VLIW on this path where 12 js

available (ready), and the VLIW where r3 avaiiable (these VLIWs can be directly
accessed by a per-path array that maps each architected register to the sequence
number of the VLIW on this path where that register is avai lable).  Choose t i re
VLIW that occurs later among these two. Starting from this VLiW, walk forward
on the path, unt i l  a VLIW that has a free nonarchitected register 11,,  ( to use as a
dest inat ion register) is found, and that has enough resources (so we are doing register
constrained l ist  schedul ing on this path).  The names of 12 and r3 may in general
be different than the actual architected 12 and r3 in this VLIW. At the end of each
path - from the first (root) VLIW to the end of each leaf VLIW - there is a map
that indicates the times at which each architected register r is defined, possibly into a
non-architected register r '  .  The map aiso def ines the t ime at which r ,  is committed
to r .  Note that this map cannot be kept on a per VLIW basis,  as the fol lowing code
fragrnent, i l lustra,tes :
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l l r ia inr l  fnnur lBrrrdr v(Jde

bc Lt

add r5(--r3,14

bL2

L1: add r5<--r2,r4

L2:

VLI!'1 Ccde

add 15) (--13,14

add r5 '  ' ( - - r2,r4
bc VL1

VT 1 '  cnnrr  r (  ( - - f5 '

b VL2

l l f  ' ,  .  .^- i ,  ?q,  z -- f -5,  ,

=============== = ======

VLIWT; 2 mappings

for r5

o VLIW2

o VLIW3

Since VLIhl l  has both VLM2 and VLII^I3 as successors, map [r5] rs rnui t ip ly clef ine<l for
VLIVi l .  I f  bc L1 is an entry point to the or iginal  cocie, ther:  lhere a,re l ,wt-r  pa.ths, with
PATHI terninatrng a. t  VLIW2 and PATH2 at VLIW3. Thus for PA' fH1. map[r5-1 =
I  f  t=t  roq=rF ,- l  l t=2,reg=r$1 ]  and for PATH2, rnap Ir51 = {  [ t=1 ,  reg=r5 '  , f  , l t= '2,  reg=r5]-_ r ,

where t denotes the tinre at which the value is ready and we have a,ssumecl unit la,-
ten c ies.

Returning to our or iginal  exarnple. assume 12 rs renanrecl  to 12'  ,  and r3 is not
rer lamed ( i ts value rs in r3 i tsel l )rn the VLIW where we have chosen t ,o sciredule
the operat ion.  We schedule the operat ion in the form r l  )  :=r2 '+r3 in th is VL[W.
and then schedule a conmit operat ion r1:=rf  in the Last VLIW of t ,he path (or

in a new VLIW after the last one, i f  i t  wi l l  not f i t  in the last Vl , lW). This use <i f

non-architected registers ( in the base archttecture) to specr-r lat ively corrrpute resul ls is
a key to obtaining good ILP"

If  the operat ion has to be plac.ed in the last VLIW (or iater),  the resrr l t ,  c.an be

assigired direct ly to the archi tected register r1,  e.g.  in the lorm r1=r2'+r3.  This re-

duces code explosion due to having to generate two operations per originai operation:

one to execute the operat, ion out of order (r1 '  :  =r2'+r3) and another one to com-

mit  the result  to the architected register in order (r1:=r1') .  Stores and condit ional
branches are always placed in the last VLIW (or in a new VLIW at the end of the
path, if they are not ready or there are not enough resources in the last VLIW).

As just described, an operation carr be executed out-of-order as soon as its operands
are ready, but its result is placed in a non-architected register if it is placed anywhere
before the last VLIW. The non-architected register will in turn be committed to
the original architected result register of the operation, in the last VLIW or later.

This way stores, branches and assignments to architected registers are executed in
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order, and precise exceptions are easily achieved. That is, at a given point just be-
fore a VLIW in the VLIW program, one can identify a base architecture instruction
1 so that all instructions before t have committed their results, and none after 1
have committed their results to architected registers and memory. Note that even
though re-ordering of assignments to architected resources is not allowed, multiple
assignments to architected registers, multiple branches, and multiple stores can be
executed in a single VLIW, i f  the resource constraints al iow i t .  So mult iple base
architecture instructions can be completed per cycle.
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Appendix B

