RC 20538 (08/05/96)

Computer Science

IBM Research Report

DAISY: Dynamic Compilation for 100% Architec-
tural Compatibility

Kemal Ebcioglu, Erik R. Altman

IBM Research Division
T.J. Watson Research Center
Yorktown Heights, New York

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publi-
cation. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright
to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and
specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article
(e.g.. payment of royalties).

Research Division

Imaden - T.J. Watson - Tokyo - Zurich

Abstract

Although VLIW architectures offer the advantages of simplicity of design and high
issue rates, a major impediment to the use of VLIW architectures is that they are not
compatible with the existing software base. We describe new simple hardware features
for a VLIW machine we call DAISY (Dynamacally Architected Instruction Set from
Yorktoun). DAISY is specifically intended to emulate existing architectures, so that
all existing software for an old architecture (including operating system kernel code)
runs without changes on the VLIW. Each time a new fragment of code is executed
for the first time, the code is translated to VLIW primitives, parallelized and saved
in a portion of main memory not visible to the old architecture, by a Virtual Machine
Monator (software) residing in read only memory. Subsequent executions of the same
fragment do not require a translation (unless cast out). We describe new very fast
compiler algorithms for accomplishing the dynamic translation and parallelization
across multiple paths and loop iteration boundaries. We discuss the architectural
requirements for such a VLIW, to deal with issues including selt-modifying code,
precise exceptions, and aggressive reordering of memory references in the presence
of strong MP consistency and memory mapped 1/0O. We also show a method for
approaching oracle parallelism levels in the same framework (trading off increased
compilation overhead). We have implemented the dynamic parallelization algorithms
for the PowerPC architecture. The initial results show high degrees of instruction
level paralleliszn with reasonable translation overhead and memory usage.

Contents

2.1
2.2

3.1
3.2
3.3
3.4
3.5

3.6
3.7

5.1

Background and Motivation

The Compilation Algorithm

Essential Architectural Features for Aggressive Reordering
Architectural Features to Support Commonality

Page and Address Mapping Mechanisms

Creation of a Page Translation
How a Translation of a Page Gets Destroyed
Communicating Interrupts to Base Architecture OS
Mapping a Base Architecture Instruction Address to a VLIW Address
Mapping from VLIW Back to Base Instruction Addresses: How to Find
the Original Base Instruction on an Exception
Dealing with Restartable CISC Instructions
Dealing with Real-Time Requirements

Data Memory Access Requirements for a Virtual Machine

Experimental Results

Analysis of Compiler Overhead

Ideas for Reaching Oracle Parallelism
Comparison to Previous Work

The Compilation Algorithm

A1l Actual creation of VLIWs

4
11
12
14
17
18

19
20

50

53

58

B Supporting Imprecise Interrupts, and Other Optimizations to the
VMM Scheme

C Example of PowerPC to VLIW Conversion
D Conversion of PowerPC Code

E Conversion of S/390 and x86 code into VLIW: Examples

69

72

75

78

List of Figures

2.1
2.2

3.1
3.2
3.3

5.1
5.2
5.3
5.4
5.5

Al
A2
A3
A4
A5
A6

C.1
C.2

E.l
E.2

E.3
E.4

Algorithm to translate one entry point in a page.
Example of conversion from PowerPC code to VLIW tree instructions.

VLIW Address Space Layout
Implementation of GO_ACROSS PAGE Instruction.
Finding the base architecture instruction responsible for an exception

Pathlength reductions for Different Machine Configurations
Cache Miss Rates for Benchmarks
ILP versus size of input page
Total VLIW code size versus size of input page
Number of direct cross page jumps versus size of input page

The function CreateVLIWGroupForEntry. S
The function DecodeAndScheduleOnelnstr.
The function ScheduleThreeRegOp.
The function ScheduleThreeRegOp OutOrder.
The function ScheduleThreeRegOp InOrder..
The function ScheduleBranchCond.

Example of conversion from PowerP(code to VLIW tree instructions.
Description of conversion from PowerPC to VLIW

Original S/390 Code Fragment and Corresponding RISC Primitives. .
Parallelized VLIW code (25 390 instrucs in 4 VLIWs = 6.25 5/390
mstrucs per VLIW) © . . . 0000000
An z86 routine, with corresponding RISC primitives.
Parallelized VLIW code: 24 z86 instructions in 7 VLIWSs (3.4X speedup),
on path A-F, K-X, HH-KK.

9

16
23
27

35
38
42
43
44

60

Chapter 1

Background and Motivation

Very Long Instruction Word (VLIW) architectures offer the advantages of design
simplicity, a potentially short clock period, and high issue rates. Unfortunately, high
performance 1s not sufficient for success. One of the major impediments to using a
VLIW (or any new ILP machine architecture) has been its inability to run existing
binaries of established architectures. It was argued (and not facetiously) in a recent
MICRO conference keynote speech [Hwu94|, that architectures which do not run Intel
286 code may well be doomed for failure, regardless of their speed!

To solve the compatibility problem efficiently, there have been several proposals
beyond plain or caching interpreters [Halfhill94]. One has been the object code trans-
lation approach (e.g. [SilbermanEbcioglu93, SilbermanEbcioglu92, Sites93, Thompson96|),
where a software program takes as input an executable module generated for the old
machine, and profile directed feedback information from past emulations, if available.
[t then generates a new executable module that can run on the new architecture
(resorting to interpretation in some difficult cases), and that gives the same results
that plain interpretation would. Although many of the nasty challenges to static
object code translation (programs printing their own checksum, shared variables, self
modifying code, generating a random number and branching to it, and so on) have
been addressed, the static object code translation solution still has some problems.

If object code translation is used to emulate applications written for one exist-
ing machine on another ([Sites93, Thompson96]), then many primitives may need to
be generated to emulate one old architecture instruction, or unsafe simplifying as-
sumptions may need to be made (e.g. about ordering of shared variable accesses, or
the number of bits in the floating point representation) to get more performance, in
which case full compatibility is sacrificed. This is typically because hardware features

to help compatibility with an “important” old architecture were not designed into the
new fast machine; compatibility was just not emphasized, or came as an afterthought.
For example, the set of condition codes maintained is often quite different in different
architectures. This object code translation approach does allow the convenience of
running many important applications of the old architecture on the new machine, but
does not provide a replacement for the old machine in terms of speed and range of
applications.

[f the new architecture is fully compatible with the old one by hardware design,
but does not run with the best performance on old binaries, (|SilbermanEbcioglu93,
SilbermanEbcioglu92]), and the new features of the new architecture that improve
performance can be utilized only by object code translation, or recompilation, the
solution is still not perfect. Rapid adoption of new architectural features for higher
performance may be possible under certain circumstances; scientific and technical
computing i1s an example. But computer designers often underestimate the strong
inertia of the user community and software vendors at large, and their resistance to
change.

Another approach is to translate the old architecture instructions to a new internal
representation (e.g. VLIW) at Icache miss time, by hardware [FranklinSmotherman94,
MelvinEtAl88, RotenbergEt A196]. This approach is robust in the sense that it imple-
ments the old architecture completely. But the optimizations that can be performed
by the hardware are limited, compared to software opportunities. Also the conver-
sion from the old architecture representation in memory to the internal Icache rep-
resentation 1s complex (especially if one attempts to do re-ordering) and can require
substantial hardware design investment, and VLSI real estate.

As an alternative we present DAISY (Dynamically Architected Instruction Set
from Y orktown). DAISY employs software translation, which is attractive because
it dispenses with the need for complex hardware whose sole purpose is to achieve
compatibility with (possibly ugly) old architecture(s). Given the appropriate super-
set of features in the new architecture (e.g. condition codes in 286, Powerl’C| and
S/390 format), DAISY can be dynamically architected by software to efliciently em-
ulate any of the old architectures. Assuming that we can begin with a clean slate for
both hardware and emulation software, and adopt a simple design philosophy, what
architectural features and compilation techniques are required to make software trans-
lation efficient and 100% compatible with existing software? Finally, given the large
gap between the parallelism ILP machines are currently achieving and oracle paral-
lelism, what does it take to increase ILP beyond its current levels using the software
emulation approach? These are some of the problems we attack in this work.

In the present paper, we will propose a simple VLIW architecture designed specif-
1cally for emulation of existing architectures, that is fully compatible with existing
software including operating system kernel code, while achieving high levels of ILP.
While DAISY and this paper focus mainly on a VLIW as the new architecture, the
same ideas can be applied any new superscalar design, and potentially to other new
ILP architectures that break binary compatibility as well.

Current VLIW compiler techniques are unacceptably slow for dynamic paralleliza-
tion, which requires real-time performance from a compiler, in order to make the
overhead imperceptible to the user. We will describe a new, significantly faster par-
allelization technique that does object code translation from the old binary code to
intermediate code, VLIW global scheduling on multiple paths and across loop itera-
tions, and final assembly into VLIW binary code, all at once. We have implemented
this technique for the PowerP(and we report the initial encouraging ILP results.
Another feature of the new compilation technique is the ability to maintain precise
exceptions, so the original instruction responsible for an exception can be identified,
whenever an exception occurs. While out-of-order superscalars use elaborate hard-
ware mechanisms to maintain precise exceptions, in our case this is done by software
alone.

The paper 1s organized as follows: We first discuss our new fast dynamic compila-
tion algorithm and various architectural features to support high performance trans-
lation in DAISY. We then describe the dynamic translation mechanism whereby the
VLIW runs the old software with minimal hardware support. Next we discuss the
mapping mechanisms from the old code to the VLIW code and back. We then pro-
vide some experimental results. This is followed by a Chapter on approaching oracle
parallelism.

Chapter 2

The Compilation Algorithm

In this paper, we call the original, old architecture that we are trying to emulate,
the base architecture. The VLIW which emulates the old architecture we called the
magrant architecture, following the terminology of [SilbermanEbcioglu93]. The base
architecture could be any architecture, but we will be giving examples mostly from
the IBM PowerPC.

Traditional caching emulators may spend under 100 instructions to translate a
typical base architecture instruction (depending on the architectural mismatch and
complexity of the emulated machine). So caching emulators are very fast, but do not
do much optimization nor ILP extraction. Traditional VLIW compiler techniques, on
the other hand, extract considerable ILP at the cost of much more overhead. Tra-
ditional VLIW compiler techniques first obtain the intermediate code for a program,
then perform control flow analysis and various global optimizations with many passes
over the code, and then, for each appropriate region (e.g. loops, superblocks) in the
program, create VLIWs cycle by cycle, by examining which operations are ready and
choosing the ones to be moved into the current VLIW. Finally register allocation and
other optimizations may be performed, and an object file or VLIW assembly file is
generated. The total compilation overhead with a traditional VLIW compiler may
become very high.

Our goal in DAISY is to obtain significant levels of ILP while keeping compila-
tion overhead to a minimum, to meet the severe time constraints of a virtual machine
implementation. For this reason we have developed a new, simple and fast compila-
tion technique that still has the potential to extract significant levels of ILP. Unlike
traditional VLIW scheduling, we examine each operation in the order it occurs in
the original binary code, and find which VLIW it can be placed in right away. Each

void TranslateOneEntry (EntryAddr) {
CreatePathlist ();
AddToPathlist (EntryAddr);

while (!IsEmptyPathlist ()) { /* Create VLIWs for a group of base */
X = RemoveFromPathlist (); /* instructions starting here, and */
CreateVLIWGroupForEntry (x); /* put their exits into the Pathlist. */
¥

/**%x% Convert the tree form of VLIWs into actual binary *¥*x/
/*x%% code, and create a valid entry point in this page *¥*x*/
AssembleVLIWsIntoBinaryCode ();

Figure 2.1: Algorithm to translate one entry point in a page.

operation is immediately scheduled in a VLIW (maintaining precise exceptions), as
soon as it is disassembled from the binary original code, and converted into RISC
primitives (if a CISCy operation). The algorithm then generates binary code from
the VLIWSs, and the job is done

The basic compilation algorithm used in DAISY is depicted in C-like pseudocode
in Figure 2.1. The algorithm first puts the entry point (EntryAddr) of a page in a
Pathlist. If only one base architecture executable program is being translated, the
first EntryAddr is just the entry point of the program. The algorithm then creates a
group of VLIWSs for the set of base architecture instructions reachable from EntryAddr.
When a branch 1s encountered in the base architecture instructions, translation stops,
and the target address of the branch is placed in Pathlist (with certain restrictions
discussed below in Section A.l1.) If the branch is conditional, the address of the
fall-through instruction is also placed in Pathlist. In addition, Pathlist stores
the VLIW path from which target or fall-through instruction came. The algorithm
then removes from Pathlist an EntryAddr and the VLIW path to which operations
starting at EntryAddr should be appended. Operation proceeds as before, halting
when Pathlist is empty. The newly created VLIWs are then translated into binary
(if this is not done directly) and the translator jumps to the start of this binary code
to begin execution of the translated program.

Figure 2.2 shows an example of PowerPC code and its conversion to VLIW code

Origina! PowerPC Code Translated VLI Coide Transtared VIIW Code
I add rl.r2,r3 VLIWL: VLIWL:
2 be L1 add rl.r2, ri-g- i . .
‘)y T) -+ add £l,r2,r3
A 5] rl2.r1.3 i \!/ . ! .
B xor 4,15.16 x0r ré3.,r5,ré6 bc L1
5 and r8.r4,r7 VLIW1 i o LW B YRR (=
o be L2 +add rlr2,e3 o) e L
7 b OFFPAGE A Ll < ggdhgﬂ' r£63, 7
& Ll:sub r9,ribrll T -——
9 b OFFPAGE VLIWY: b OFFPAGE "8 . R
0 13: entlz ril.ca +Lada rlrar VLWLi
n b OFFPAGE 1 + aaa r1,r2.r3
—I-xor 163,15,16 A DC L1 D be Li
vuji: b VLIW? -l Nl xor ré3,r5,r sub r9,rl0,rll -—e—
sli r12,rl, jelh- N 4) o
+ ri=rf3 - <)) S b VLIW2 b OFFPAGE e~ &8)
R e EUs1ioriz,r1,3 (9)
VLIl L rd=r63 -
- and r8,r63,r7
-+ add ri,r2,rj ~ bc L2
; p N
xor 63, r5,r6 ADE L b OFFPAGE _ . __.__ .
VLIWZ: b VLIWZ VLIW1
—+- sli rl2,r1,3 = » .
-+ rd=r6l {\5) add rl,c2,03
-+ and r8,r63,r7 - bc (51
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, xor r63,r5,1 sub r9,rl0,x11]
VLIWL
L add rl.r2,r3 VLIW2: b vLiwa b OFFPAGE
xor ré3.r5,r6 C Sreésd X
YLIN: b VLI gzdhzﬂ' 63 7
- sli ri2,ri, o
1_ ?ﬁi,g%z w3 cntlz rll,ré63 \l@ e —
-+ and r8,r63,17 " b OFFPAGE b OFFPAGE .~
5 ®) —a
Ape 12 @€

Figure 2.2: Example of conversion from PowerPC code to VLIW tree instructions.

using the algorithm in Figure 2.1. Appendix C explains in detail each step of the
conversion. Section A.l discusses the general principles of the conversion in depth.
There are however, four major points to note here:

e Operations 1-11 of the original PowerPC code are scheduled in sequence into

VLIW’s. It turns out that two VLIW’s suffice for these 11 instructions.

e Operations are always added to the end of the last VLIW on the current path.

If input data for an operation are available prior to the end of the last VLIW,
then the operation is performed as early as possible with the result placed n
a renamed register (that is not architected in the original architecture). The
renamed register is then copied to the original (architected) register at the end
of the last VLIW. This is illustrated by the xor instruction in step 4, whose
result 1s renamed to r63 in VLIW1, then copied to the original destination r4
in VLIW2. By having the result available early in r63, later instructions can be
moved up. For example, the cntlz in step 11 can use the result in r63 before
it has been copied to r4. (Note that we use parallel semantics here in which
all operations in a VLIW read their inputs before any outputs from the current

VLIW are written.)

e The renaming scheme just described places results in the architected registers
of the base architecture in original program order. Stores and other operations
with non-renameable destinations are placed at the end of the last VLIW on
the current path. In this way, precise exceptions can be maintained.

o VLIW instructions are trees of operations with multiple conditional branches
allowed in each VLIW [Ebcioglu88]. All the branch conditions are evaluated
prior to execution of the VLIW, and ALU/Memory operations from the resulting
path in the VLIW are executed in parallel.