Supportittg Imprecise Interrupts,
and Other Optirnizations to the
VMM Scheme

So far we have concentratecl on getting high perforrrarrce with a fuily compatible
implementation of t,he base archztecture. However, once good perfornfanc:er is tr.c,hreved
in the fully compatibie version of the new machine, extra non-compatible perforrnalce

features can be an advantage. Sucir feal;ures rnay require srnall sofl,ware changes tt-r
support  them, and may not be adopted imrnediately since they were not,  in the 6r.r ,se

architecture, but wi i l  l ikely be source of improved perfornrance over t i r t re.  In this

appendix we will briefly consider some such features.
Commit/copy operat ions can drain machitre resources) and redu<'e perfolrn; i .nce

somewhat.  I t  would be desirable to compi le wit l rout the copy operat ions. Aiso. giverr

a rnode where we are allowed more compilation time, it rnay be desirable to per"forrr.r

more substant ial  opt imizat ions, that change the order of the computat ions, and which

can make a program almost unrecognizable. Examples of such optimizations are tree

height reduction, Ioop transformations, and even re-implementation of inner loops
using new multimedia operations. But in a program compiled withorrt precise excep-
tions, it is impossible to identify a precise point in the base program to restart from,
when an unexpected exc.eption such a page fault occurs. Our suggested way to allow
imprecise except ions in DAISY is to add a new "restartable" CISC-l ike instruct ion

called resume-VLIIrtr to the base arch,i,tecture, but to always place it in a normally un-
reachable part of the base code, so old base architecture machines never execute it.
A procedure generated by a new version of a compiler for the base architecture, that
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is aware of the VMM, could start with:

BL1

Magic number
Various informat ion to be sent to VMM

resume_vl- iw &save-area

Checksum of the informat ion
L1: Normal-  base archi tecture code for the procedure

The semantics of the resune-vl iw &save-area instruct ion is to restore the VLIW
extra registers from the save area) and to continue from where the VLIW program left
off. In a program cornpiled without precise exceptions, when an unexpected interrupt
such as a page fault or external interrupt occursT the VMM recognizes that there is no
precise except ion inforrnat ion, but knows the iocat ion of the resune-vl- iw instruct ion
and therefore the save area address. The VMM then stores the contents of the extra
VLIW registers into the save a,rea7 as weii as the VLIW program counter, and reports
the address of the resume-vl , i -w instruct ion as the except ion causing base architecture
instruction. The save area rnust have been touched before executing any code with
irnprecise exceptions, to guarantee that it is present in mernory when it is needed.
When the operating system services the external interrupt or page fault, it wili restart
the interrupted program from the resume-vl iw base instruct ion. The translat ion of
resume-vl- iw into VLIW code: (1) restores the extra VLIW registers from the save
area, and (2) branches to the saved VLIW prograrn counter vaiue. Note that the
translation of privileged base instructions always verifies supervisor state in the base
architecture, so a progran in user state will not be able to execute any privileged
operations, even if it alters the save area maliciously.

Note that the resume-vliw instruction will never be executed by an older version
of the sanre 6ase architecture, since it is in a normaily unreachable portion of the code.
So executables compiled for the new VLIW-VMM impiementation, will continue to
run on older machines without changes. Binaries can be exchanged between old and
new impiementations of the base architecture over a network, without problems.

This technique is a good way to introduce a completely new architecture, that has
extra registers, without really exposing it to the user or operating system. It requires
only minimal changes in an existing base architecture compiler. It also requires no
operating system changes in the base architecture, unless the operating system exam-
ines the bit pattern in the interrupting instruction, and refuses this particular new
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opcode. To avoid this lat ter possibi l i ty,  one could choose the opcode of resume-vl- iw

to be equal to that of  an exist ing memory operat ion, where the VMM urrderstands i ts

true meaning by context.

There are many other optimizations that couid improve performance ir. a VM\,'l
environment. We bnefly iist sorne of these below:

o The VMM can keep a cache of t ranslated pages that i t  ca,n cluickly look rrp,
before start ing a new translat ion from scratctr

o ' Ihe VMM can save the translat ion cache at power down t ime on hard disk, and
restore i t  at  power up t i rne. This can be dorre wrth or withorrt  the cooperat iorr
of the base operat ing system.

o The VMM can translate procedures spannirrg rnuit ip le pages together

o A rrew compiler fbr the base archr,tecture can pass usefrrl infornratiotr to the
VMM (in the unreachable loc;r t ions of the code bet,weerr B L1 and L1: ) ,  such
as al iasing information, jurnp tables, i ist  of  volat i le loads/sloles.

o The VMM can ut i l ize the wait  t ime of the OS to improve prer. ' iously generat,ecl

translat ions. The obvious procedures to work on are the ones where rnost ol '
the t ime is spent.
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Appendix C

Example of PowerPC to VI,I.W
-1\jonverston

Figure C. l  depicts the
erPC to VLIW code. The
and a detailed description

exampie from Sect ion A.1 (Figure 2.2) on translat ing Pour-
translation follows the aigorithm detailed in Appendix A,
of why each step is performed is contained in Figure C.2.
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add r t ,12,13
bc L1
sl i  rL2,r I ,J
xor t4,15,t5
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bc L2
b OFFPAGE

L1: sub 19 ,  r10,  r j "1

huniunt l  t ' l . l l l  ( t i l t

W,IWI I

l  add r l r2,r t l ri "* """'"-a
I 'LIW1:

b OFFPAGE Vj,IW1:

L2t caLLz rt7,r4 
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aaa
b 0PFPAGE 
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+ 14=163 +

VLIWl:

+ add r7,r2,r-3

xor r53 , 15 , 16,z\bc L1

'"ILIW2: b VLIW2
I s l r  r12,11.1

+ and 18,!63,17 +

VITIWI I

+ add

xor r53 , r5 , 16,z\bc
VLIW2 | b VLIW2

+ sI t  r12,11,3
!  r4=YK1

+ and 18,163,r?
Auc L2 +/ ' \

7i tttt.tIttel L'LI14' Ctxle

VT,TWt: l

f  ado

xor 163 ,  15,  r5 

^Pc

vlr lw2: b VLIW2
-i  s1i  r12,11.3
L 14=161

-J-  ano rv.r6J,r  t

- / \bc 
L2

o." . -no. ' -<-

L]

L1

@

( )'t

VLIW2:

VLIW]:

f  "aa 
1L,12,13

lb" La

xor r53,15.rOl \  
" t f  

19,r10'r11

- - \b VI'IW2 b OFFPAGE
vLIW2t -  -^

-  
SLl  TLZ,t l '  J

- l  14=163
-f  and r8,r53,r7

/\bc L2

, /  \Lrr '  r11,rc3 @ +
b oFFPAGE b oFFPAGE 

^w+

Figure C.1: Example of conversion from PowerPC code to VLIW tree instructions.
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The conversion begins by piacing an empty path whose cont inuat ion is instruct ion 1 (add r1,r2,13 as the
sole entry in the Pathlrst .  I .e.  Pathl ist  is  in i t ia l ly  {  t (  )  ,  t ,  t  .0J } ,  where each tr ip le in the Pathl ist  is  of  the
form: {<trlst of Instructions in Palh>, <Continualion of Path.->, <Relalite Probabil ity of Reaching the End of
This Path Giuen That Control Eas Anired at the Enlrg Instruction)j. The currenl pall is defined to be the
highest probabil ity path in the Pathlist. Scheduling then proceeds as follows:

1.  An empty VLIW (VLI l l l1)  is  created and added to thc current path,  and PowerPC instruci ion 1,  add
r 1 , 12 , 13, is inserted in it. The continuation of the current path now becomes insiruction 2. So Pathl i s t
is  { t ( t )  ,2,r .o l } .

2. Pou,erP(l instructron 2, bc L1 convelts VLIhil from a segment to a tree, witb the left, branch representing
the la l l - through path of  bc and r ight  branch represent ing i ts target,  L1 ( instruct ion 8).  Note that  the
condition for bc has been computed prior to VLIt 't1, and hence tl ie bc and add can be executed in parallel,
assutning resource constraints al low i t .  Since instmct ion 2 is a brancl t ,  the current path is removed from
PathLrst and two new paths are createtl, one whose continuation is the fall-through instruction 3, and
another whose cont i t ruat ion ts t ,he t .arget L1 ( iustruct ion 8).  Both new paths are placed in the Pathl- ist ,
ma.kiDgi t { i (1,2),3,0.71 ,  [ (1,2),8,0.3] ] .AssumethebraDchof instmct ion2isguessedtobetaken
30% of the t ime.

3. Since the fall-through patb ts calcuiat,ed io have a higher probabil ity rt becomes the currcnt, palh. PouerP(-
instntct ion3,slr  r l2,r l ,3dependsontheresul tof instruct ionl ,addr l ,12,r3.  Hencei tmustgoto
a. new VLIW. Hence VLI] | l2 is created on the current,  path,  wi th the fa l l - throrrgh t ip of  VLIt i l  point ing to
i t , .  The conl iDuat ior  oI  t .he current path is set  lo instruct ion 4.  Pathl ist  becomes { t (1,2,3),4,O.71,
t(1,2),8,0"31 ) .

4.  Powerl ' ( i  i l ts t ruct ion 4,  xor r4,r5,16 does not depend on arry resul t  yet  produced. Hence i t  can be
execttl,ed in VLIW1. However, in order to maintain precise exceptions, we rename the result to regis-
ter  163 (which rs not in the PouerP(;  archi tecture) and copy 163 to 14 in VLII /2.  So Pathl ist  

-
{ t (1,2,3,41,5,0.71, t (1,2),8,0-31}.  I f  arr  cxcept ion (say an external  interrupt)  occurred just  br-
fbre executing vLIi l i2, the emulatcd PowerPCna.chine appears to have completed instructions 1 and 2, and
is at the point imrnediatelv prior io instrr.rction l l. The results of instruction 4 are sti l l  in 163 and are not
yel  (ommit ted to atr  archi t rcted rr :g ister,  at  the point  of  lhe interrupt. .