As this example suggests, the instruction set of the migrant VLIW architecture
should be a superset of the base architecture for efficient execution. ! This example
also raises several questions. How is an OFFPAGE branch handled? How and why
is it different than an ONPAGE branch? How are indirect branches handled? These
questions are addressed in Chapter 3.

In Appendix A, we present a more complete version of the proposed compila-
tion algorithm, starting with the CreateVLIWGroupForEntry function invoked by
TranslateOneEntry in Figure 2.1. Appendix A describes only the essentials of the
rescheduling algorithm. In order to achieve good performance additional (inexpen-
sive) optimizations are necessary. Included in these are combining [NakataniEbcioglu89]
and some form of hardware and software support to determine whether a speculative
load is aliased with a bypassed store [Moudgill96]. Constant propagation can also be
useful for converting indirect branches to direct branches (crucial for S/390 where all
branches are indirect). Finally, speculative execution of operations by renaming the
result register should include floating point registers and condition code registers as
well as integer registers. Through the use of combining and renaming condition code
registers, forall loops that initially appear to serialize on the induction variable can
achieve arbitrarily high degrees of parallelism.

LCISC instructions such as LOAD-MULTIPLE-REGISTERS which can be directly decomposed
into simpler primitives are an exception.

10

2.1 Essential Architectural Features for Aggres-
sive Reordering

The VLIW must have the usual support for speculative execution and for moving loads
above stores optimistically, even when there is a chance of overlap, as discussed in (e.g.
(MahlkeEtAl92) Kathail94, SilbermanEbcioglu93, Ebcioglu88, EbciogluGrovesy0|).
In order to keep the paper self contained, we briefly mention these here:

Each register of the VLIW has an additional exception tag bit, indicating that the
register contains the result of an operation that caused an error. Each opcode has
a speculative version. A speculative operation that causes an error does not cause
an exception, 1t just sets the exception tag bit of its result register. The exception
tag may propagate through other speculative operations. When a register with the
exception tag is used by a non-speculative commit operation, or anv non-speculative
operation, an exception occurs. This 1s illustrated below:

ORIGINAL CODE VLIW CODE
load r3’<-[Addr]
bc 1 bc L1
load 1r3<-[Addr] copy 1r3<-r3’

Register r3’ 1s not architected in the base architecture. Hence when it 1s loaded, no
exception occurs, even if this 1oad would normally cause a page fault or segmentation
violation. Instead the exception tag bit of r3’ is set. If the bc falls through, the
attempt to copy r3’ to r3 will result in an exception since r3 is architected in the
base architecture. However, if bc i1s taken, then execution continues apace and no
exception 1s ever taken.

As discussed above, loads may be moved above stores that cannot be proven not to
store into the same location. If there does turn out to be aliasing between a speculative
load and a store it passed, or some other processor changed the memory location,
the code must be retranslated starting at the load. This allows both the optimistic
execution of loads on a single program, and also strong multiprocessor consistency
(assuming the memory interface supports strongly consistent shared memory).

It is not always possible to distinguish at compile time which loads refer to I/O
space (I/O references should not be executed out of order). A speculative memory
mapped /O space load, will be treated as a no-op, but the exception tag of the result
register of the load operation will be set. When the load is committed, an exception
will occur and the load will be re-executed — non-speculatively this time.

11

Note that neither exception tags nor the nonarchitected registers are part of the
base architecture state; they are invisible to the base architecture operating system,
which does not need to be modified in any way. With the precise exception mecha-
nism, there is no need to save or restore non-architected registers at context switch
time.

2.2 Architectural Features to Support Commonal-
ity

If it is single base architecture one wishes to emulate in DAISY, the primitives in-
struction operations required for implemention are straightforward. To have the prim-
1tives to support multiple architectures simultaneously and keep them fast and simple
RISC-like operations, is a harder problem. We have not solved all the problems in this
area, but nevertheless we can give a partial list of the issues and potential solutions
below.

These issues and solutions are very architecture specific. Since they do not directly
relate to the main idea of how to implement a virtual machine in DAISY, they may
be passed over by the casual reader. We have not finalized the bit representation for
instructions in DAISY, but again the internal representation of the operations 1s not
essential to the main virtual machine idea presented here.

¢ Three input add operations are needed for maximum performance on S/390 and
z86 address calculations.

e AnEffective Address Mask Register is needed for implementing the 31 and
24 bit modes of 5/590.

» To support 286 and other architectures simultaneously, DAISY requires the
ability to take the conditional flags out of bit 8, 16, 32, or 64 registers.

¢ DAISY must have the ability — depending on its current mode -— to set the
carry, overflow, sign, zero, and parity bits of the z86, as well as S/390
condition codes, and the unusual carry flag set by the arithmetic shift of Pow-

erPC.

e To implement S/390 access registers, DAISY must have the ability to specify
the address prefix register in load/store instructions.

12

DAISY must have the ability to write into a substring of a register (z86).

DAISY needs a common intermediate format for floating point registers to
deal with S$/390 hex and IEEE representations. Different floating point load
and store operations must be architected to load and store in IEEE and §,/590
formats.

For good efliciency, DAISY must support Ezcess 6 arithmetic on 64 bit registers
for implementing S/390 decimal (BCD) operations.

Since PowerPC and S/390 use a big-endian representation of multi-byte quanti-
ties in memory, and 286 uses hittle-endian, DAISY must support both formats.
For peek efficiency, DAISY must support these formats in hardware, even for
unaligned accesses.

Finally, DAISY must map [/O operations of various architectures into a simple
next generation PCI bus interface.

13

Chapter 3

Page and Address Mapping
Mechanisms

In this chapter, we describe the address space layout of the VLIW or migrant archi-
tecture and how it compares to that of the base architecture. We then describe why
this layout allows a translation mechanism whereby the migrant architecture runs the
old base architecture software with minimal hardware support. We also discuss why
with this layout, a page 1s a useful unit of translation for dynamic translation. Finally
we describe why our approach for DAISY is robust in the presence of self-modifying
or self-referential code and why all possible entry points to a page need not be known
when translating from a particular entry point to that page.

The VLIW (muegrant architecture) has a virtual memory that is divided into 3 sec-
tions, as illustrated in Figure 3.1. The low portion, starting from address 0, is mapped
with the identity mapping, where VLIW wvirtual address = VLIW real address, and
is identical to the base architecture’s physical address space. (i.e., “real memory” for
PowerPC, “absolute memory” for §/390, “physical memory” for z86). In Figure 3.1,
for example the base architecture virtual page at virtual address 0x30000 is mapped
to the base architecture physical page at physical address 0x2000 (which 1s the same
as VLIW virtual address 0x2000 in the low portion of the VLIW virtual memory),
through the normal virtual memory mechanism of the base architecture.

The next, middle portion of the VLIW virtual memory address space, comprises
of (1) a read only store (ROM), which contains the Virtual Machine Monitor (VMM)
software (that accomplishes the dynamic translation between base architecture code
and VLIW code), (2) a read/write area to store various data structures needed by the
VMM, and (3) a nonexistent memory area (a hole in VLIW virtual address space).

14

The middle section (where present) is also mapped with the identity mapping, VLIW
wrtual = VLIW real.

The third and top section is the translated code area, and starts at a large power
of 2 address called VLIW _BASE (e.g.0x80000000). There are at least two ways in
which this section can be mapped:

e [or each page in the physical memory of the base machine, (= the low portion
of VLIW virtual memory) there 1s an N times larger page in the translated
code area of the VLIW virtual address space. To achieve an efhcient mapping
between the base architecture code and VLIW code, N should be a power of 2,
so N = 4 seems a reasonable value for PowerPC. S/390 or 286. (The actual
code expansion can be larger or sinaller, as described 1n later sections.) The
translation of a page at physical address n in the base architecture physical
memory, 1s at VLIW virtual address n x N + VLIW BASIE. The translated
code area 1s not mapped VLIW wirtual = VLIW real (since that would require
a VLIW real memory area N times larger than the base architecture memory).
lnstead, the VMM translates pages when the first execution attempt occurs,
and maps it to a real VLIW page frame from a pool of page frames in the upper
part of VLIW real storage (discarding the least recently used ones in the pool
if no more page frames are available).

e An alternative 1s to maintain the top section of memory as a hash table of
translated entries. The hash table is indexed by the base architecture physical
address and contains the real address of translated VLIW code. This hash table
1s maintained by the VMM, which adds entries to the hash table as page entry
points are translated, and removes them as translations of new pages need the
space. This approach has the advantages (1) that code for a translated page
can be contiguous, (2) that code need never be moved when a new entry point
1s discovered, and (3) that there is less wastage — no portion of a VLIW real
memory page need be wasted if the actual translation requires less than an NV x
expansion. However, this second mapping is more complicated than the first
approach, and hence slower.

For simplicity, we shall discuss only the mechanisms of the first mapping in the
Sections below. However, the second approach can be extended in a straightforward
manner to accomplish the actions described.

15

Base Arch Virt Address Space

Base Arch Phys Address Space

= Low Section ol VLIW
Virtual Address Space)

VLIW Virtual Address Space

ranslation of Physical Basl
Architecture Page C—

VLIW_BASE + 0xCQ00

VLIW Real Address Space

-— Not Mapped

(Transiation does

[J
o °
0x32000 Y
0x30000 0x2000 Phys Page B
Ox2F000 L“ 0x1000 Phys Page A
[] Not mapped| [J
® ®
[]

not exist)
H’ranslatlon of Physical Basq
Architecture Page B
VLIW_BASE + 0x8000
Irransiation of Physical Bas
Architecture Page A T
VLIW BASE + 0x4000 Top ot VLIW Real Memory
VLIW BASE=0x80000000
0x02004000
Empty
{Memory Hole) 0x02000000
R/W Area Virtual = Real R/W Area
VMM (ROM) (Identity Map) VMM (ROM)
M Buse Arch Memone
0x2000:BaseArch Phys Page H virtual = Real 0x2000:
0x1000:8aseArch Phys Page A (identity Map) 0%1000:
Base Architecture Base Architecture
Physical Memory Physical Memory
0:

Figure 3.1: VLIW Address Space Layout

16

3.1 Creation of a Page Translation

Suppose a program running on the base architecture branches offpage to a base ar-
chitecture nstruction, whose physical address is n. In the translated version of the
same program running on the VLIW, this branch will be executed by branching into
VLIW virtual address n x N + VLIW _BASE in upper area of the VLIW virtual ad-
dress space. Assume the beginning physical address of this 4K byte base architecture
physical page was ny = (n&Oxfff£f£000) (in C notation). If this base architecture
page has never been executed before, then the corresponding N x 4K byte page at
VLIW virtual address (ng x N + VLIW_BASE) will not be mapped, and therefore
a “VLIW translation missing” exception will occur, which will be handled by the
VMM. The VMM will create a translation for the base architecture physical page
at physical address ng, and make the corresponding translated code area page (which
begins at VLIW virtual address (ng x N + VLIW BASE) and is N x 4K bytes long)
mapped to some N x 4K byte page frame in the upper area of VLIW real memory.
Then the interrupted translated program will be resumed to redo the branch to ad-
dress (n x N + VLIW_BASE), which will now succeed. When that first page of the
base architecture program branches to a physical address n’ in a second, different base
architecture physical page that has not yet been executed, that page will in turn be
translated and mapped in the same manner.

As a concrete example, as shown in Figure 3.1, suppose the base architecture pro-
gram begins when the operating system branches to base architecture virtual address
0x30100 (part of the 4K page at 0x30000 - 0x30fff). The base architecture vir-
tual address 0x30100 has been mapped (via base architecture page tables) to base
architecture physical address 0x2100 (part of the 4K page frame 0x2000 - 0x2fff),
whose VLIW translation is at VLIW virtual address 4x0x2100+VLIW BASE =
0x80008400 (part of the 16K page 0x80008000 - 0x8000bfff). In the translated
code, the branch to base architecture virtual address 0x30100 is really executed as a
branch to VLIW virtual address 0x80008400, which belongs to a 16K VLIW virtual
page that is not yet mapped. So this branch initially causes a “translation missing”
interrupt to the VMM. The VMM creates the translation of the base architec-
ture 4K physical page frame 0x2000 - 0x2fff, writes it into the VLIW 16K page
frame at (say) VLIW real address 0x02000000 - 0x02003fff, and maps the VLIW
16K virtual page 0x80008000 - 0x8000bfff to this page frame at 0x02000000 -
0x02003fff. The interrupted translated program is then restarted, and now the
branch to VLIW virtual address 0x80008400 succeeds without an interrupt, and
starts executing the translated VLIW code for the first page. Suppose the code in

17

the first page of the program now branches to a second page, at base architecture
virtual address 0x32200 (part of the 4K page 0x32000 - 0x32fff) which is mapped
(via the base architecture page tables) to base architecture physical address 0x1200
(part of the 4K page frame 0x1000 - 0x1fff), whose translation is at VLIW virtual
address (4x0x12004+VLIW BASE) = 0x80004800 (part of the 16K page 0x80004000
- 0x80007fff). In the translated code, the branch to base architecture virtual ad-
dress 0x32200 is really executed as a branch to VLIW virtual address 0x80004800,
which is eventually mapped to VLIW real address 0x02004800 (part of the 16K page
frame at 0x02004000 - 0x02007fff), via another interrupt to the VMM, that cre-
ates the translation for the second page and then restarts the interrupted translated
prograimn.

This still leaves the question of how to handle an offpage branch in the base
architecture to an address g on the same 4K page as n, but where ¢ was not identified
as a possible entry point during the translation starting from n. This problem is
addressed in Section 3.4. Another concern is self-referential code such as code that
takes the checksum of itself or code with floating point constants intermixed with
real code or even pc-relative branches. These are all transparently handled by the
fact that all registers architected in the base architecture — including the program
counter or instruction address register — contain the values they would contain were
the program running on the base architecture. The only means for code to refer to
itself 1s through these registers, hence self-referential code 1s trivially handled. The
final major concern — self modifying code — is discussed below in Section 3.2.

The above paragraphs describe the logical behavior of the address mappings. In
the actual implementation, these multiple levels of address mapping are collapsed
to one level, so cross-page branches can execute very efficiently, as will be seen in
section 3.4.

3.2 How a Translation of a Page Gets Destroyed

Each “unit” of base architecture physical memory (low section of VLIW virtual mem-
ory) has a new read-only bit, not known to the base architecture. (The unit size
is 4K for PowerPC, > 2 bytes for 5/390, > 1 byte for 286 — perhaps 8 for both.)
Whenever the VMM translates any code in a memory unit, it sets its read-only bit
to a 1. Whenever a store occurs to a memory unit that is marked as read-only (by
this or another processor, or I/O) an interrupt occurs to the VMM, which invali-
dates the translation of the page containing the unit. The exception is precise, so the

18

base architecture machine state at the time of the interrupt corresponds to the point
just after completing the base architecture instruction that modified the code (in case
the code modification was done by the program). After invalidating the appropriate
translation, the program is restarted by branching to the translation of the base ar-
chitecture instruction following the one that modified the code. If the page currently
executing was modified, then retranslation of the page will occur before the program
can be restarted. Note that this mechanism naturally handles the case when a new
program begins execution in the base architecture memory used by an carlier program
(e.g. via overlay programming techniques). When code modification events occur fre-
quently, there are optimizations that can be applied instead of retranslating the whole
page, but we will not discuss these during this initial conceptual explanation of our

ideas for DAISY.

3.3 Communicating Interrupts to Base Architec-
ture OS

All exceptions are fielded by the VMM. When an exception occurs, the VLIW
branches to a fixed offset (based on the type of exception) in the VMM area. So
far we have described the “VLIW translation not present” and “code modification”
interrupts, that are handled directly by the VMM. Another type of exception occurs
when the translated code is executing, such as a page fault or external interrnpt.
In such cases, the VMM first determines the base architecture instruction that was
executing when the exception occurred. (The translation is done maintaining precise
interrupts as was described in Chapter 2, so this is possible.) The VMM then per-
forms interrupt actions required by the base architecture, such as putting values in
specific registers. Finally the VMM branches to the translation of the base operat-
ing system code that would handle the exception. When the base operating system
1s done processing the interrupt, it executes a return-from-interrupt instruction
which resumes execution of the interrupted code at the translation of the interrupted
istruction.