5.  PowerP(i i ls i r t tct iou5,and rS,r4,rTdependsontheresul tof thexor.  Becauseofouraggressivesched-
ul ing th is resul t  can be used in VLII^I2 by not ing that the desired value of  r4 is in 163, y ie ld ing and
r8,163,r7. ' I 'hecorr t inuatronof t .hecurrentpathissetto6.Pathl istbecomes{t(1,2,3,4,5),6,0.71 ,
t (1,2),8,0.31).

6.  PowelPCinstruct ion6,bc L2hasnodatadependencesandhrnreca.nbescheduledinVLl! l2 inanranler
analogous to bc L1 bcing scheduled in VLIhl l .  But wc do not scher iu le branches ear l ier  than tbe last
VLIW on a path,  tn order to maintain precise interrupts.  The current path is replaced by two paths:
ot te cot t t int t t t tg wi th the la l l - through instnrct ion ?,  ant l  one cont inuing wit l r  t l ie t ,arget L2 ( instruct ion
l0).  Assumr this second branch is also guessed to be taken with 30% probabi l i ty .  Pathl ist  becomes

{[(1,2,3,4,s,6] ,7,0.49(0.7x0.7)1,  [ (1,2),8,0.3] ,  l (1,2,3,4,5,6),10,0.21(0.7x0.3) l ] .

? OI t i ie 3 pat l rs,  the la l ) - throrrgh path of  tustructron 6,  is  row most l ikely,  so i t  becomes t , ) re currerr t  pal .h.  I ts
cortirrrrafiol is PouerPC inst,i lrction 7, b oFFPAcE. It is placed on the left t ip of VLIl^l2 since branches are
schedrLled i t t  order.  Since this branch has no onpage cont inuat ions,  th is path rs removed from PathList ,
and t ,hr  next most.  probable path becomes the new curent path.  Pathl i .st  becomes { l (1,2),8,0.31,
|  (1,2,3,4,s,6),  10,0.  211 ) .

8.  The Pot,erP( ' i t rstrr tct iotr  8 sub r9,r10,111, t .he L1 t .arget,  is  the cont inuat. ion of  t ,he current,  h ighest.
proba.bi l i typath. ' lh istargetcont inuesfromther ight t ipofVl lht l ,s incethat isthelocat ionofthebranch
that i t tserted i t  in Pathl-rst .  This sub instruct ion has no data dependences with ear l ier  instruct ions,  and
hence can tre scheduled on the r ight  t . ip ofv l - l l ' i1 .  Tbe cont inuat ion of the current path becomes 9,  and
Pathlrsr  becornes i  t (  1,  2,  B),9,  0.  31,  [ (  1,  2,  3,4,s,6),  10,0.  21]  ] .

9.  PouerPC instruct ion 9,  b 0FFPAGE is next on the current path.  I t  is  handled just  l ike instruct ion ?.  and
frencc a b 0FFPAGE is placerJ on the nght t ip of VLII/1. This path is therr removecl I 'rom PathList, which
now becornes {  t (1,2,3,4,s,6),  10,0.  21: l } .

10.  The only opett  path remaioirrg in the l is t  is  the one that cont, inues with PouerPC inst . ruct . ion l0 cnt lz
r11,14. bhe L2 target f rom VLIhl2.  l t  is  dependent on the resul t  oI  instruct ion 4,  xor 14,15,16. As noted,
this value of r4 is available in VLIhl2 itself in 163. l lence instruction l0 can be scheduled on the right t ip of
VLII ' ,12.  Theconttnuat ionof thecurrentpat,hbecomesl l ,andPathListbecomes{[(1,2,3,+,5,6,10),11,0.21] i

7 i .  PowerPC jnsl , ruct lon 11, b 0FFPAGE is next on this path.  I t  is  handled just  l ike instruct ions 7 and 9,  and
hence a b 0FFPAGE is placed on the right, t ip ofVLItd2. This path is then removed from the l ist. As there are
no Inore ent,ries in the PathLisr, and no more entries to process, the algorithm terminates. The translated
code is ready for execution beginning at VLflj1.
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Figure C.2: Descript ion of conversion from PowerPC to VLIW.