As an example, consider a page fault on the PowerPC. The translated code has
been heavily re-ordered. But the VMM still successfully identifies the address of
the PowerPC load or store instruction that caused the interrupt, and the state of the
architected PowerP(registers just before executing that load or store (see Chapter 2).
The VMM then (1) puts the load/store operand address in the DAR register (a register

19

indicating the offending virtual address that lead to a page fault), (2) puts the address
of the PowerPC load/store instruction in the SRRO register (a register indicating the
address of the interrupting instruction) (3) puts the (current emulated) PowerPC MSR
register (machine state register) into the SRR1 register (another save-restore register
used by interrupts), (4) fills appropriate bits in the DSISRregister (a register indicating
the cause for a storage exception), and (5) branches to the translation of PowerP(
real location 0x300, which contains the PowerPC kernel first level interrupt handler
for storage exceptions. If a translation does not exist for the interrupt handler at real
PowerPC address 0x300, it will be created (but subsequently will not be cast out, to
help achieve fast interrupt response later on).

For an 286 “segment not present” fault (interrupt number 11), e.g. arising from
a far call to a procedure in & segment not currently in memory, the VMM finds the
I1th entry in the IDT (Interrupt Descriptor Table, where pointers to handlers for
each interrupt type are kept, as well as other information). Suppose that entry is
a “task gate” that points to an interrupt handler task (the z86 architecture can do
task switching by hardware). The VMM performs the protection checks and state
saving and restoring functions associated with the task switch, and branches to the
translation of the first instruction of the interrupt handler task. If the handler has
not been translated, it will be, when a branch is made to its translation, and it is
found to be unmapped.

Notice that the mechanism described here does not require any changes to the base
architecture operating system. The net result is that all existing software for the base
architecture, including both the operating system and applications, runs unchanged,

by dint of the VMM software.

3.4 Mapping a Base Architecture Instruction Ad-
dress to a VLIW Address

We mentioned that one could find the translation of a base architecture instruction
at physical address n, by branching to VLIW virtual address n X N 4+ VLIW _BASE.
So, if an instruction is at offset n In the base architecture page, its translation is
at offset n x N in the VLIW translated code page. In reality, not all entry points
are valid all the time in the VLIW page. In fact, initially, when a branch is first

20

made to a translated code page, the page is created so that all entries are invalid *.

There is a marker (e.g. a special no-op, or a bit) that indicates a valid entry point.
VLIWs have a special cross-page (or indirect) branch primitive, that must branch
to a valid entry point (or else there is an exception), as well as intra-page branch
primitives that do not have this restriction. [nitially, when the translation page 1s
created, all entries are set to invalid. When a branch is made to an mvalid entry point
at offset n x N, an “invalid entry point” exception occurs; the VMM translates the
base instructions starting at offset n, and lays out the VLIWs in memory so that the
VLIW code for the group of base instructions starting at offset n, begins at offset
n x N in the translated code page, and marks the VLIW at n x N as a valid entry.
(Previously created VLIWs may need to be moved around to create the new entry
point). Secondary valid entry points on this page (e.g., at the exits of the first group
of VLIWs) may also be created during the translation process. The locations which
are not valid entry points are used as plain memory. For example, a VLIW code
fragment will start at offset n x N with a valid entry only at that offset, and may be
allocated sequentially in the translated code page thereafter. If for any reason there
is no space left on the page, one could branch to an overflow area to continue. (We
must keep records in order to free the overflow area when the translation of this page
is destroyed by code modification, or cast out).

Return-from-interrupt (rfi) instructions are effectively branches to some entry
point in a page. If we created translations for every target on a page that an rfi
branches to, and a sufficient number of external interrupts occured, we could end up
with too many entry points on a page. So after an emulated rfi branches into a
translated code page, a good method is to interpret base instructions until the next
subroutine call, cross page branch or backward branch is executed. This technique
limits the entry points to loop headers, normal page entry points, and indirect branch
targets, and guarantees that we will quickly leave the interpretive mode.

On the other hand when a plain indirect branch (probably a computed branch,
C++ virtual call, or procedure return) goes to a non-existent entry point, a valid
entry point should be created at the branch target, since computed branches may be
executed frequently.

A variety of VLIW primitives can be used to perform a cross-page branch. We first
discuss a high-performance implementation of the primitive, GO_ACROSS PAGE which
requires some hardware support. Below we discuss some alternatives which may have

1The remainder of this paragraph does not apply when a hash table, as described at the start of
Chapter 3 is used instead of n x N + VLIW_BASE.

21

lower performance, but require less hardware. The syntax of GO_ACROSS_PAGE is:
GO_ACROSS_PAGE offset(reg)

The offset 1s added to the register reg to obtain an effective address of the base
architecture. That effective address is first translated to a physical address of the base
architecture; then it is multiplied by N and VLIW BASE is added to it; then it 1s
translated to a VLIW real address, which is finally the address of the branch target
VLIW. If the base architecture physical address is not available, a base architecture
instruction page fault exception occurs (to a handler in the VMM — all exceptions
are fielded by the VMM). If the translated VLIW code for this page is not available,
a translation missing exception occurs. If the target VLIW is not marked as a valid
entry, an invalid entry exception occurs. Otherwise execution proceeds with the target
VLIW instruction.

The above description may give the impression of a daunting CISC instruction,
but Figure 3.2 illustrates how it can be implemented. Assume the VLIW Instruc-
tion Translation Lookaside Buffer (ITLB) maps the base architecture 4K virtual page
numbers directly into VLIW N x 4K real page frame numbers that contain the trans-
lated code. The software could guarantee that the low order 12 bits of regis 0, or
the offset is 0, so the low order 12 bits of the effective address reg+toffset is im-
mediately available. The low order 12 bits of the effective address are shifted left by
log2(N) bits, and applied to the Icache (14 bits allows a 64K cache, if 4 way associa-
tive). At the same time the upper bits of the effective address are sent to the ITLB.
If a VLIW real address that comes out of the Icache directory matches the VLIW
real address that comes out of the ITLB, no miss occurs. The target VLIW 1s then
checked for an valid entry marker on the next cycle, while optimistically executing
the target VLIW as if it were a valid entry (and recovering before any side effects
occur, and causing an exception, in case the target VLIW is an invalid entry). Note
that the ITLLB and [Cache function as a hardware version of the hash table described
at the start of Chapter 3, mapping base architecture instruction addresses to migrant
VLIW instruction addresses.

If only an Icache miss occurs, hardware handles it. One could handle an ITLB miss
by hardware sequencers, but using a yet lower level of software to implement a “micro-
mterrupt” ITLB miss handler is simpler, and more in line with the philosophy of the
present design. (Note that all software in a VLIW is like horizontal microcode, so no
part of the VLIW software is necessarily slower than horizontal microcode.) Here is
how the ITLB miss can be handled with a “micro-interrupt”: If the base architecture
is not in real address mode, the VMM “ITLB miss micro-interrupt handler” searches
the base architecture page tables to find the base architecture physical address. If this

22

GO_ACROSS_PAGE offset(req)

\
Effective Address
20 31 12011 0
1|
\\ 7
- me | 2 Instruc Line
M + -
' 7
A 20 (or more) : ' JDI—J
e 4]
: | | 64K [Cache % B
;LPIA:)a(,hme : l | L_ L Eﬁ
eal Page .]
: ‘5——] Tags #E*}__
= 4
Er e

Cache Miss

Figure 3.2: Implementation of GO_ACROSS _PAGE Instruction.

23

search fails, a base architecture instruction page fault is fielded by the VMM, which
in turn communicates the page fault to the base architecture QS first level interrupt
handler. Next, the ITLB miss handler multiplies the base architecture physical address
by N and adds VLIW_BASE to it, and then searches the resulting VLIW virtual
address in the VMM virtual-to-real page mapping tables, finally obtaining a real
VLIW page frame address. If the latter search fails, a translation missing exception
is fielded by VMM. Otherwise, an entry mapping the effective address page number
to the VLIW real address page frame number is placed into the ITLB. An extra
bit is appended to the effective address sent to the ITLB, that indicates if the base
architecture is currently in physical address mode. (Thus, for example, mappings for
base page no. 10 physical and base page no. 10 virtual may coexist in the ITLB.)
Whenever the assumptions that caused an ITLB entry to be created change, that
ITLB entry must be invalidated. Examples of this include TLB-invalidates by base
architecture, code modification events, and cast-outs of VMM translations.
Other types of branches are:

e GOTO offset just branches to the VLIW at offset in the current page (no
check for a valid entry). Ordinary intra-page branches between VLIW’s use this
branch.

e GOTO 1r, GOTO long_offset branch to the VLIW at the real address given by
a link register, 1r or the long offset. There is no check for a valid entry, and
the ITLB is bypassed. Branches to an overflow area may use these primitives.

The GO_ACROSS PAGE primitive, ITLB implementation, and valid entries mecha-
nism described above are intended for reducing the latency of a cross page branch. If
we give up the simultaneous ITLB lookup, we could first do the address translation
in a prior VLIW, and then send a VLIW real address to the Icache, which has some
advantages in Icache design.

LRA r1,offset(reg) ; Translate (reg + offset) to physical address n.
; The VLIW real address for VLIW virtual address
; n* N + VLIW_BASE is then placed in rl.

GO_ACROSS_PAGE2 r1 ; Branch to VLIW real address in ril.
; Check for a valid entry.

We can also give up the valid entry point approach. Let the translated code page
for a base architecture page consist of a vector of pointers. For a base instruction at

24

offset 7 in the base architecture page, vector element n will contain the real address of
the VLIW code, or in case the entry at offset n has not yet been created for this page,
the real address of a translator routine, that will create the corresponding VLIW
code. This costs another level of indirection, but is simpler to manage.

25

LRA tl,offset(reg) ; Put translated reg + offset in ti.
==> t1 contains real address of pointer
to the VLIW code for this entry.

LOAD_REAL 1r1,0(t1) ; Load pointer to VLIW code into rl.

GOTO ri ; Go to real address of VLIW code.
; Make no check for valid entry.

For additional simplicity, we could even give up the ITLB and simulate a big direct
mapped ITLB in VLIW real memory by software in a manner similar to the software
hash table described at the start of Chapter 3. In many cases the operations for doing
the hash lookup of VLIW real address can be scheduled into VLIW instructions like
other operations. Less than 10 VLIW instructions normally suflice for the lookup.
These 10 VLIW’s may be shared with normal program code, thus hiding their latency.

3.5 Mapping from VLIW Back to Base Instruction
Addresses: How to Find the Original Base In-
struction on an Exception

As we mentioned, when an exception occurs in VLIW code, the VMM should be
able to find the base architecture instruction responsible for the interrupt, and the
register and memory state just before executing that instruction.

The simplest way to identify the original instruction that caused an exception is
to place the offset of the base instruction corresponding to the beginning of a VLIW
at as a no-op inside that VLIW, or as part of a table that relates VLIW instructions
and base instructions, associated with the translation of a page.

If the VLIW has an exception semantics where the entire VLIW appears not to
have executed, whenever an error condition is detected in any of its parcels, then
the offset 1dentifies where to continue from in the base code. Interpreting a few base
instructions may be needed before identifying the interrupting base instruction and
the register and memory state just before it.

If the VLIW has a sequential semantics (like an in-order superscalar, where in-
dependently executable operations have been grouped together in “VLIWs”) so that
all parcels that logically preceded the exception causing one have executed when an

26

Base Architecture Code VLIW Code

VLIW]1

‘L cmpi er6=r3,0

4— load r5’=0(r3)

b VLIW2
0x0 cmp1 cr0=r3,0 VLIW2
0x4 be cr0.eq, L1
bec crl.eq
0x8 load r5=0(r3) copy r5=r5’
L2: b L2 b 11

Figure 3.3: Finding the base archatecture instruction responsible for an exception

exception is detected, the identification of the original base instruction does not re-
quire interpretation. Assuming the base architecture code page offset corresponding
to the beginning of the VLIW is available, the onginal base instruction responsible
for the exception can be found by matching the assignments to architected resources
from the beginning of the VLIW instruction, to those assignments in the base code.
starting at the given base code offset.

One way to avoid tables and pointers to the original base architecture instructions
altogether is as follows: Let us assume the VLIW has sequential semantics, and
exceptions occur at a parcel of VLIW, (as opposed to a VLIW boundary). In this
scheme there are no offsets in the VLIW code that relate it to the base architecture,
nor any tables. When an exception occurs, find a backward path from the exception
causing parcel to the entry point of the group of VLIWs, which is known to have
an exact correspondence with a base architecture instruction (If the beginning of the
group is at offset NV x n in the translation page, the original base instruction must be
at offset n in the base architecture page).

We describe the scheme with the help of the example in Figure 3.3. Assume
that the load at address 0x8 causes a page fault. To determine the base architecture
address of the exception-causing instruction, the VMM finds the backward path
from the exception causing parcel to the entry point of the group of VLIW’s. The
exception is registered in VLIW2 in the copy r5=r5’ instruction, when the exception
bits associated with r5’ are acted upon. Thus the VMM traces from this parcel to
the start of VLIW1, the entry point of this group of VLIW’s. If VLIWs are laid out

27

in a topological order from the entry point, a backward scan in the binary code from
the interrupting parcel to the nearest entry point should be able to rapidly identify
the path from the entry point to the interrupting parcel.

As the backward path is scanned, {copy, bc, VLIW2, b VLIW2, load, cmpi,
VLIW1}, the VMM remembers the branch directions taken by conditional branches,
in this case the fact that bc cr0.eq is not taken. Upon reaching the top of the
backwards path, the base architecture address corresponding to VLIW1 is calculated:
VLIW1_addr/4 — VLIW BASE if the code has 4x expansion. In this case the calcu-
lation yields address 0 in the base architecture. Now the same path is followed in
forward order, {VLIW1, cmpi, load, b VLIW2, VLIW2, bc, copy}. There has to
be a one to one correspondence between assignments to architected registers, condi-
tional branches and stores in the VLIW code path, and assignments to architected
registers, conditional branches and stores in the base code path. Thus the cmpi as-
signment to cr0 is matched first. The load to r5’ is passed over since r5’ is not
architected in the base architecture. The next correspondence is the bc at address
0x4 in the base architecture. The VMM recorded that this branch was not taken,
so the VMM moves to instruction at 0x8 in the base architecture. The load to r5
in the base architecture is matched to the copy to r5 in the VLIW. Since the VMM
recorded that this copy caused the exception, it determines that the load at 0x8 1s
the offending instruction. The VMM then puts 0x8 in the register used by the base
architecture to identify the exception, and branches to the VLIW translation of the
exception handler.

3.6 Dealing with Restartable CISC Instructions

Sometimes architectures (286, S/390) require that if there is an error condition (e.g.
a page fault) during the execution of an instruction, that instruction appears not
to have executed, and is restarted after the operating system brings in the page and
returns to the interrupted program. In this case the translation of such an instruction
requires pre-testing some of the memory operands to see if they will lead to a page
fault, before commencing the emulation of the instruction. For example an S/390 MVC
(move characters) or AP (add packed decimal) instruction has to touch the upper end
of the memory operands first, before starting the move (or decimal addition) from the
lower end of the operands. This way, either there is a page fault before the instruction
has had a chance to cause side effects, or the instruction continues until completion.
For really complex operations such as TR (Translate) in S/390 where the translation

28

table 1s within 256 bytes of a page boundary (danger of a page fault), we can do
a trial execution of the instruction without causing any side effects to architected
resources; and 1f that does not cause a page fault, we can proceed with the actual
emulation of the instruction. If any interrupt other than a page fault occurs during
the instruction, a “micro-level” interrupt handler may need to single step operations
in the VLIW code, until a valid base instruction boundary is reached. That boundary
can be found, because of the correspondence mechanisms between the VLIW code
and the base code, described above.

For the PowerP(C] this is not an 1ssue since there are no complex memory to
memory instructions. For example, the architecture specifies that a PowerP (' store
multiple instruction may have modified some of the memory before causing a page
fault, but can still be restarted by the operating system.

3.7 Dealing with Real-Time Requirements

Programs are not supposed to be timing dependent (architectures such as S/390
state that a program should not be timing dependent to run on all models). But
unfortunately they can be. Virtual machines have in general unpredictable timing.
so real time performance 1s a challenge for the present proposal.

Let us first consider the case of programs that must take less than a given time
limit. One can do the following to alleviate the real time constraints in this case:

1. Use heuristics to pin translations of certain memory areas in mermory, so they
will not be cast out (e.g. the interrupt handlers and other code fragments known

to need real time performance).

2. Offer an exact method to communicate to the VMM indicating that the trans-
lation of a routine should be pinned. This requires a software change.

Sumilarly, for code fragments that must take exactly a given amount of time, not
less or more (e.g. loops for waiting for exactly m milliseconds), one could offer a
version of dynamic translation that tries the emulate the timing of an old machine
by padding the code with delay operations. However, such exact timing dependent
programs would suffer with any faster implementation of the base architecture.