Appendix D

Conversion of PowerPe Code

In implementing DAISY, we have observed a f'ew details of interest beyoncl tlre ntarin

points discussed in the body of the paper.  First ,  the PouterPCarchitecture'has c-r t t i .1,
two registers, the l ink register 1r and the count,er registers clr throrrgh whrch indirect
jumps may be performed. At an arbi trary pornt in Po'we, ' rPC code, the vaiues in both
may be l ive. The bcr l  instruct ion ur Po'uterPCl branches to the address <:ont,air ted
in l -r  and therr sets 1r to the address of the instruct ion lbl lowing 1r Sin<,r:  Vl . lW
tree code is not sequent iai ,  i .e.  the address of the operat ion fbi lowrrrg the transia,t ion
of bcr l  is not the address that should be placed in 1r,  some other means is needed
to set the new value of l - r .  One possibi i i ty is to add a 32-bi t  inrrnediate f ie ld to

the VLIW version of this instruct ion, with the f ie ld containing the proper Po'uterP( '
address. However this wastes instruction encodin€l space, |rence we prefer: 1,o allr.rw

the VLIW to perform indirect jumps through at least one other register.  T'his coulr l

be a rrew special  purpose register for this purpose, e.g. Lr2. or the VLiW coulci  t re

allowed to perform indirect jumps through any GPR.. Since registers R32-Rft4 are Irol

architected, this would provide many possible choices at any given point"

The PowerPC also has many branch instructions which decrement ctr and branch

depending on whether ctr  ts zero, possibly in conjunct ion with some other condit ion.

Such branches become seriaiizing, since they both read and set ctr. In a practical

terms, such branches limit parallelism by requiring that no more than one loop iter-
ation execute per cycle. To overcome this problem, it is useful to make ctr one of
the non-PowerPC architected GPR's, for example R32. In this way the value in ctr

can be explicitly decremented with the result renamed (e.g. to R63, then committed

to ctT/R32. The renamed value can also be explicitly compared to 0, and and'ed
with some other condition if need be. In programs with small tight loops, we have
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observed significant improvement from these actions.
Yet another problem arises from the PowerPC contains mtcrf instruction. The

mtcrf instruction moves any combination of 8, 4-bit condition register fields from
a GPR to the condit ion code register.  Since the VLIW architecture has more than
8 condition register lields, extending the mtcrf instruction must be handled. If the
VLIW registers are 64 bi ts and the VLIW has 16, 4-bi t  condit ion register f ie lds, then
a simple extension of mtcrf couid be done, although the instruction encoding would
likely use more than 32 bits. Since, oniy one field is moved in many cases we prefer
to support  an addit ional modif ied format,  mtcrf2. The mtcrf2 instruct ion has 3
operands:

l"  One 4-bi t  cordi t ion register as the dest inat ion for the instruct ion.

2. A GPR instruction containing the 4-bit source field for the move.

3. An immediate value specifying which 4-bit field in the GPR is to be moved to
the condit ion register.

The PowerPC condition register must be otherwise dealt with carefuiiy, as it is
addressable in 3 ways) (1) as individrral  bi ts for operat ions l ike crnand and condit ional
branches, (2) as 4-bit condition register fields, as set by cmp type instruc.tions and
moved by mtcrf2 type instruct ions, and (3) as a ful l  32-bi t  ent i ty,  as used with
the mf cr instruction for example. Dependences set at one level, must of course be
observed at other levels. For example a branch cannot be moved above its compare.

Final ly,  the CA, 0V, and S0 bi ts of the XER register require special  at tent ion in
order to attain maximum parailelism. The ai instruction in particuiar is heavily
used to increment loop index variables. Alas, aL not only burnps the value in its
dest inat ion GPR, i t  also sets the carry vaiue in CA. Unless this CA vaiue can be
renamed, ai  instruct ions must ser ial ize because of the output dependence between
them - even if the CA value computed is never used - which is the case for the vast
major i ty of code. 1 I t  would perhaps be better i f  compi iers used the cal-  instruct ion
instead of ai  in such cases, but no matter,  as a large body of code exists using ai .  To
get around this problem, we place the vaiue of CA in an extender bit of the target GPR
for an operal,ion such as ai - if the ai was executed speculatively and its integer
result renarned to a non-PowerPC architected register. When the integer resuit is
c.orrrmitted to its Po'uerPC architected register, the CA extender bit is simultaneously

'The incremental compiler does not have sul icient t ime to do a l iveness analysis to determine
with certainty that the value in CA is dead.
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corrrmit ted to the CA bi t  in the PowerPC XER register.  I f  an ai  instructton ts t tot

executed speculatively, the VLIW can place the carry value directlv in the CA bit

of the XER. (The architecture can tell speculative operations by their non-PcsuterL'(i

archi tected dest inat ion register.)  The overf low (0V) and summary overf low (S0) bi1,s

are handied similarly, except that the 0V extender bit for a speculative operatr,-rtr- is

both placed in the XER 0V bi t  as wel l  as or 'ed with the S0 bi t  already in the XER

register.
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Appendix E

Conversion of S /390 and x86 code
into VLIW: Examples

Here are some code examples frorn 186 and 5/390 to give a iurther flavor of our
approach for DAISY.
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A
B
C