Real time interrupt response (to I/O events) is also important. So external in-
terrupts should be enabled during translation (to the external interrupt handler the
program will appear to be at the point just before executing the entry instruction of

29

the page being translated). When an external interrupt occurs during translation, one
should not throw away the ongoing translation (if the interrupts are frequent enough,
one can imagine never completing the translation of this page). One approach is to
continue making progress with the translation for a while, and then save the compi-
lation state and take the interrupt. When a return from interrupt instruction tries
to execute the entry instruction of the partially translated page again, the VMM
continues from where it left off. This way, we can get both forward progress in the
translation, and good external interrupt response time.

30

Chapter 4

Data Memory Access
Requirements for a Virtual

Machine

The data memory accesses by the translated code must go through the translation
mechanism of the base architecture. For this purpose, a different data translation
lookaside buffer (DTLB) can be used, mapping a base architecture Virtual Page Num-
ber to a base architecture Physical Page Number. If the data space relocation is cur-
rently turned off for the base architecture (it is in real address mode}, it 1s still useful
to use the DTLB to restrict access to real memory locations the base archutecture is
not supposed to access (like the real memory area where the VLIW translations are
kept), and to implement some specialized protection functions (such as key protection
in the $/390 — each 4K block in S/390 real memory has a 4-bit protection key) that
have not been implemented in the actual VLIW hardware. An address prefiz reqister
that contains bits indicating whether data space relocation is enabled (and PSW key
for $/390 and so on), can be prepended to the effective address generated by a load
or store when accessing the DTLB (i.e. the address sent to the TLB has more bits
than the virtual page number). This way the same effective address will correspond
to different entries in the DTLB depending, e.g., on whether data space translation
is enabled or not. If the base processor tries to access an out of bounds page during
real mode, a DTLB miss will occur, and the VMM will communicate an appropriate
storage exception to the base architecture operating system.

The VMM will also need some storage space of its own. For example infrequently
used registers of the base architecture, or storage keys for S/890, may be emulated in

31

memory locations. To access these without interfering with the data of the executing
program, the processor will need LOAD REAL and STORE_REAL instructions that always
bypass the DTLB, and access the VLIW real memory directly. The loads and stores
that access real VLIW memory will need to be intermixed with normal loads and
stores that use the DTLB, without any mode changes in between; that is why we
need them.

32

Chapter 5

Experimental Results

We have implemented the incremental compilation technique for the RS/6000, which
is essentially the same as PowerP(C for our purposes. The present version of the
imcremental compiler 1s incomplete in a number of ways. For example, the “com-
bining” optimization includes only a small subset of all combining possibilities, and
software pipelining is not implemented. Nevertheless, we provide here some prelimi-
nary results on a few AlX utilities, an Erastothenes’ Sieve program for finding prime
numbers (a Stanford integer benchmark), SPECint95 compress and SPECint95 gcc,
a large application.

In our implementation of DAISY we have assumed a VLIW machine with prinu-
tives similar to the PowerPC| but with 64 integer and floating point registers, rather
than 32. To measure the amount of parallelism extracted by DAISY, we began with a
very large VLIW machine with a total of 24 fixed point operations (out of which 8 can
be stores), and a total of 7 conditional branches (8 way branching) can be executed 1n
each VLIW, which follows the tree instruction model. We then looked smaller imple-
mentations, and in particular at a machine which can issue 8 ALU/Mem operations
— of which at most 4 can be memory operations, and which can have 3 conditional
branches in addition. Efficient hardware implementations of the tree VLIW have been
described elsewhere (e.g. [Ebcioglu88]). The implemented incremental compilation
algorithm is similar to the one discussed in this paper, although instead of generating
binary VLIW code, an assembly level listing is produced.

Since our implementation runs on RS/6000 machines, a set of RS/6000 simulation
instructions (in direct binary form) is also generated for each VLIW. These RS/6000
instructions emulate the actions of each VLIW. In effect we use a compiled simulation
method similar to Shade [CmelikKeppel93] for simulating our VLIW machine on the

33

Program | PowerP('Ins | Average Size of
per VLIW | Translated Page

compress 6.5 14K

lex 4.7 27K

fgrep 4.8 17K

wC 3.0 13K

cmp 3.6 10K

sort 3.7 23K

c_sieve 4.6 2K

gecce 3.0 36K

MEAN 4.2 18K

Table 5.1: Pathlength reductions and Code Explosion moving from PowerPC' to
VLIW.

RS/6000. During transitions between VLIWSs, a counter is incremented for each
VLIW flowgraph edge. From the edge counts and from information about the static
properties of each edge, ALU usage histograms and other statistical data can be
obtained at the end of the run. A call to a kernel routine is translated to a real
call, so kernel routines are not simulated in this implementation. But since there are
many AIX applications that spend most of their time in user and library code, we
can learn significantly about available ILP, and tradeoffs in compiler techniques, from
the current incremental compiler tool.

Table 5.1 contains the pathlength reductions achieved on various AIX utilities,
the Erastothenes sieve program, and SPECint95 compress and gcc. The pathlength
reduction 1s equal to the number of operations in the RS/6000 execution trace divided
by the number of VLIW instructions in the VLIW execution trace. The pathlength
reduction can be viewed as an abstract measure of the infinite cache instruction
level parallelism for the program. Figure 5.1 indicates how the pathlength reduction
changes with the number of resources available in the migrant VLIW machine. These
benchmarks all achieved ILP around 2 for the most primitive machine, which issues
4 instructions per cycle, 2 of which may be ALU operations, another 2 of which may
be memory ops, with only 1 branch allowed per cycle. Performance diverges for the
high end machine with ILP of up to 6.5 achieved for compress.

By way of comparison, Table 5.2 compares the performance of DAISY with a tra-

34

Ins Per Cycle T
74— Architecture Configurations. i
<Arch #>. # Issue - # ALU’s - # Mem Acc - # Branches
10: 24-16-8-7 5 8- 8-4-3 /G ¢
oL 9.16-16-8-7 4: 6-633
8 12-12.8-7 3 4-4-4-3 i
7.8-887 2 4-422
1. 4-2-2-
5 —
a]-
3 -
2 O COMPRESS95
—A— C SIEVE
~f— FGREP
—h— LEX
1 = e Cmp
- SORT
—— wC i
—8— GCC |
0 I L ! | e I H | — i

0 1 2 3 4 5 6 7 & 9 10
Architecture Configuration

Figure 5.1: Pathlength reductions for Different Machine Configurations

Program | DAISY | Trad
ILP ILP

compress 6.8 7.6
lex 3.9 5.4
fgrep 42 | 638
sort 2.5 5.1
c_sieve 4.6 3.9
MEAN 4.4 5.8

Table 5.2: Comparison of ILP from DAISY and traditional VLIW compiler.

35

ditional VLIW compiler performing a great number of sophisticated optimizations. !

As can be seen, the ILP achieved by DAISY is less than 25% worse than that
achieved by the traditional compiler on these benchmarks, albeit with much individ-
ual variation among the benchmarks. For c_sieve, DAISY actually outperformed
the tradional compiler.

This performance was achieved at quite low cost. In the current experiments,
DAISY required an average of 4315 RS/6000 instructions to compile each PowerPC
instruction. However, note that our implementation is currently a research proto-
type intended for flexible experimentation. We can expect to reduce this number
significantly with straightforward tuning, and further with an eventual rewrite of the
incremental compiler, when the design matures. As a rough guess, under 1000 base
instructions per base instruction seems achievable for implementing our aggressive
compiler techniques. Our traditional VLIW compiler breaks our profiling tools, but
in order to compare our compilation speed to a standard optimizing compiler, note
that the gce compiler executes an average of 65K RS/6000 instructions to generate
each machine instruction in its output.

Although we have not implemented a detailed timer so as to obtain precise pipeline
and cache effects, our implementation of DAISY does include a simple cache simu-
lator. We have measured the benchmarks the following cache configuration:

o 64 kbyte first level data cache with 4-way associativity and 256-byte lines, 0
cycle latency.

o 64 kbyte first level direct mapped instruction cache with 256-byte lines, 0 cycle
latency.

e 4 Mbyte second level combined cache with 4-way associativity and 256-byte
lines, 12 cycle latency.

e Main Memory, 88 cycle latency

Table 5.3 measures the reduction in ILP from using finite caches. Overall, per-
formance drops by a little over 20% from infinite cache levels, although individual
benchmarks, such as gcc fare much worse. (In gec’s case, the large increase is due
to a 19% miss rate in the first level instruction cache.) The ILP attained is still

!Because our traditional compiler deals only with compilable user code, the comparison in Ta-
ble 5.2 represents performance for the user portion of the benchmarks. Thus, numbers for DAISY
differ from those in Table 5.1.

36

Program | oo Cache | Finite Cache | PowerPC 604E |
compress 6.5 2.6 0.2 |
lex 4.7 3.8 1.1

fgrep 4.8 3.8 0.7

we 3.0 29 0.9 |
cnp 36 | 35 09
sort 3.7 2.2 03
c_sieve 4.6 | 4.6 1.2)
gcc 3.0 T 0.8 0.5
MEAN 42 3.3 07

Table 5.3: Reduction of ILP from finite caches and comparison to PowerP(C 604F

significantly higher than that achieved by a PowerPC 60/FE with 128 Mbytes of mem-
ory, with a mean of 3.3 versus only 0.7 for these benchmarks —~ almost a five fold
improvement. Even the dificult gcc benchmark achieves 60% higher 1LP in DAISY
than on the 604F.

Table 5.4 indicates that most VLIW instructions do not contain loads causing
cache misses. Hence stalls should be relatively rare. Figure 5.2 indicates the miss
rates for the different benchmarks. Most of the miss rates are quite low, with the
exception of the second level cache for c_sieve, cmp and wc and the Icache for gec.
The high rates on the second level cache reflect cold start misses — there are very
few accesses to the second level cache since these three benchmarks are small and
have their needs satisfied by the first level cache. The high gcc Icache miss rate is
a more serious concern and reflects the large working set of gcc and the fact that a
cross-page jump occurs on average every 10 VLIW instructions.

For comparison, we also measured the performance on the 8-issue machine de-
scribed at the start of the Chapter (8§ ALU/Mem ops per cycle of which at most 4
can be memory operations, plus 3 conditional branches). In doing so, we also reduced
the size of the first level instruction and data caches from 64 kbytes each to 4 kbytes
each, while moving the 64 kbyte caches to the second level, and the 4 megabyte cache
to the third level as summarized below.

37

% Miss Rate

50.000

23.208

10.772

5.000

2.321

1.077

0.500

0.232

0.108

0.050

0.023

0.011

0.005

B L0 DCache
. LO ICache
L1 JCache

4

c_sieve cmp wc fgrep lex gcc compress sort

Figure 5.2: Cache Miss Rates for Benchmarks

38

| Program | Loads per | Stores per | Mean VLIW’s Between B

VLIW VLIW Load | Store | Memory |
] Misses | Misses | Misses |
| compress 1.39 3.19 165 19.8 l 177 _4'
lex 1.77 0.46 9,092 | 6,193 | 3.681
fgrep | 127 0.33 18,075 149,295 | 13,206 |
we 0.65 0.002 113695 | 41,086 | 10271
cmp 129 0.003 | 16,528 | 85.000 | 13.837 B
sort : 2.41 0.84 401 1 1,683 | 323
c_sieve 0.89 0.63 92,500 1 9,024 = 8222
“gec L LT 051 [9601 | 899 | 868 |

Table 5.4: Load, Store, First-Level Cache Characteristics of Benchmarks

' 1' { " Line]
Cache Size LAssoc Size | Latency |

Lev [[Cache | 4K & | 64 0]
Lev 1 DCache | 4K 4 64 0 |
Lev 2 ICache [64K | 2 128 | 4
Lev 2 DCache | 64K 4 128 4 |
Lev 3 JCache | 4M | 4 256 16
Main Memory - - - 92

Table 5.5 indicates the results. Infinite cache parallelism is reduced from 4.2 for
the 24-issue machine to 3.0 for the 8-issue machine — clearly the 8-issue machine is
making more efficient use of its resources. Finite cache parallelism drops by a similar
amount from 3.3 to 2.2. (The large drop for gcc is the result of large Icache miss
rates.)

Code explosion statistics for the benchmarks are also in Table 5.1. The average
code expansion per actually translated page is 18K /4K = 4.5X (this is just the VLIW
code size; empty wasted space on pages due to the 4X fixed expansion may lead to
additional overhead, unless used for something else). We have placed little emphasis
in our implementation on controlling code explosion and expect to reduce the ex-
plosion in future implementations. Notice that only the actually executed pages get
translated, so code explosion may be less than that of a static VLIW compiler that

39

Program | oo Cache | Finite Cache
compress 4.1 2.5
lex 3.1 2.2
fgrep 2.8 2.1
we 2.6 2.5
cmp 3.3 3.0
sort 2.6 1.7
c_sieve 3.4 3.3
gcc | 2.4 0.6
MEAN | 3.0 22]

Table 5.5: Peformance of 8 Issue Machine.

translates all pages of the executable.

Another measure of interest is the number of crosspage branches executed. As dis-
cussed in Section 3.4 crosspage branches can be expensive, particularly in low-end im-
plementations of the VLIW. Table 5.6 breaks down the number of crosspage branches
in the seven benchmarks. PowerPC has 3 distinct types of crosspage branches: (1) di-
rect branches, (2) branches via the Link Register, and (3) branches via the Counter
Register. Notice that there is wide variety among the different benchmarks as to
the fraction of instructions which are crosspage branches. From viewing these and
other benchmarks, it seems to be the case that larger benchmarks have significantly
more cross-page branches with up to 1 in 9 VLIW instructions ending with such a
branch.

Our implementation of DAISY moves loads above stores, unless a simple alias
analysis reveals that a 1oad must alias with a store (in which case the load is replaced
with a copy of the source register of the store). This speculative movement of Loads
exacts a price when a load and store turn out to be aliased during execution of
the program. In this case, the value must be reloaded and execution re-commenced
from the point of the load (with all speculative work discarded). Clearly for high
performance it is important that runtime aliasing be a relatively infrequent event.
Table 5.7 indicates that for most benchmarks undiscovered aliasing is rare, with the
possible exception of compress (one failure every 65 VLIW’s) and sort (one failure
every 107 VLIW’s). For benchmarks with high amounts of runtime aliasing, an entry
point could be retranslated with movement of loads above stores inhibited. However

40

Table 5.6: Number of crosspage branches in different benchmarks.

| Program [Runtime | VLIWS | # VLIWS /|
Aliases Exec Aliases

compress 9023 588K 65

lex 2595 24M 9333

fgrep 4216 2169K 515

we 4 1438K 359,616

cmp 6 1190K 198,394

sort 94,359 10.1M 107

c_sieve 0 370K 00

gece 734,708 | 406M 552

41

Table 5.7: Number of VLIW’s per runtime load-store alias

Branch Type
Program Direct via Linkreg E via Counter Total Total VLIWS Exec /
' Total C'R-Branches

compress 796 791 253,074 254,661 e
lex 255,573 166,981 48,050 470,604 180 -
fgrep 25 8 46 9 667
we 167 269 1,048 1.484 1111
| cmp 498 490 943 1931 625
| sort 534,394 42,777 520,416 1,097,587 | 92
c_sieve 0 ! 1 0 1 | 372,066

gec 21,809,787 | 21,476,762 | 2,406,501 [45,693,050 | 105

3

S

Q e COMPRESS

w e LEX

&) 61 —A— C_SIEVE

" ——— CMP

c —— SORT

oS L ~—fE}— FGREP

E 5| —— Gcec
—3— wcC

E A A

g —~

£

o
3}l i\a

N

> S N N I W N —
128 256 512 1024 2048 4096 8192 16384
Input Page Size (Bytes)

Figure 5.3: ILP versus size of input page

our implementation of DAISY does not yet have this feature.

It 1s also instructive to consider performance changes with page size. For the
results presented thus far, we have assumed a 4096 byte page size, in keeping with
the value used for PowerP(C. However, the VMM could be made to use page sizes
either larger or smaller than 4096 bytes. In particular, we are interested in

1. Whether significant additional ILP can be extracted by using larger pages. With
the exception of c_sieve, Figure 5.3 indicates that the answer is no. The
dramatic change in c_sieve moving from 256-byte to 1024-byte pages is because
a critical loop 1s no longer split between two pages. We are still investigating the
anamoly for we in which 256-byte pages produce better ILP than larger pages.
We suspect that with larger pages, DAISY is filling VLIW’s with operations
from a less frequent paths and crowding out operations from more frequent
paths.