>/Jyu cooe

L r10,2892(0)

LH r2,1 18(0)

MVl 5s2(0),4

STC 12,288(r IQ ,12)

BASR R9. O

L R9, 1434(Re)

LA R6,4095(R9)

RISC Prrmrt ives

i"  r Ia=2892(A)

Lh 12=118(0)

1r r  17'=4

srb r17,552(0)

a 17/=r|Q,r2

stb 12,288(117 )
la r9=X'9DA' (rvpa)

i  rvDa :  Regrster contarnrng vrr tual-

,  address of  currenl  page

; (Kept on cross page branches)
I  r9=1434(rs)

la r t i=4095(r9)

;  f i .esul t  of  " la"  AniD'ed

, wfth arL "address mask'  to
rmf)  anahr '11 r , ,  |  . r .  ?4 btL mode

I 15'520i0)

- i .  r  17=36 (  15 )
t rap_prrv

;  Checks for supervisor state fn

;  specral  reglster

st_rea1 r17, cnt l reg6(rra)

;  r ra -  Pornter to an area ol  VLI l^ l  real

;  nenory used by enulator '  (Vl1l , l )

,  to keep contro- regls lers and

, otner data structures
I  r7-528(0)

L 18=548(0)

nop ;  Assunte a strongly corrsrstent

,  nemory system, not requr l rng

; stop at  a serral lzrng op
.1 r0=28(r10)
cmp crO-r0,0

;  0peratrons set 390 condi t lon codes

; rn 390 mode: Exact ly one i long the

; eq, l t ,8t ,ov brts of  the resul t
r r  f ro ld 1< cot f^  1

i r f  crO.eq,L1A30
I_real  r17=cntregS (rra )

and r !8=t17,256
trap r18 |  =0

; Monitor cal l  for  event c lass #8

Ib r17=1 14(r8)

tmi crO=r17,8

;  tmr performs 5, /390 TM funct ion

;  and sets condi . t i .on code

bt crQ.eq,L13AA

Lh r17=118(r8)
cmp cr0=r0,r1 'Z

bt crO. eq, L13AA

r77=540 (r7)

crO. eq,L1D30
13=36(r10)

crO. eq, L13DE

(1)

12)
(1.)

(2)

N BNE
0Mc

L R5,s2o(o)
LCTL R6,R6,36(R5) (1)

(2)

L R7,528(o)
L R8,548(0 )
BCR 15,O

L RO,28(R1O)
LTR RO,RO

L 1A3O
x,428'(o),7 (1)

(2)
(3)

a
R

U
V
l^/

X

TM 114(r8),e (1)

Q)

BZ L13AA
CH r0,118(r8)

L13AA:
cLI 540(rZ),0

BNE L1D3O
L 13,36(r10)
LTR 13,r3
BZ L13DE

(1)
(2)

(2)
1b
cmp
bf
I
cmp
bt

Figure E.1: Origir'al 5/390 Code FT9gment and Corresponding RISC Primitives.



VLIW's are separated by aster j -sks.
Snal1 let ters indicate 5/390 operat ions executed out of  ord.er
Caplta]  Iet ters indrcate 5/390 operat ions conni t ted in order

( r f
A
B

c

e

h

J

o

5/390 code
an except j .on occurs,  restart

L r10,2892(0)
LH 12,1 18(0)
MVI ss2(0),4 (1)
BASR R9, O
L R5, s20 (0)
L R7,s28(0)
L R8,s4B(0)
Mc x '428'(O),7 (1)

L13AA:
CLI 540(17),0
BNE L1D3O
L 13,36(r10)
LTR 13,13
BZ L13DE

ex 1t2 i

VLI l , l  code
at 5/390 Instruct ion A)

I  r10=2892(0) ;  VALID_ENTRY
th r2=118(0)
l i  177=4
1a r9,=X,gDA,(rvpa)
r  r5,=520(0)
1 r7,=528(0)
1 r8 '=548(0)
I_rea1 r17,,=cntreg8(rra)
b v1

1r crQ=crg), , ,
bf  cr0, , , , .eq,L1D30
1r r3=r3'
1r cro=cr) , ,  '  ' ,
bt  '  eq,L13DE

exrt2:

v1l

c
d

i

f

l

o

P
r

t

( f f  an exceptton occurs restart  at  C)
MVI 552(0) ,4 (2) stb r17,ssz(O)
STC r2,288(r10,r2) (1) a r77=r1O,r2
LCTL R6,R6,36(R5) (1) 1 r17,=36(rs,)
L R9,1434(Rg) I  r9, ,=1434(19,)
L R0,28(R10) 1 ro,=28(r1o)
MC X'428'(0),7 (2) and r1g=r17,, ,256
TM 114(rB),8 (1) 1b r17",=114(18,)
CH r0,118(rB) (1) th r17,, , ,=118(18,)
cLI  540(17),0 (1) 1b ,=s4O(r7,)