2. The amount of reduction in total code size by moving to smaller pages. Fig-

42

@ 2400000 |
=
Q 2100000 }-
g - o,
& 1800000 - = oh
© —— COMPRESS
3 1500000 - K=
2 C SIEVE
S 1200000
(]
b~

900000 §-

600000 |-

300000

| [

0 . + ’
128 256 512 1024 2048 4096 8192 16384
Input Page Size (Bytes)

Figure 5.4: Total VLIW code size versus size of input page

43

«» 100000000
& 46415888 1 .\,\'
3 21544347}
o 10000000
S 4641589 |-
g,'; 2154435 |-
8 1000000 | \
S 464159 |
$ 215443}
S 100000 -
5 46416 -
g 21544 4
10000 }—
4642 }-
2154
1000 {—
464 +
215
100 |~ GCC
46 4+ s SORT
2L ——— LEX
== FGREP
10 + — COMPRESS
5+ gl\(/I:P
21 j: C_SIEVE
1 | | , 1 | 1 |
128 256 512 1024 2048 4096 8192 16384
Input Page Size (Bytes)

Figure 5.5: Number of direct cross page jumps versus size of input page

44

Ins to Compile Unique Reuse Time f
an Instruction | Code pages | Factor | Change J
‘ 4000 200 [39000 | 47%
| 4000 1000 7800 14% |
4000 10000 780 707% |
1000 200 39000 -59%
1000 1000 | 7800 -43% |

1000 10000 780 | 130%

Table 5.8: Overhead of Dynamic Compilation

ure 5.4 indicates that code size generally increases slowly with page size.

3. The change in the number of direct crosspage yjumps from changing the page size.
This measure 1s of particular importance in low-end implementations where such
jumps can be expensive. This relationship i1s depicted in Figure 5.5, and it is
difficult to ascertain a general rule.

5.1 Analysis of Compiler Overhead

Table 5.8 indicates the extra runtime of a two second program, due to dynamic
compilation, assuming a VLIW machine running at 1 GHz and assuming that both
the incremental compiler and the program have an average ILP of 4 instructions per
cycle.

Table 5.8 was devised using a rough formula for relating the amount of reuse
needed of each page (or instruction) in order to make a VLIW with an incremental
compiler faster than the base architecture in executing a particular program. Let

Py, =4 = Avg ILP achieved by VLIW

Pr =15 = Avg ILP achieved by Base Architecture
g = Number of pages touched during program execution
t = Time (in cycles) to translate one page

Ty = Time to execute VLIW code

Tr = Time to execute Base Architecture code
r = Reuse factor (average) per page

45

¢ = 1024 = Number of instructions per page

Then .
X g X
T’_ﬁg_z = Tr (Time to execute Base Architecture code)
R
B(Pix_f +gxt=Ty (Time to execute VLIW code)
v

We want the value of r when T = Ty:

rX g X1 rX g X1
Py

N (5.1)

or

1
t:TXZX(PiR—ﬁ;) (52)

If, as above 2 = 1024, Pgr = 1.5, and Py = 4.0, then
t =427 x r (5.3)

Since,
o We require 3900 instructions to translate and schedule one instruction.
o There are : = 1024 instructions per page.
e We assume the translator has parallelism Py = 4.

the amount of time ¢ taken to translate one page is

, _ 3900 x 1024

= 998, 400
4

Plugging this in Equation (3) yields the reuse r needed to match the base architecture
with the “realistic” assumptions above:

998,400 = 427 x r or r = 2340

In a multiuser system with N users running identical (but separate) programs, the
amount of time required for an individual user’s program to complete must account for

46

the compilation time required by all users. Whereas before we had ’%%‘—3 +gxt =Ty,
now we have
rX g X1

2 +gxtxN =Ty (Time to execute VLIW code)
v

This in turn changes Equation (2) to

roX 1 1 1
= —— X (—- —)
N PR PV
In other words N times as much reuse 1s needed to break even with the original
machine. We found that a reuse factor of r = 2340 was sufficient for a single user in
the example above. Were this a N = 10-user machine a reuse of » == 23,400 would
be needed. This 1s perhaps unnecessarily pessimistic however, as on large multiuser
machines, the large majority of users are typically executing a few shared programs,
not N individual custom applications.
Alternatively, we can obtain a rough lower bound on the reuse » by making op-
timistic assumptions about the VLIW and translator, and pessimistic assumptions
about the base architecture. Let

Pr =15 (low ILP for Base Architecture)
Py = oo (infinite ILP for VLIW)

200 (number of instructions to translate one instruction)

Then from Equation (2)

¢ 1024(! 1) (5.4)
= 7r X _ — —
1.5 o0

= 683 xr (5.5)

The amount of time taken to translate one page is now

, _ 200 x 1024

= 40, 960
5

assuming that although the ILP of the application is Py = oo, the ILP of the compiler
is only 5. Plugging t = 40,960 into (5),

r = 60

47

Dynamic Ins

Static Code Size

Ins Reuse

Executed in Ins Words Factor

INTEGER

go 28,484,380,204 135,852 209,672
m88ksim 74,250,235,201 84,520 878,493
ccl 530,917,945 357,166 1,486
compress95 46,447,459,568 52,172 890,276
li 67,032,228,801 67,084 999,228
ijpeg 23,240,395,306 88,834 261,616
perl 31,756,251,781 138,603 229,117
vortex 81,194,315,906 212,052 382,898
FLOATING POINT

tomcatv 19,801,801,846 81,488 243,003
swim 23,285,024,298 81,041 287,324
su2cor 24,910,592,778 94 390 263,911
hydro2d 35,120,255,512 95,668 367,106
mgrid 52,075,609,242 83,119 626,519
applu 36,216,514,505 99,526 363,890
turb3d 61,056,312,213 90,411 675,320
apsi 21,194,979,390 119,956 176,690
fpppp 97,972,804,125 91,000 | 1,076,624
waveb 25,265,952,275 120,091 210,390
MEAN 41,657,557,272 116,276 | 452,420

Table 5.9: Reuse factors for SPEC95 benchmarks

48

le. in a very optimistic case, a reuse factor of at least » = 60 is needed to make the
VLIW time faster than the Base Architecture.

However, this 1s not a problem for two reasons. First, as detailed in Table 5.9,
large programs such as those in the SPEC95 benchmark suite have very high reuse
factors with a mean of over 450,000 2.

A final illustrative example illustrates the second reason. Consider a worst case
program that jumps from page to page, never repeating code. If the number of unique
code pages executed is reasonable (say 200), the large percentage increase in time is
probably imperceptible, as we expect only a millisecond will be required to translate
each page. If the number of unique code pages is large, the overhead is likely to be
dominated by the base architecture OS paging activity. Of course, thrashing due to
a translated code area that is not large enough, will lead to extreme slowdown, and

must be prevented.

2The static code sizes were obtained on a PowerPC using the installed C compiler. The dynamic
execution counts are actually an underestimate, as only a subset of the complete SPEC95 reference
input was used for most benchmarks. We thank Mark Charney, Tom Puzak, and Ravi Nair for these
numbers and constructing the tools with which to obtain them.

49

Chapter 6

Ideas for Reaching Oracle
Parallelism

The dynamic compilation ideas described here can also be used to measure and
approach oracle parallelism, 1.e. the amount of parallelism possible in a machine
with unlimited resources and which schedules every operation at the earliest pos-
sible time allowed by control and data dependences. Earlier approaches by con-
trast have collected a trace of program execution and ex post facto scheduled all
operations from the trace into the earliest cycle allowed by control and data depen-
dences [TheobaldEtA192, Wall91].

In Chapter 2 (and Appendix A) the guessing of branch directions implicitly as-
sumed either compiler prediction based on heuristics [BallLarus93] or traditional pro-
file directed feedback (e.g. passed to the VMM through static prediction bits in
PowerP(branches or otherwise). If, instead, the compiler were interpreting each in-
struction after decoding it, then a potentially more accurate form of branch prediction
can be obtained. Notice that since we are decoding the base architecture instructions,
interpreting them at that point would add only a small overhead.!

In DAISY’s interpretive compilation approach, the first time an entry point to
a page is encountered, the instructions in the page starting at the entry point are
interpreted and the execution path revealed by the interpretation (say path A) is
compiled into VLIWSs, until a stopping point is encountered on path A. If the group
is entered again, and 1t takes the same path A, performance will be high since it

'!Our interpretive compilation idea in this section was inspired by a suggestion by Ravi
Nair [NairHopkins]. Related ideas have been also been used in caching emulators [Halfhill94]

50

executes VLIW code solely. If on a third time entry, the code takes a different path
B emanating from the previous path A, the instructions of path B at the exit of the
path A are also interpreted, and scheduled into existing VLIWs of the same group
whenever there are resources, until a stopping point is encountered on path B. So
the next tune the same VLIW group is entered. it will try to execute operations
speculatively from both paths A and B. The incremental interpretive compilation
can be repeated with different inputs to the program, until the compiled VLIW gets
more stable- i.e. gets into interpretive execution less frequently. The aggressiveness
of dynamic compilation parameters may be reduced when “shipping” the translation
of a program that was trained this way, to reduce potential compilation overhead in
the field if the program takes a new path it has never seen before.

We are currently already following multiple paths and scheduling them to the same
VLIWs. However, with the interpretation approach. since it focuses on the executed
instructions and ignores those that are never executed, we can afford a larger window
size and may hit code explosion limits later than the static (i.e. non-interpretive)
compilation approach.

Also, interpretation has advantages in compiling indirect branches. If an indirect
branch is encountered to the link register 1r.

(GOTO 1r)
and the current value of Ir is 1000, then the current code can be scheduled as:

(IF (1r==1000) goto 1000)
(GOTO 1r)

In the rescheduled code, no serialization occurs on the indirect branch. While tech-
niques already exist for avoiding serialization on indirect branches for performing
procedure returns (e.g. plain constant propagation will turn the indirect branch for a
return into a direct branch, in an “inlined” routine, when incremental compilation is
allowed to pass procedure boundaries), this approach could be useful, e.g. for avoid-
ing serialization due to virtual calls in object oriented C++ programs, and optimizing
the most common cases for a C switch statement.

Also, if cache misses are also simulated during interpretation (assuming we are
willing to risk the overhead), and a cache miss is detected in a load instruction, a touch
instruction can be placed an appropriate number of VLIWs ahead of this instruction.
So memory latencies may be reduced. This is important for transaction processing
code where much time is spent in cache misses.

51

We are already optimistically moving loads above stores, even if there is a chance
of overlap, but with run-time information such guesses can be more accurate.

Some of the same results discussed here may also be obtained by excellent branch
prediction. But interpretation during compilation leads to an especially unexpected
advantage, not shared by any branch prediction mechanism (unless with infinite his-
tory): If one completely interpreted the entire trace (ignoring page boundaries) and
compiled it into VLIW code, and the VLIW had sufficiently large resources and reg-
1sters, then oracle parallelism can be achieved during the second execution of that
program with the same input. With different inputs, more interpretation and com-
pilation may occur, to accommodate the different traces into the VLIWs. Oracle
parallelism can actually be achieved for small programs, and the present proposal
may be the most practical way to achieve it (among the more theoretical alterna-
tives. e.g. [Wall91]), because of the low overhead in the generation of the execution
trace by interpretation, followed by fast scheduling of the operations on the trace for
maximum [LP.

However, oracle parallelism may require a very large code size and long compila-
tion time. So what are the practical intermediate points on the way to oracle level
parallelism?

One method is to have an ILP goal, and each time a potential stopping point is
reached on a path (e.g. a loop header), stop if the ILP goal has been achieved and
the ILP has stopped increasing since the last potential stopping point on the path.
Here the risk is that in the future the ILP may start increasing again.

For a given number of resources, even the oracle parallelism will be limited. We
plan to study these methods to increase parallelism, and compare them to the actual
oracle parallelism limits in the near future.

52

Chapter 7

Comparison to Previous Work

Virtual machine concepts have been used for many vears, for example in IBM’s VM
operating systems [BuzenGagliardi73], but virtual machines have so far implemented
a virtual architecture on almost the same architecture (e.g. S/360on S/370, 8086 on
486, whereas in DAISY we support a very different virtual architecture on a VLIW.
Caching emulators are commonly used for speeding up emulation. For exainple, each
instruction is individually translated and the translation is cached for re-use when
the instruction is emulated again [Halfhill94]. However, in this approach, there is
no sophisticated reordering, and thus no consequent difficult issues to deal with,
for maintaining precise exceptions. We are also inspired by VLIW compiler research
(e.g. the Moon-Ebcioglu compiler techniques [MoonEbcioglu92|), but in this paper we
have proposed a new dynamic compilation algorithm that is much faster than existing
VLIW compilation techniques, and which achieves good run-time performance.

Our initial page-based translation ideas were inspired by the work of [ConteSathaye95]
which proposed a translation at page fault time. However, their approach is intended
for achieving object code compatibility between different generations of the same
family of VLIW machines, and is not intended for emulating an existing architec-
ture. Conte and Sathaye’s approach has a clever encoding which guarantees that
the size of the code does not change during translation. However this guarantee
does not hold for general virtual machine implementations. Dynamic translation
to an internal VLIW representation at Icache miss time [FranklinSmotherman94,
MelvinEtAl188, RotenbergEtAl96, NairHopkins] achieves a similar purpose, but re-
quires complex Icache miss preprocessing hardware, and does not allow sophisticated
compiler techniques that can be done in software. Static translation of executable
modules was done in [SilbermanEbcioglu93, Sites93]. However, static translation does

53

not address the problem of achieving 100% compatibility with the old architecture,
including operating system code. So, although there are many influences to our line
of thought, we believe that the combination of the ideas presented here constitute a
new solution for an important compatibility problem.

54

Bibliography

[AustinSohi95] T.M. Austin and G.S. Sohi Zero-Cycle Loads: Microarchitecture Sup-
port for Reducing Load Latency, Proc. MICRO-28, pp. 82-92, 1995.

[BallLarus93! T. Ball and J. Larus Branch Prediction for Free Proc. PLDI '93, pp.
300-313, June 1993.

[BuzenGagliardi73] J.P. Buzen and U.O. Gagliardi. The Evolution of Virtual Machine
Architecture National Computer Conference, pp.291-299, 1973.

[CmelikKeppel93] R.F. Cmelik and D. Keppel, Shade: A Fast [nstruction-Set Sim-
ulator for Ezecution Profiling, Technical Report UWCSE 93-06-06, Univer-
sity of Washington Computer Science and Engineering Department, 1993,
http://www.cs.washington.edu/research/compiler/

papers.d/shade.html

[ConteSathaye95] T.M. Conte and S.W. Sathaye Dynamic Rescheduling: A Technique
for Object Code Compatibility in VLIW Architectures Proc. MICRO-28, pp. 208-
217, 1995.

[Ebcioglu88] K. Ebcioglu, Some Design Ideas for a VLIW Architecture for Sequential-
Natured Software, In Parallel Processing (Proceedings of IFIP WG 10.3 Working
Conference on Parallel Processing), edited by M. Cosnard et al., pp. 3-21, North
Holland.

[EbciogluGroves90] K. Ebcioglu and R. Groves, Some Global Compiler Optimiza-
tions and Architectural Features for Improving the Performance of Superscalars,
Report No. RC 16145, IBM T.J. Watson Research Center.

[EggersEtAl196] J. Auslander, M. Philipose, C. Chambers, S.J. Eggers and B.N. Ber-
shad, Fast, Effective Dynamic Compilation, PLDI '96.

55

[Ellis86] Ellis, J., Bulldog: A Compiler for VLIW Architectures, Ph.D. Dissertation,
Department of Computer Science, Yale University (also MIT Press, 1986).

[FranklinSmotherman94] M. Franklin and M. Smotherman. A Fill-unit Approach to
Multiple Instruction Issue Proc. MICRO-27, 1994.

[Halfhill94] T.R. Halfhill, Emulation: RISC’s Secret Weapon BYTE, April 1994.

[Hwu94] W.M. Hwu VLIW: Is
It For Real This Time? Keynote Speech in MICRO-27, November 1994. The
foils are currently in: http://american.cs.ucdavis.edu/Micro27

[Kathail94] V. Kathail, M. Schlansker, and B.R. Rau. HPL PlayDoh Architecture
Specification Version 1.0, Technical report HPL-93-80, Hewlett-Packard Labora-
tories, Technical Publications Department, 1501 Page Mill Road, Palo Alto, CA
94304, Feb. 1994.