L 13,36(110) 
I  

. l ,=so(rro)
ov2

(I f  an except lon occurs,  restart  at  D)
STc 12,2a8(t1O,rZ) (2) srb r2,288(r17)
BASR R9,0 1r r9=r9'(dead)
L R9,1434(R9) f r  r9=r9' '
I -A R6 ,  4095 (R9 )  1a 16=4095 (r9 ,  ,  )
LTR R0,R0 cnp crO,=rO,,O
TM 114(18) ,B (2) tn1 cro,  ,=r12, , r  

,8
CH r0,118(18) (2) cmp cro, / ,=rO' , r1.7, ,"
CLI 540(17),0 (2) cmp cr1r "  

)=r17 t  ,  
"  '  ,A

LTR r3,r3 cnp cr1", , ,=r3, ,0
bv3

(I f  an exceptton occurs,  restart  at  H)
L R5,520(0) l r  r5=r5,
LCTL R6,R6,36(rS) (2) t rap_pr iv
LCTL R6,R6,36(R5) (3) sr_real  r17, ,cnt1reg6(rra)
L R7,s2B(0) 1r t7=r7,
L R8,548(0) 1r r8=r8,
L RO,2B(R10) 1r r0=r9,
LTR R0, R0 1r crQ=cro,
BNE L1A30 bf  crO,.  eq,L1A3O
MC: X'+28'(o),7 (3) t rapr l8,=O
T1'{  114(rB),8 1r cr6=cx9,,
87, t .13AA bt cro,  ,  .  eq,L13AA
CH r0,  I  1B(r8) 1r cro=cro,  ,  ,

BZ L13AA bf cro) '  '  .  eq,  exl t1
exl t i :

v2
D
E
F
G
m

P
r
t

v3
ti

t
U

LI
X

Figure 8.2:  Paral le l ized VLIW codE0(2b 390 instrucs in 4 vLIWs:6.2b S/sg7
instrucs per VLIW)



D

E
F

x86 code

Push

mov

Push

nov

UES L

JrLZ

Push

cal-1

mov es,ax

bp (1)

a1\
\A)

bP, sP
ds ( 1)

l ' r  \

ax, [bp+e]
ax,  1
short  l -oc_0240
ax (1)

(2)

sub_0116 (1)
r /a\
\4)

(3)

G)
returnl  :
l -oc_0240:

M

N

n

P Loc_0241:

a
l

)
T
U

V
W

HH 1oc_0245:
I I

JJ

cmP

mov

jcxz

mov
cmP

mov

cmP

Jne
mov
jmp

(1)
(r \

worct  ptr  es :data_0391e,4S48h
/ r \
\4)

short  loc_0245
es,word ptr  cs: [2](1)

(2)
cx,  es :  data_0068e
short  1oc_0242 (1)

(2)
es,cx
ax, cx
short  1oc_0243
cx, es :  data_0001e
ax, es :  data-OO14e

Ioc-0241

ax, es ;  data_ 00 1 5e
short  Ioc_0245

cx, ax
ds

mov

POP

leave

(1)
(2)
(3)
(1)
(2)
(  J. /

(1)
(2)
l ' " ' \

(4)
(5)

aKK ret f 81

Rf SC prrrnrt : .ves
(aI I  16 bi t  ops)
st

AI

1r
stseg ds,  -2(sp, ss)
a1 sp=sP, -2
1 ax=6 (bp, ss )
andi l - .  crO, scr=ax, 1

bp,-2(sp,ss)
sp=sp, -2
bP="p

crO -  eq,1oc_0240
ax,-2(sp,ss)

sP=sp, -2
t 1 =re burn 1
t1,-2(sp,ss)
sp--sp,  -2

sub_01 16

crO .  eq,  7oc._Q245
t1=2(0,cs)

r i

descr_l-ookup es=ax
searches descrrptor
Iookasi ,de bufJer

I t1=data_0391(0,es)

cmp crO=t 1 ,0x454e

I
descr_l-ookup es-- t  1
1 cx=data_ 0068(0,  es)
cmp cr1=cx,0
hr cr1.  eq, Ioc-0242
descr_lookup es=cx
cmp crO=ax, cx

crO. eq, Ioc_0243
cx=data_0001e(0, es)
t1=data_oo14e(0, es)

cmp cro=ax, t  1
bf  crO. eg, Ioc_0241
I ax=data_0015e(0, es)
b 1oc _0245

bt
1
f

1r
1
ai

cx=ax
t1=0(sp,ss)
sp=sp, 2

descr_lookup ds=t1
SP=bP
bp=O(sp,ss)
sp=sP,2

1r l r1=0(sp, ss)
t2=2(sp,ss)
sP=sp,6

descr_lookup cs=t2
b_across_page cs,111

l-r
'l

^ iq l

1_
l

ai



VLIIJ '  s s€ s€pdated bv ast€r isks.
Stra11 l"et teis indicaie r86 oD6rat ions €r€cuted out of ord€r.
Capital .  lst t€rs indicats 186 oi€rat ions coMrtted in order.