[MahlkeEtA192] Scott A. Mahlke, William Y. Chen, Wen-mei W. Hwu, B. Ramakr-
ishna Rau, and Micheal S. Schlansker, Sentinel Scheduling for VLIW and Super-
scalar Processors, Proceedings of the Fifth Int’l Conference on Architecture Sup-
port for Programming Languages and Operating Systems (ASPLOS-V), Boston,
MA, Oct. 12-15, 1992, pp.238-247

[MelvinEtAl88] S. Melvin, M. Shebanow, and Y. Patt, Hardware Support for Large
Atomac Unats in Dynamacally Scheduled Machines, In Proceedings of the 21st
Annual International Symposium on Microarchitecture, December 1988.

(MoonEbcioglu92] S.M. Moon and K. Ebcioglu, An Efficient Resource-Constrained
Global Scheduling Technique for Superscalar and VLIW Processors, Proc.
MICRO-25, pp. 55-71, IEEE Press, December 1992.

[Moudgill96] M. Moudgill, J. Moreno 2222 Patent Application on Load-Verify Idea,
IBM T.J. Watson Research Center. 1996.

[NairHopkins] R. Nair and M. Hopkins, Ezploiting Instruction Level Parallelism in
Processors by Caching Scheduled Groups, Report in Preparation, IBM T.J. Wat-
son Research Center, 1996

36

[NakataniEbcioglu89] T. Nakatani, and K. Ebcioglu, “Combining” as a« Compilation
Technique for a VLIW Architecture, In Proceedings of the 22nd Annual Interna-
tional Workshop of Microprogramming and Microarchitecture, ACM and IEEE,
pp. 43-55.

[RotenbergEtA196] E. Rotenberg, S. Bennett, and J.E. Smith, Trace Cache: A Low
Latency Approach to High Bandwidth Instruction Fetching, In Proceedings of the
29th Annual International Symposium on Microarchitecture, November 1996.

[SilbermanEbcioglu92] G.M. Silberman and K. Ebcioglu, An Architectural Fram.e-
work for Muigration from CISC' to Higher Performance Platforms, Proc. 1992
International Conference on Supercomputing, pp. 198-215, ACM Press, 1992.

[SilbermanEbcioglu93] G.M. Silberman and K. Ebcioglu, An Architectural Frame-
work for Supporting Heterogeneous Instruction-Set Architectures, IEEE Com-
puter, Vol. 26, No. 6, June 1993, pp. 39-56.

[Sites93] R. Sites et al. Binary Translation, CACM, Voi. 36, no.2, pp. 69-81. Feb.
1993.

[TheobaldEtAl92] K. B. Theobald, G. R. Gao, and L. J. Hendren, On the Lumauts of
Program Parallelism and its Smoothability, Proc. MICRO-25, pp. 10-19, IEEE
Press, December 1992.

[Thompson96] T. Thompson An Alpha in PC Clothing BYTE, February 1996.

[Wall91] David W. Wall, Limits of Instruction Level Parallelism, Proc. 4th ASPLOS,
1991.

57

Appendix A

The Compilation Algorithm

In this appendix, we first describe six functions that are at the heart of the compilation
algorithm for converting code from the base architecture to VLIW. Note that these
functions are greedy - always scheduling operations as early as possible, and never
perform any backtracking. Such limitations seem necessary in order to minimize the
overhead and make the proposed approach practical. We then provide additional
detail on the actual creation of VLIW’s in Section A.l.

The CreateVLIWGroupForEntry function in Figure A.1 follows base architecture
code from some entry point, scheduling each instruction in a VLIW as it is seen. The
DecodeAndScheduleOneInstr function in Figure A.2 checks if the current instruction
1s a stopping point (e.g. the end of the page). If it is not, the instruction is decoded
and scheduled into a VLIW by a routine specific to the instruction type, for example
ScheduleThreeRegOp for add.

The ScheduleThreeRegOpin Figure A.3 and its subroutines ScheduleThreeRegOp OutOrder
in Figure A.4 and ScheduleThreeRegDp InOrder in Figure A.5, find the earliest
VLIW on the current path, at which data dependences allow an instruction to be
scheduled. [t then moves forward on the path looking for the first VLIW in which
sufficient resources are available to insert the instruction. If that VLIW is earlier
than the last VLIW on this path, the result is placed in a VLIW register that is not
architected in the base architecture. For example, a result may be placed in r63 if the
base architecture is PowerPC with only 32 integer registers. Then in the latest VLIW
on this path, a copy operation is inserted to move the value from the non-architected
register to the architected register.

The ScheduleBranchCond function in Figure A.6 handles conditional branches.
It destroys the current path, and in its place inserts entries in the PathList corre-

58

void CreateVLIWGroupForEntry (x);
/* Create a group of VLIWs for group of base arch instructions
starting at address x */

{
/* Create an empty path with continuation X, put 1t 1in PathList */
PathList = CreatePath (/#continuation=#/x, /*probability=*/1.0,
/*nextpath=*/NULL) ;
while(PathList!=NULL) {
/* First entry in the pathlist is the most probable path */
/* DecodeAndScheduleOneInstr may change the pathlist */
DecodeAndScheduleOneInstr (PathList);
}
}

Figure A.1: The function CreateVLIWGroupForEntry.

sponding to the target and fall-through of the conditional branch. The target and
fall-through are assigned execution probabilities, so that instructions from more prob-
able paths can be scheduled first.

A.1 Actual creation of VLIWs

In order to keep compilation time down, the translator works on only a small chunk of
the base architecture program at a time. This helps limit the amount of code that is
needlessly translated, i.e. that is translated but never executed by the program. When
the program jumps to an untranslated location, another small chunk 1s translated
starting at the jumped to location. As will be explained in more detail in Chapter 3,
one page 1s a suitable chunk and is easily supported by simple hardware structures.

To reduce slowdown effects due to branch mispredictions, the translation algo-
rithm in Figure 2.1 pursues multiple paths. The multiple paths through an individ-
ual VLIW tree instruction provide for this, as does the fact that VLIW instructions
starting from a page entry point themselves form a tree. The root VLIW instruction
of the tree of VLIW instructions corresponds to the page entry point. The algorithm
in Figure 2.1 for creating the tree of VLIWSs maintains a list of paths, Pathlist, that
is sorted in decreasing probability order.

Initially there is one dummy path in Pathlist, whose continuation is the entry
base address (EntryAddr), and whose probability is 1.0. Later, because of the sched-

39

void DecodeAndScheduleOneInstr (T_PATH *p)
{
/* 1f path at stopping point stop extending this path */
if (IsStoppingPoint (p,p->continuation)) {
RemoveFromPathlist(p);
/* If continuation of the path is in the current page, add
its continuation address to worklist (if not already there) */
1f (p->continuation!=UNDEFINED &&
InCurrentPage(p->Continuation) &&
WasNeverInWorklist{(p->continuation))
AddToWorklist(p->continuation);
return;
}
else { /* Continuing to extend the probable path... */
/* Fetch instruction */
ins = *(p->continuation);
/* Decode instruction, and call a scheduler routine for each RISC
primitive resulting from the instruction */
switch (OPCODE(ins)) {
case ..
case OP_ADD: ScheduleThreeRegOp{(p,0P_ADD,RT(ins),RA(ins),RB(ins));
break;

case OP_BC: ScheduleBranchCond(p,0P_BC,TEST(ins),CC(ins),TARGET(ins));
break;

Figure A.2: The function DecodeAndScheduleOnelnstr.

60

void ScheduleThreeRegOp (T_PATH *p,int opc,int rt,int ra,int rb)
{
/* Scheduling rt=opc(ra,rb) */
/* Find the first VLIW v where both operands are available */
/* p—>avail[r] gives the earliest VLIW # on this path, where
an instruction using register r can be scheduled */
v = MAX (p->availlral, p->availlrbl);

/* If v > LastVLIW on this path, open new empty VLIWs so LastVLIW<=v */
while (p->LastVLIW <=v) OpenNewVLIW (p,p—>lastVLIW);

/* v is the earliest VLIW where op can be scheduled.
Starting from v, look for a VLIW on the path that has:
(1) enough resources to accommodate the op,

(2) a nonarchitected destination register that is free
until the end of the path */

while(v<p->LastVLIW && !(AluResourceOk(p->vliw[v]) &&
(p->vliw[v]->FreeGprsUntilEnd))) v++;

/* v is the VLIW where op will be legally scheduled */
if (v < p—>LastVLIW)

ScheduleThreeRegOp_OutOrder (p, v, opc, rt, ra, rb);
else ScheduleThreeRegOp_InOrder (p, opc, rt, ra, rb);

/* Increment the continuation address of this path */
p->continuation += 4;
return;

Figure A.3: The function ScheduleThreeRegOp.

61

void ScheduleThreeRegOp_OutOrder (T_PATH *p, v, opc, rt, ra, rb)

{
/% Scheduling rt=opc(ra,rb) out of order at VLIW v on path px*/
/* Pick a suitable non-architected register to use as dest. reg#/
dst=CountLeadingZeros(p->vliw[v]->FreeGprsUntilEnd)+FIRST_NONARCH_REG;

/* Need to have op use non-architected dest. reg dst, and
possibly renamed source regs. p->vliwlv]->maplral is the
name of ra in VLIW # v*/
AddToVLIWTip(p->vliwlv], opc, dst,

p->vliwlv]->map(ral, p->vliw[v]->maplrb]l);
IncrementAluResource(p->vliw[v]);

/* Now schedule the commit dst->rt in the last VLIW,
(or one VLIW after it, if last vliw is full) */
if (!(AluResourceOk (p->vliw[p->LastVLIW])) OpenNewV1liw(p);

AddToVLIWTip(p->vliw[p->LastVLIW] ,OP_COMMIT,rt,dst)
IncrementAluResource(p->vliw[p->LastVLIW]);

/* rt is mapped (renamed) to dst after v until the last vliw */
/* dst 1s not free after v until the last vliw */
for (vi=v+1l; vl <= p->LastVLIW; vi++) {
p—>vliw[vi]l->map[rt] = dst;
p->vliwlvi]->FreeGprs &= “(0x80000000>> (dst-FIRST_NONARCH_REG));
}

/* Update the regs that are free in each vliw

until the end of the path */

for (¢ = -1, v1 = p->LastVLIW; v1 >= 0; vi--) {
t =t & p->vliwlvi]->FreeGprs;
p—>vliw[v1]->FreeGprsUntilEnd = t;

+

/* The destination register rt is available after v */
p->avail(rt] = v+1;

Figure A.4: The function ScheduleThreeRegOp OutOrder.

62

void ScheduleThreeRegOp_InOrder (T_PATH *p, opc, rt, ra, rb) {
/* Schedule op rt=opc(ra,rb) in order (after all
logically preceding ops have committed results)*/
/* Commit result directly to architected reg. rtx/

/* If the last VLIW cannot accommodate op, open a new VLIW x/
if ('(AluResourceOk (p->vliw[p->LastVLIW])}))
OpenNewVliw(p);

/* Add op to last VLIW */

/% Source registers may be renamed, dest reg 1s not */

AddtoVLIWTip (p->vliw[p->LastVLIW], opc, rt,
p~>vliw[p->LastVLIW]->map(ral,
p—>vliw{p->LastVLIW]->map[rbl);

IncrementAluResource (p, p->LastVLIW):

/* FreeGprs not updated, map not updated */
/* rt is available after last VLIW */
p~>avail {rt]=p->LastVLIW+1;

Figure A.5: The function ScheduleThreeRegOp_InOrder.

63

void ScheduleBranchCond (T_PATH *p, opc, test, cc, target)

/* Schedule a conditional branch %/

{
/* Branches, stores are scheduled in last VLIW —- later, if dep */
v = MAX (p->availlcc], p->LastVLIW):

/* If branch has to be scheduled after the last VLIW,
open a new VLIW and update last VLIW pointer */
while (p—>LastVLIW < v) OpenNewVliw (p);

/* if not enough resources in the last VLIV, open a new VLIW */
if (!BrResourceOk (p, p->LastVLIW)) OpenNewVliw (p);

/* Clone the path */
p2 = NewPath ();
CopyPath (p2, p, p->LastVLIW);

/* Add the if */
AddIfToTreePath (p->vliw[p->lastVLIW],
test, cc, p2->vliw[p->lastVLIW]);

/* Guess the branch probability */
BrProb= GuessBranch (p->continuation);
p2->prob = p->prob * BrProb;
p->prob = p->prob * (1.0-BrProb);

/* p continues with fallthrough instr, p2 with branch targ */

p—>continuation += 4;
p2->continuation = target;
IncrementBrResource(p, p—>LastVLIW);

/* Add the two new paths to pathlist in probability order */
RemoveFromPathlist(p);

AddToPathlist(p); /* Maintain probability order */
AddToPathlist(p2); /* Maintain probability order */

return;

Figure A.6: The function ScheduleBranchCond.

64

uling of conditional branches, more than one path may be present in the PathList at
a given time. The parallelization algorithm always picks the most probable path 1
Pathlist, and extends it at the end of the path by adding to it the base instruction
that is the continuation of this path.

As noted above, when a conditional branch 1s scheduled on a path, both the
branch target address and fall-through address are added to Pathlist. A probability
is assigned to the branch. The probability can be a compile time guess. or can be
provided by static prediction bits in the base architecture binary (like the Y-bit n
PowerP(), or can use some other means like profile directed feedback. The probability
of a path is the product of the probabilities of the actions of branches on the path
(E.g. if there is a taken branch b, followed by an untaken branch b, on the path,
the probability of the path is Prob(b; taken) x (1 — Prob(b, taken)), assuming we
use simple independent branch probabilities). The probabilities of the two new paths
resulting from the conditional branch is computed and the two new paths are inserted
into the Pathlist, while maintaining its ordering by path probabilities.

By picking the path with the highest probability of execution, the resources of the
VLIW’s are preferably spent on the operations on the most probable paths, making
those paths run faster. Operations scheduled in early VLIW’s in the group tend to
come from probable paths. Note that our approach does not penalize less probable
paths as much as trace scheduling, since operations from a less probable path can be
moved into the most probable path.

Another question is how the scheduler avoids entering an infinite loop when sched-
uling program loops. A conditional branch at the end of a program loop adds two
values to the Pathlist in Figure 2.1, the fall-through exit of the loop and the top
of the loop. Without additional termination conditions, the head of the loop will re-
peatedly be added to Pathlist in a manner corresponding to unlimited unrolling. To
avoid this problem, the algorithm terminates for a given entry point when all paths
are closed, and PathList becomes empty. Closing paths at the following stopping
points guarantees that eventually all paths will be closed:

e A cross page branch or indirect branch (mandatory stopping points),

e A join point that we have already visited k times. (This is a throttle on code
explosion and guarantees that a base instruction will not belong to more than

k+1 VLIWSs),

e A join point where the number of instructions scheduled on the path since the
entry point has exceeded a window size limit (another throttle on code explosion,

65

as well as register pressure and compilation time),

® A loop header where the ILP has not improved significantly since the last visit
to this loop header (to avoid useless unrolling).

¢ Another rule related to stopping: if a loop exit (a conditional branch inside a
loop that goes out of it), or a loop header which is not the same as the entry
point of the group, is seen, the remaining window size budget on this path is
decreased (in order not to pull in too many operations from the exit of a loop
into a loop, or from an inner loop into an outer loop).

Note that loops and join points are identified incrementally as each branch is seen.

As noted, the scheduling of a base instruction at the continuation of a path,
consists of converting the instruction into RISC primitives, and then scheduling each
one into an existing VLIW on the current path, or, failing that, creating a new VLIW
and appending it to the current path, and scheduling the RISC primitive in the new
VLIW.

To be more precise, first the base instruction that is the continuation of the path
being extended is decoded, and converted into RISC primitives. Then each primitive
(say r1:=r2+r3) is scheduled as follows: Find the VLIW on this path where r2 is
available (ready), and the VLIW where r3 available (these VLIWs can be directly
accessed by a per-path array that maps each architected register to the sequence
number of the VLIW on this path where that register is available). Choose the
VLIW that occurs later among these two. Starting from this VLIW, walk forward
on the path, until a VLIW that has a free nonarchitected register r1’, (to use as a
destination register) 1s found, and that has enough resources (so we are doing register
constrained list scheduling on this path). The names of r2 and r3 may in general
be different than the actual architected r2 and r3 in this VLIW. At the end of each
path — from the first (root) VLIW to the end of each leaf VLIW — there is a map
that indicates the times at which each architected register r is defined, possibly into a
non-architected register r’. The map also defines the time at which r’ is committed
to r. Note that this map cannot be kept on a per VLIW basis, as the following code
fragment illustrates:

66

Original Code VLIW Ccde

!
[
bc L1 I s==s=s==s=ss=ssSs==s====
add r5<--r3,r4 | add 15’ <--r3,r4 o VLIW1: 2 mappings
b L2 | add r5°’’<--r2,r4 for rb
L1: add rb<--r2,r4 | bc VL1
L2: | ssssss=ssssssssss=Iss=s
| VL1: copy r5 <--r5’ o VLIW2
I b VL2
| ========z==============
| VL2: copy r5 <--r5”’ o VLIW3
I

Since VLIW1 has both VLIW2 and VLIW3 as successors, map [r5] 1s multiply defined for

VLIW1. If bc L1 1s an entry point to the original code, then there are two paths, with

PATHI1 terminating at VLIW2 and PATH2 at VLIW3. Thus for PATHI1, map[r5] =
{[t=1,reg=r5’],[t=2,reg=r5]} and for PATH2, map[r5] = {[t=1,reg=r5"], (t=2,reg=r5]
where t denotes the time at which the value is ready and we have assumed unit la-

tencies.

Returning to our original example, assume r2 1s renamed to r2’, and r3 i1s not
renamed (1ts value 1s in r3 itself) in the VLIW where we have chosen to schedule
the operation. We schedule the operation in the form r1’:=r2’+r3 in this VLIW,
and then schedule a commit operation r1:=r1’ in the last VLIW of the path (or
in a new VLIW after the last one, if it will not fit in the last VLIW). This use of
non-architected registers (in the base architecture) to speculatively compute results 1s
a key to obtaining good ILP.

If the operation has to be placed in the last VLIW (or later), the result can be
assigned directly to the architected register r1, e.g. in the form r1=r2’+r3. This re-
duces code explosion due to having to generate two operations per original operation:
one to execute the operation out of order (r1’:=r2’+r3) and another one to com-
mit the result to the architected register in order (r1:=r1’). Stores and conditional
branches are always placed in the last VLIW (or in a new VLIW at the end of the
path, if they are not ready or there are not enough resources in the last VLIW).

As just described, an operation can be executed out-of-order as soon as its operands
are ready, but its result is placed in a non-architected register if it is placed anywhere
before the last VLIW. The non-architected register will in turn be committed to
the original architected result register of the operation, in the last VLIW or later.
This way stores, branches and assignments to architected registers are executed in

67

order, and precise exceptions are easily achieved. That 1s, at a given point just be-
fore a VLIW in the VLIW program, one can identify a base architecture instruction
I so that all instructions before J have committed their results, and none after [
have committed their results to architected registers and memory. Note that even
though re-ordering of assignments to architected resources is not allowed, multiple
assignments to architected registers, multiple branches, and multiple stores can be
executed in a single VLIW, if the resource constraints allow it. So multiple base
architecture instructions can be completed per cycle.

68

Appendix B

Supporting Imprecise Interrupts,
and Other Optimizations to the
VMM Scheme

So far we have concentrated on getting high performance with a fully compatible
implementation of the base architecture. However, once good performance is achieved
in the fully compatible version of the new machine, extra non-compatible performance
features can be an advantage. Such features may require small software changes to
support them, and may not be adopted immediately since they were not 1n the base
architecture, but will likely be source of improved performance over time. In this
appendix we will briefly consider some such features.

Commit/copy operations can drain machine resources, and reduce performance
somewhat. It would be desirable to compile without the copy operations. Also, given
a mode where we are allowed more compilation time, it may be desirable to perform
more substantial optimizations, that change the order of the computations, and which
can make a program almost unrecognizable. Examples of such optimizations are tree
height reduction, loop transformations, and even re-implementation of inner loops
using new multimedia operations. But in a program compiled without precise excep-
tions, it is impossible to identify a precise point in the base program to restart from,
when an unexpected exception such a page fault occurs. Our suggested way to allow
imprecise exceptions in DAISY is to add a new “restartable” CISC-like instruction
called resume VLIW to the base architecture, but to always place it in a normally un-
reachable part of the base code, so old base architecture machines never execute it.
A procedure generated by a new version of a compiler for the base architecture, that

69

1s aware of the VMM, could start with:

B L1
Magic number
Various information to be sent to VMM

resume_vliw &save_area

Checksum of the information
L1: Normal base architecture code for the procedure

The semantics of the resume vliw &save area instruction is to restore the VLIW
extra registers from the save area, and to continue from where the VLIW program left
off. In a program compiled without precise exceptions, when an unexpected interrupt
such as a page fault or external interrupt occurs, the VMM recognizes that there is no
precise exception information, but knows the location of the resume_v1iw instruction
and therefore the save area address. The VMM then stores the contents of the extra
VLIW registers into the save area, as well as the VLIW program counter, and reports
the address of the resume_vliw instruction as the exception causing base architecture
mstruction. The save area must have been touched before executing any code with
imprecise exceptions, to guarantee that it is present in memory when it is needed.
When the operating system services the external interrupt or page fault, it will restart
the interrupted program from the resume vliw base instruction. The translation of
resume_vliw into VLIW code: (1) restores the extra VLIW registers from the save
area, and (2) branches to the saved VLIW program counter value. Note that the
translation of privileged base instructions always verifies supervisor state in the base
architecture, so a program in user state will not be able to execute any privileged
operations, even if it alters the save area maliciously.

Note that the resume v1iw instruction will never be executed by an older version
of the same base architecture, since it is in a normally unreachable portion of the code.
So executables compiled for the new VLIW-VMM implementation, will continue to
run on older machines without changes. Binaries can be exchanged between old and
new implementations of the base architecture over a network, without problems.

This technique i1s a good way to introduce a completely new architecture, that has
extra registers, without really exposing it to the user or operating system. It requires
only minimal changes in an existing base architecture compiler. It also requires no
operating system changes in the base architecture, unless the operating system exam-
ines the bit pattern in the interrupting instruction, and refuses this particular new

70

opcode. To avoid this latter possibility, one could choose the opcode of resume vliw
to be equal to that of an existing memory operation, where the VMM understands its

true meaning by context.
There are many other optimizations that could improve performance in a VMM

environment. We briefly list some of these below:

The VMM can keep a cache of translated pages that it can quickly look up,
before starting a new translation from scratch

The VMM can save the translation cache at power down time on hard disk, and
restore it at power up time. This can be done with or without the cooperatiou
of the base operating system.

The VMM can translate procedures spanning multiple pages together

A new compiler for the base architecture can pass usetul information to the
VMM (in the unreachable locations of the code between B L1 and L1:), such
as aliasing information, jump tables, list of volatile loads/stores.

The VMM can utilize the wait time of the OS to improve previously generated
translations. The obvious procedures to work on are the ones where most of

the time 1s spent.

71

Appendix C
Example of PowerPC to VLIW

Conversion

Figure C.1 depicts the example from Section A.1 (Figure 2.2) on translating Pow-
erPC to VLIW code. The translation follows the algorithm detailed in Appendix A,
and a detailed description of why each step is performed is contained in Figure C.2.

72

Original PowerPC Code Transiated FLIW Code

i add rl,r2,r3 VLIWL:
] be Ll 4— add rl, 12, v
kT sli rl2,ri,3 | @
4 X0r 14,15, 76 e d e -
V] and 8,14, r7 VLIWL:,
4 be L2 —f— add rl,x2,13 ,/2‘\
] b OFFPAGE /\bc Ll 4
8 Ll: sub 9,130,131 .
9 b OFFPAGE VLIWL:
0 1y entlz rll,rd {add r1,r2.13
) b OFFPAGE —or r63,r5,r672\bc Li ~
VLIW2: b VLIW? < €2
—+ sli rl2,7l, S /Z\
-+ rd=r63 - \2
VLIW1

—+ add rl,r2,r3
xor r63,r5,r67/\bc L1

VLIW2: b VLIWZ
—+ sli r12,rl.3 ~
-+ rd4=r63 iﬁ)
~+ and r8,r63,r7 -
VLIW!
+ add rl,r2,r3
xor r63,r5,76, APC Ll
VLIW2: b VLIW2
sli rl2,r1,3
r4=r63
and r8,163,r7 (3)
be L2 -
\
Transiated VLIW Code
VLIW1:
add rl,r2,.r3
xor ré63,r5,r6 be L1
VLIW2: b VLIW2
sli r12,r1,3
r4=r63
and r8,r63,r7
bec L2
b OFFPAGE ™ --—
VLIW1l
add rl,r2,r3
be L1
xor r63,r5,r sub r9,rl0,rl1l —-ei—
b VLIW2 b OFFPAGE —all-
VLIWZ2:
sli rl1l2,r1,3
r4=ré63
and r8,r63,r7
bc L2
b OFFPAGE _ e o
VLIW)
add rl,r2,r3
bec L1
x0or r63,r5,r sub r9,r1i0,rll
b VLIW2
VLIWZ:) b OFFPAGE
sli rl2,rl,3
r4=r63
and r8,ré63,r7
bec L2

cntlz rll,r63 @ ~l—

b OFFPAGE b OFFPAGE
@) -

Figure C.1: Example of conversion from PowerPC code to VLIW tree instructions.

73

The conversion begins by placing an empty path whose continuation is instruction 1 (add r1,r2,r3 as the
sole entry in the PathList. L.e. PathList is initially {[(),1,1.0]}, where each triple in the PathList is of the
form: {<List of Instructions in Path>, <Continuation of Path>>, <Relative Probability of Reaching the End of
This Path Given That Control Has Arrived at the Eniry Instruction>}. The current path is defined to be the
highest probability path in the PathList. Scheduling then proceeds as follows:

1. An empty VLIW (VLIW1) is created and added to the current path, and PowerP(C instruction 1, add
r1,r2,r3, is inserted in it. The continuation of the current path now becomes instruction 2. So PathList
is {[(1),2,1.0]}.

2. PowerP(instruction 2, bc L1 converts VLIW1 from a segment to a tree, with the left branch representing
the fall-through path of bc and right branch representing its target, L1 (instruction 8). Note that the
condition for be has been computed prior to VLIW1, and hence the bc and add can be executed in parallel,
assuming resource constraints allow it. Since instruction 2 is a branch, the current path is removed from
PathList and two new paths are created, one whose continuation is the fall-through instruction 3, and
another whose continuation is the target L1 (instruction 8). Both new paths are placed in the PathList,
making it {[(1,2),3,0.7, [(1,2),8,0.3]}. Assume the branch of instruction 2 is guessed to be taken
30% of the time.

3. Since the fall-through path 1s calculated to have a higher probability it becomes the current path. PowerP(?
instruction 3, s11 r12,r1,3 depends on the result of instruction 1, add r1,r2,r3. Hence it must go to
a new VLIW. Hence VLIW2 is created on the current path, with the fall-through tip of VLIW1 pointing to
it. The continuation of the current path is set Lo instruction 4. PathList becomes {[(1,2,3),4,0.7],
[(1,2),8,0.31}.

4. PowerP(instruction 4, xor r4,r5,r6 does not depend on any result yet produced. Hence it can be
executed 1n VLIW1. However, in order to maintain precise exceptions, we rename the result to regis-
ter r63 (which 1s not in the PowerPC architecture) and copy r63 to r4 in VLIW2. So PathList =
{0(1,2,3,41,5,0.71, [(1,2),8,0.31}. If an exception (say an external interrupt) occurred just be-
fore executing VLIW2, the emulated PowerP(machine appears to have completed instructions 1 and 2, and
is at the point immediately prior to instruction 3. The results of instruction 4 are still in r63 and are not
yet committed to an architected register, at the point of the interrupt.

PowerP(/ instruction 5, and r8,r4,r7 depends on the result of the xor. Because of our aggressive sched-
uling this result can be used in VLIW2 by noting that the desired value of r4 is in r63, ytelding and
r8,ré63,r7. The continuation of the current path is set to 6. PathList becomes {[(1,2,3,4,5),6,0.7],
[(1,2),8,0.3]}.

6. PowerP(Cinstruction 6, bc L2 has no data dependences and hence can be scheduled in VLIW2 in a manner
analogous to bc L1 being scheduled in VLIW1. But we do not schedule branches earlier than the last
VLIW on a path, in order to maintain precise interrupts. The current path is replaced by two paths:
one continuing with the fall-through instruction 7, and one continuing with the target L2 (instruction
10). Assume this second branch is also guessed to be taken with 30% probability. Pathlist becomes
{0(1,2,3,4,5,61,7,0.49(0.7x0.7)]1, [((1,2),8,0.3], [(1,2,3,4,5,6),10,0.21(0.7x0.3)1}.

Of the 3 paths, the fall-throngh path of instruction 6, is now most likely, so it becomes the current path. Its
continuation is PowerPC instruction 7, b OFFPAGE. Tt is placed on the left tip of VLIW2 since branches are
scheduled in order. Since this branch has no onpage continuations, this path is removed from PathList,
and the next most probable path becomes the new current path. Pathlist becomes {[(1,2),8,0.3],
[(1,2,3,4,5,6),10,0.21] }.

8. The PowerP(instruction 8 sub r9,r10,r11, the L1 target, is the continuation of the current, highest
probability path. This target continues from the right tip of VLIW1, since that is the location of the branch
that tnserted it in PathList. This sub instruction has no data dependences with earlier instructions, and
hence can be scheduled on the right tip of VLIW1. The continuation of the current path becomes 9, and
PathList becomes {[(1,2,8),9,0.3], [(1,2,3,4,5,6),10,0.211}.

9. PowerPC instruction 9, b OFFPAGE is next on the current path. It is handled just like instruction 7. and
hence a b OFFPAGE is placed on the right tip of VLIW1. This path is then removed from PathList, which
now becomes {[(1,2,3,4,5,6),10,0.21]}.

10. The only open path remaining in the list is the one that continues with PowerP(instruction 10 cntlz
r11,r4, the L2 target from VLIW2. It is dependent on the result of instruction 4, xor r4,r5,r6. As noted,
this value of r4 is available in VLIW2 itself in r63. Hence instruction 10 can be scheduled on the right tip of
VLIW2. The continuation of the current path becomes 11, and PathList becomes {{(1,2,3,4,5,6,10),11,0.21]}.

11, PowerPC instruction 11, b OFFPAGE is next on this path. It is handled just like instructions 7 and 9, and
hence a b OFFPAGE is placed on the right tip of VLIW2. This path is then removed from the list. As there are
no more entries in the PathList, and no more entries to process, the algorithm terminates. The translated
code is ready for execution beginning at VLIW1.

74

152

Figure C.2: Description of conversion from PowerP(C to VLIW.

Appendix D

Conversion of PowerP(C Code

In implementing DAISY, we have observed a few details of interest beyond the main
points discussed in the body of the paper. First, the PowerP(C architecture has only
two registers, the link register 1r and the counter registers ctr throngh which imdirect
jumps may be performed. At an arbitrary point in PowerPC code, the values in both
may be live. The bcrl instruction in PowerPC branches to the address contained
in 1r and then sets 1r to the address of the instruction following 1r. Since VLIW
tree code is not sequential, 1.e. the address of the operation following the translation
of berl is not the address that should be placed in 1r, some other means is needed
to set the new value of 1r. One possibility 1s to add a 32-bit immediate field to
the VLIW version of this instruction, with the field containing the proper PowerP(’
address. However this wastes instruction encoding space, hence we prefer to allow
the VLIW to perform indirect jumps through at least one other register. This could
be a new special purpose register for this purpose, e.g. 1r2, or the VLIW could be
allowed to perform indirect jumps through any GPR. Since registers R32-R64 are not
architected, this would provide many possible choices at any given point.

The PowerP(C also has many branch instructions which decrement ctr and branch
depending on whether ctr is zero, possibly in conjunction with some other condition.
Such branches become serializing, since they both read and set ctr. In a practical
terms, such branches limit parallelisim by requiring that no more than one loop iter-
ation execute per cycle. To overcome this problem, it is useful to make ctr one of
the non- PowerP(C architected GPR’s, for example R32. In this way the value in ctr
can be explicitly decremented with the result renamed (e.g. to R63, then committed
to ctr/R32. The renamed value can also be explicitly compared to 0, and and’ed
with some other condition if need be. In programs with small tight loops, we have

75

observed significant improvement from these actions.