D
h
D
1l
11
kk
kk

r86 code
v0: R€stdt  at  A i f  int€l lupted

VLIH Cods
; (411 16-bi t  ops)

;  st  bp,-2(sp,ss)
;  a i  sp=sp,-2 /+ DEAD +/

;  a i  bp=(o1d)sp,-2 / t  YAS 1r bp=sp */

;  6ts€g ds=-4( (o1d) sp,  ss)
;  a i  sP=(old)sP,-4
;  I  ax=4( (old)sp,ss)

;  I i  t1=r€turn1
; I  t1,=2(0,cs)
;  Lr  t1J r=ds /+ DEAD */

;1r  ds '=ds
; l_Ir  t r1=0((old)sp,ss)
;1 t2=2((old)sp,ss)
;  D ql

;  Ddi l  .  c!0 ,  scr=ar,  1
;  d€scr- lookup es'=ax
; doscr- lookup €s J r  =t1 r

;  d€scr_Iookup cs'=t2
;b v2

;  bf  cro.€q,1oc_0240'
;  st  a! ,  -2(sp,ss)
;  a i  sp=sp,-2 (dead)

;  st  t1,-4((oId)sp,ss)
;  a1 sp=(old)sp,-4
:  b sub 0116
;$S$Sf ( ILP = 8, /3 = 2.7) t*11*
i

push bp (1)
push bp (2)

Eov bp, sp
push ds (1)

push ds (2)

nov ar,  [bp+6]
caf l  sub-0116 (1)
nov €s,sord ptr  cs:  [2]  (1)

pop ds (1)
pop ds (3)

r€t f  2

t**  *  ***r t  **  *****  *********r  ***  ************r*****  t
v2: R€stdt atr  F af rnt€rrupt€d
F jnz short  loc_0240
G push ax (  1)
c push ar (  2)
H cal l  sub-0116 (2)
H caf l  sub_0116 (3)

ret f  2
ratf  2

J€ short  loc_0245
nov 6s,cord ptr  cs:  [2]  (2)
nov cx ,  €s :  data-0068e
).x2 short  I  oc _0242 (2)
no9 €5 .  cx
chP aI t  cx
je short  loc_0243
nov cx.€s:data-0001€
cnp ar,€s:data-oo14€ (1)
hov ax ,  6s :  data-Oo 15€

(1)
(2)

€s ,  ax )  I r  €s=es i

Ford ptr  €s:data_0391€,4548h (1)
loc-0240' :  mov

cnP

v4: Rsst i l t  at  I ' l  i f  interruDt€d

X
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nov cx,63: daia_0068e
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HH 1oc_0245:
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r  et f
ret f
r€tJ
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nov cx,  ax
poP ds

PoP ds

leav6

l€av€

nov cx,  ax
poP ds

PoP ds

r€t  f
r€t  f
r€t f

v5:  8estd1 at  U i t  rnt€rrupt€d
U cnp ax,  €s:  data_0014€ (2)

bvG
t**** ***r  r*  *****r**+t***** a *r  **  *+rr t*  *r*  *r* t  r  ***
v6 i  R€stdt at  V 1f utrerrupt€d
V Jno 1oc-024 1
tr
HH
I]
I I

nov ax,6s :  data,o015€

JJ feave

JJ l€ave

JJ l -€ae€

;  a)  sp=(old)sp,10
, I r  cs=cs i

;  b_acro6s_pag€ cs' ,1r1
;*$f t$ ( ILP = 13,25 = 2.6) s$sst

;  c4P cro=ar, t1

;  b i  cro.€q,1oc_0241
; I r  ax=ax)
;  f t  cx=axl
i  ar  sp=sp,2 (dead)
:  l r  ds=ds'
;  1r sP=bP
; Ir  bp=bp (d€ad)

;  ar  sP=(old)sP,4 (dead)

;  a l  sp=(old)sp,10
; 1r cs=cs J

;  b-across_pa8€ cs'  ,1r1
;#*t$s ( ILP = 24/7 = 3.4) #$#d#

Figure E.4: Paral lel ized VLIW code: ff i  186 instructions in 7 VLIWs (3.4X speedup),
on path A-F, K-X, HH-KK.