Yet another problem arises from the PowerP(C contains mtcrf instruction. The
mtcrf instruction moves any combination of 8, 4-bit condition register fields from
a GPR to the condition code register. Since the VLIW architecture has more than
8 condition register fields, extending the mtcrf instruction must be handled. If the
VLIW registers are 64 bits and the VLIW has 16, 4-bit condition register fields, then
a simple extension of mtcrf could be done, although the instruction encoding would
likely use more than 32 bits. Since, only one field is moved in many cases we prefer
to support an additional modified format, mtcrf2. The mtcrf2 instruction has 3

operands:
1. One 4-bit condition register as the destination for the instruction.
2. A GPR instruction containing the 4-bit source field for the move.

3. An immediate value specifying which 4-bit field in the GPR is to be moved to
the condition register.

The PowerPC condition register must be otherwise dealt with carefully, as it is
addressable in 3 ways, (1) as individual bits for operations like crnand and conditional
branches, (2) as 4-bit condition register fields, as set by cmp type instructions and
moved by mtcrf2 type instructions, and (3) as a full 32-bit entity, as used with
the mfcr instruction for example. Dependences set at one level, must of course be
observed at other levels. For example a branch cannot be moved above its compare.

Finally, the CA, 0V, and SO bits of the XER register require special attention in
order to attain maximum parallelism. The ai instruction in particular is heavily
used to increment loop index variables. Alas, ai not only bumps the value in its
destination GPR, it also sets the carry value in CA. Unless this CA value can be
renamed, ai instructions must serialize because of the output dependence between
them — even if the CA value computed is never used — which is the case for the vast
majority of code. ! It would perhaps be better if compilers used the cal instruction
instead of ai in such cases, but no matter, as a large body of code exists using ai. To
get around this problem, we place the value of CA in an extender bit of the target GPR
for an operation such as ai — if the ai was executed speculatively and its integer
result renamed to a non-PowerP(architected register. When the integer result is
committed to its PowerP(architected register, the CA extender bit is simultaneously

'The incremental compiler does not have sufficient time to do a liveness analysis to determine
with certainty that the value in CA is dead.

76

committed to the CA bit in the PowerP(C XER register. If an ai instruction 1s not
executed speculatively, the VLIW can place the carry value directly in the CA bit
of the XER. (The architecture can tell speculative operations by their non- PowerP(’
architected destination register.) The overflow (0V) and summary overflow (SO} bits
are handled similarly, except that the OV extender bit for a speculative operation is
both placed in the XER OV bit as well as or’ed with the SO bit already in the XER
register.

7

Appendix E

Conversion of S/390 and x86 code
into VLIW: Examples

Here are some code examples from 286 and S/390 to give a further flavor of our

approach for DAISY.

78

w

=)o

S/390 code
L ri0,2892(0)
LH r2,118(0)
MVI 552(0),4 (1)
(2)
STC r2,288(r10,r2) (1)
(2)
BASR R9.0
L R9,1434(R9)
LA R6,4095(R9)
L R5,520(0)
LCTL R6,R6,36(R5) (1)
(2)
(3)
L R7,528(0)
L R8,548(0)
BCR 15,0
L RO,28(R10)
LTR RO,RO
BNE L1430
MC X’428°(0),7 (1)
(2)
(3)
™ 114(r8),8 (1)
2)
BZ L134A
CH r0,118(r8) (1)
(2)
BZ L1344
L1344A:
CLI 540(r7),0 (1)
(2)
BNE LiD30
L r3,36(r10)
LTR r3,r3
BZ L13DE

RISC Primitives
i r10=2892(0)
1h r2=118(0)
11 ri7=4
stb r17,552(0)
a ri7=r10.r2
stb r2,288(r17)
la r9=X'9DA’ (rvpa)
; rvpa = Register containing virtual
y address of current page
; (Kept on cross page branches)
1 r9=1434(r9)
la r6=4095(r9)
Result of "la" 4ND’ed
, wilth an "address mask" to
; 1umplement 31 bit or 24 bit mode
1 r5=520(0)
1 r17=36(r5)
trap_priv
; Checks for supervisor state 1n
; special register
st_real r17 . cntlregé(rra)
; rra = Pointer to an area of VLIW real
; memory used by emulator (VMM)
; to keep control registers and
, other data structures
1 r7=528(0)
1 rg=548(0)

nop ; Assume a strongly consistent
s memory system, not requiring
B stop at a serializing op

1 r0=28(r10)

cmp cr0=ro0,0

; Operations set 390 condition codes
; 1in 390 mode: Exactly one among the
; eq,lt,gt,ov bits of the result

, cr field 1s set to 1

vf cr0.eq,L1A30

1_real ri7=cntreg8(rra)

and ri8=r17,256

trap ri8!=0

; Monitor call for event class #8
1b r17=114(r8)

tmi cr0=ri17,8

; tmi performs S/390 TM function
; and sets condition code

bt cr0.eq,L13A4
1h r17=118(xr8)
cmp cr0=r0,r17
bt cr0.eq,L1344A

1b r17=540(r7)

cmp <r0=ri7,0

bf c¢r0.eq,L1D30
1 r3=36(r10)
cmp ¢r0=r3,0

bt cr0.eq,L13DE

Figure E.1: Original S/890 Code Ff8gment and Corresponding RISC Primitives.

VLIW’s are separated by asterisks.
Small letters indicate 5/390 operations executed out of order.

Capital letters indicate S/390 operations committed in order.
S/390 code VLIV cede
(If an exception occurs, restart at $/390 Instruction A)
A L r10,2892(0) 1 r10=2892(0) ; VALID_ENTRY
B LH r2,118(0) 1h r2=118(0)
c MVI 552(0),4 (€] 1li ri17=4
e BASR R9,0 la r9’=X’9DA’{rvpa)
h L R5,520(0) 1 r5°=520(0)
J L R7,528(0) 1 r7°=528(0)
k L R8,548(0) 1 r8’=548(0)
o MC X°428°(0),7 (1) 1l_real ri7’’=cntreg8(rra)
b vl
EEEE T
vi: (If an exception occurs restart at C)
¢ MVI 552(0),4 (2) stb r17,552(0)
d STC re,288(r10,r2) (1) a ri17=r10,r2
i LCTL R6,R6,36(R5) (1) 1 r17°=36(r5’)
£ L RY, 1434(R9) 1 r9°°=1434(r9’)
1 L RO, 28(R10) 1 r0’=28(r10)
o MC X’428°(0),7 (2) and ri8=ri7’’,256
P ™ 114(r8),8 (1 1b ri7’’’=114(r8"’)
T CH r0,118(r8) (1) 1h ri7:’’’=118(r8’)
t CLI 540(r7),0 (1) 1b ri17’'’°°=540(r7’)
v L r3,36(r10) 1 r3’=36(r10)
b v2
LS E RS S S L]
v2: (If an exception occurs, restart at D)
D STC r2,288(r10,r2) (2) stb r2,288(r17)
E BASR RS, 1r r9=1r9’ (dead)
F L R9,1434(R9) 1r r9=r9’’
G LA R6,4095(R9) la r6=4095(r9°’’)
m LTR RO,RO cmp cr0’=r0’,0
p ™ 114(r8),8 (2) tmi cr0’’=ri17’’’,8
r CH r0,118(r8) (2) cmp cr0’/'=rQ’ ,r17°’ >
t CLI 540(r7),0 (2 cmp crQ’?’’=r17’’°77 0
W LTR r3,r3 cmp cr0’’’’’=r3’,0
b v3
Aok ok K ok KOk K ok
v3: (If an exception occurs, restart at H)
H L R5,520(0) 1r r5=rb”
I LCTL R6,R6,36(r5) (2) trap_priv
I LCTL R6,R6,36(R5) (3) st_real ri17’,cntlregé6(rra)
] L R7,528(0) 1ir r7=r7’
K L R8,548(0) 1r r8=r8’
L L RO,28(R10) 1r r0=r0’
M LTR RO,RO ir crO0=cr0’
N ENE L1430 bf cr0’.eq,L1430
0 MC X7428°(0),7 (3) trap r18'=0
P T™ 114(r8),8 1r cr0=cxr0’’
Q BZ L134AA bt cr0’’.eq,L134A
R CH rG,118(r8) 1ir crQ=crQ’’’
S BZ L13Aa bf crQ’’’ . eq,exitl
exitl:
L134A:
T CLI 540(r7),0 1r cr0=cr0’’?’
U BNE L1D3C bt cr0’’’’ eq,L1D30
v L r3,36(r10) 1lr r3=r3’
W LTR r3,r3 1r crQ=cr0’’’’’
X BZ L13DE bt crQ’’”’’ eq,L13DE
exit2: exit2:

Figure E.2: Parallelized VLIW cod80(25 390 instrucs in 4 VLIWs = 6.25 S/390
instrucs per VLIW)

x86 code RISC primitives
; (all 16 bit ops)

A push bp (1) ; st bp,-~2(sp,ss)
(2) ;a1 sp=sp,-2

B mov bp, sp ; 1r bp=sp

o push ds (1) ; stseg ds,-2(sp,ss)
(2) ; ail sp=sp,-2

D mov ax, [bp+6] ;1 ax=6(bp,ss)

E test ax,1 ; andil. cr0,scr=ax,1

F jnz short loc_0240 ; bf cr0.eq,loc_0240

G push ax (1) ; st ax,-2(sp,ss)
(2) ;ail sp=sp,-2

H call sub_0116 (1) ;11 tl=returni
(2) ; st t1,-2(sp,ss)
(3) ; ai sp=sp, -2
(49 P b sub_0116

returnl:, ... H
K loc_0240: mov es,ax ; descr_lookup es=ax

; searches descriptor
; lookaside buffer

;1 tl=data_0391(0,es)
L cmp word ptr es:data_0391e,454Eh
(2) ; cmp cr0=t1,0x454e
M je short loc_0245 , bt crQ.eq,loc _0245
N mov es,word ptr cs:[2](1) ;1 t1=2(0,cs)
(2) ; descr_lookup es=t1
0 mov cx,es:data_0068e ;1 cx=data_0068(0, es)
P loc_0241: jexz short loc_0242 (1) ; cmp cri=cx,0
(2) ; bt cri.eq,loc_0242
Q mov es,cx ; descr_lookup es=cx
R cmp ax,cx ; cmp crO0=ax,cx
S Jje short loc_0243 ; bt cr0.eq,loc_0243
T mov cx,es:data_0001e ;1 cx=data_0001e(0,es)
U cmp ax,es:data_0014e (1) ;1 ti=data_0014e(0,es)
(2) ; cmp cr0=ax,t1
v jne loc_0241 ; bf cr0.eq,loc_0241
W mov ax,es:data_0015e ;1 ax=data_0015e(0, es)
X jmp short loc_0245 ;b loc_0245
HH loc_0245: mov cx,ax ;o lr cX=ax
11 pop ds (1) ;1 t1=0(sp,ss)
(2) ; ai sp=sp,2
a3) ; descr_lookup ds=t1
J1 leave (1) ; 1r sp=bp
(2) ;1 bp=0(sp,ss)
81 (3) ; ai sp=sp, 2
KK retf 2 (1) 5 1.1r 1r1=0(sp,ss)
(2) ;1 t2=2(sp, ss)
(3) ; ai sp=sp, 6

(4) ; descr_lookup cs=t2
(8) ; b_across_page cs,1r1

VLIW’'s are separated by asterisks.
Small letters indicate x86 operations executed out of order.

Capital letters indicate x86 operations committed in order.

x86 code VLIW Code
v0: Restart at A if interrupted ; (A1l 16-bit ops)
A push bp (1) ; st bp,-2(sp,ss}
A push bp (2> ; ai sp=sp,-2 /+ DEAD */
B ROV bp,sp ; al bp=(old)sp,-2 /* WAS 1lr bp=sp %/
[+ push ds (1) ; stseg ds=-4{{old)sp,ss)
[+ push ds (2} ; al sp=(old)sp,-4
D mov ax, [bp+6] ;1 ax=4((old)sp,ss)
h call sub_0116 (1) ; 1li t1=returni
n mov es,word ptr ¢s:[2]) (1) ; 1 t17=2(0,cs)
ii pop ds (1) i 1r t1’’=ds /* DEAD */
1ii pop ds (3) s 1r ds'=ds
kk retf 2 (n ; 1_1r 1r1=0((old)sp,ss)
kk ratf 2 (2) ; k1> tf=2((old)sp,ss)

v

EE e e T T Y
vi: Restart at E 1f interrupted
E

test ax,1 ; andil. c¢r0,scr=ax,1
k mov es,ax ; descr_lookup es’=ax
n mov es,word ptr ¢s:[2] (2) ; descr_lookup es’’=t1’
kk retf 2

dascr_lookup cs’=t2
b v2

AEEEE IR F AR R RR RN KRR TR KRR ARk
v2: Restart at F if interrupted

F jnz sheort loc_0240 ; bf cr®.eq,loc_0240’
G push ax (1) i ost ax,-2(sp,ss)
G push ax (2) s ail sp=sp,-2 (dead)
H call sub_0116 (2) ; st t1,-4((old)sp,ss)
H call sub_0116 (3) ; al sp=(old)sp,-4
i b sub_0116
ceugtr (ILP = 8/3 = 2.7) #aaug
K loc_0240°: mov 65 ,ax ; 1r es=es’
L cmp word ptr es:data_0391e,454Eh (1)
i1 t1=data_0391e(0,es"')
o mov cx,es:data_0068e HY cx'=data_0068e(0,es5""*)
; v3
HRRAA AR R AR AR AR AR KRR KKK AR AR K K
v3: Restart at L 1f interrupted ; cmp cr0=t1,0x454e
L cmp word ptr es:data_0391e,454Eh (2)
P jexz short loc_0242 (1) ; cmp cri=cx’,0
q mov 8s,GCXx ; descr_lookup es’=cx’
r cmp ax,cx ; cmp cr0’=ax,cx’
;b v
EEEEREREEE RN R KRR RN EER R R RN E R K
v4: Restart at M if interrupted
M je short loc_0245 ; bt cr0.eq,loc_0245’°
N mov es,word ptr cs:[2] (2) ; 1r es=es’’
a mov cx,es:data_0068e s 1x cx=cx’
P jexz short loc_0242 (2) ; bt crl.eq,loc_0242
Q mov 85 ,cXx ; 1r es=8s’
R cmp ax,cx ; 1r cr0=cr0*
S je short loc_0243 ; bt ¢r0’ .eq,loc_0243
T mov cx,es:data_0001e ;1 cx=data_0001e(0,es’)}
U cmp ax,es:data_0014e (1) 51 ti1=data_0014e(0,es’)
"] mov ax,es:data_0015e ;1 ax’=data_0015e(0,es?’)
;b v5h
HH loc_0245: ; loc_0245":
mov cx,ax ;o 1r cx=ax
II pop ds (2] ;oail sp=(old)sp,2 (dead)
11 pop ds (3) ; 1r ds=ds’
JJ leave (1) ; 1r sp=bp
13 leave (2) ; 1r bp=bp (dead)
JJ leave (3) . al sp=(old)sp,4 (dead)
KK retf 2 (3) ; a3 sp=(old)sp, 10
KK retf 2 (4) ; 1lr cs=cs’
KK rett 2 (5) ; b_across_page cs’,Ir1

;Rrass (ILP = 13/5 = 2.6) #auss
FEREFFIRTARES KRR ERRKE RS IR EEATIAEF R RK K
v5: Restart at U if interrupted
U cmp ax,es:data_0014e (2) ; cmp cr0=ax,tl
6

v
LR L e P T P P T P e
v6: Restart at V 1f interrupted
v

Jne loc_0241 . bf cr0.eq,loc_0241
w mnov ax,es:data_0015e ; 1r ax=ax’
HH mov cx,ax ;o 1r cx=ax'’
II pop ds (2) ioal sp=sp,2 (dead)
IT pop ds (3) ; 1r ds=ds’
JJ leave (1) s 1x sp=bp
JJ leave (23 i 1r bp=bp (dead)
11 leave (3) ; a1 sp=(old)sp,4 (dead)
KK retf 2 (3) ; a1 sp=(old)sp, 10
KK retf 2 (4) ; 1r cs=cs’
KK retf 2 (5) ; b_across_page cs’,1lr1

jHasse (ILP = 24/7 = 3.4) nupss
HEEERRARERERRFERRREERRRRAR R KRR KRR KKK R R K

Figure E.4: Parallelized VLIW code: 34 286 instructions in 7 VLIWs (3.4X speedup),
on path A-F, K-X, HH-KK.

