
An Experiment in Measuring the Productivity of Three Parallel
Programming Languages

Kemal Ebcioğlu and Vivek Sarkar
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA∗

Tarek El-Ghazawi
The George Washington University

801 22nd Street NW
Washington, DC 20052, USA

John Urbanic
Pittsburgh Supercomputing Center

4400 Fifth Avenue
Pittsburgh, PA 15213, USA

Abstract

In May 2005, a 4.5 day long productivity study was
performed at the Pittsburgh Supercomputing Center as
part of the IBM HPCS/PERCS project, comparing the
productivity of three parallel programming languages:
C+MPI, UPC, and the IBM PERCS project’s x10 lan-
guage. 27 subjects were divided into 3 comparable
groups (one per language) and all were asked to par-
allelize the same serial algorithm: Smith-Waterman
local sequence matching – a bio-informatics kernel in-
spired from the Scalable Synthetic Compact Applica-
tions (SSCA) Benchmark, number 1. Two days of tu-
torials were given for each language, followed by two
days of intense parallel programming for the main prob-
lem, and a half day of exit interviews. The study par-
ticipants were mostly Science and CS students from
the University of Pittsburgh, with limited or no parallel
programming experience.

There were two typical ways of solving the sequence
matching problem: a wavefront algorithm, which was
not scalable because of data dependencies, and yet posed
programming challenges because of the frequent syn-
chronization requirements. However, the given problem
was shown to also have a subtle domain-specific prop-
erty, which allowed some ostensible data dependences
to be ignored in exchange for redundant computation,
and boosted scalability by a great extent. This prop-
erty was also given as a written hint to all the par-
ticipants, encouraging them to obtain higher degrees of

∗Current author contact emails: kemal.ebcioglu@acm.org,

vsarkar@us.ibm.com, tarek@gwu.edu, urbanic@psc.edu.

parallelism.

The programming activities of the study participants
were recorded, both through face-to-face observations by
the IBM/PSC teams, as well as through frequent au-
tomated sampling of the programs being written, such
that it was later possible to analyze the progress of each
study participant in great detail, including the thought
process and the difficulties encountered. The detailed
logs also allowed us to infer precisely when the first
correct parallel solution was arrived at (this “time to
first correct parallel solution” metric was used as one
measure of productivity). This paper describes the re-
sults of the experiment, with particular emphasis on
our technical observations on the codes produced by the
anonymous participants. Interesting insights have been
obtained into the problem-solving process of novice par-
allel programmers, including those exposing productiv-
ity pitfalls in each language, and significant differences
among individuals and groups.

1 Introduction

High-performance supercomputers are heading toward
increased complexity, and thus, high productivity tools
and languages are very much on the agenda of super-
computing researchers. In order to be able to evalu-
ate such productivity tools and languages with quan-
titative measures, there is an increased need for per-
forming field experiments using human programmers
as subjects. Feedback from such field experiments will
be crucial as a guiding tool for future innovation in

30



productivity.

In this paper, we will embark on describing the tech-
nical insights into one such field experiment, compar-
ing the parallel languages C+MPI[1], UPC[2], and x10[3],
where the latter is IBM HPCS/PERCS project’s new
parallel programming language. The detailed design
rationales for the languages themselves are beyond the
scope of this paper, which will focus on the productiv-
ity study.

2 The productivity experiment

From Monday, May 23 to Friday, May 27, 2005, a
4.5 day long productivity study was performed at
the Pittsburgh Supercomputing Center (PSC) as part
of the IBM HPCS/PERCS project, comparing the
productivity of three parallel programming languages
mentioned above: C+MPI, UPC, and x10. 27 sub-
jects were divided into 3 comparable groups (one 9-
person group per language) and all were asked to par-
allelize the same serial algorithm: Smith-Waterman lo-
cal sequence matching – a bio-informatics kernel in-
spired from the Scalable Synthetic Compact Applica-
tions (SSCA) Benchmarks [4], number 1. The prob-
lem was suggested to us by David Bader. The serial
algorithm was provided to the subjects as a working
sequential program (serial C for the C+MPI and UPC
groups, and serial x10 for the x10 group).

The study participants were mostly Science and CS
students from the University of Pittsburgh, mostly
with limited or no parallel programming experience.
The distribution of subjects to language groups were
performed by the IBM Research Social Computing
Group and PSC management, with no input from
the technical language teams. Throughout the experi-
ment, the subjects remained anonymous to the techni-
cal teams.

The experiment began with two days of tutorials (Mon-
day and Tuesday) and hands-on exercises, taught by
experts in each language. The availability of the PSC
lab terminal and supercomputer resources were in-
strumental in making this possible. Then the sub-
jects performed intense parallel programming for two
days (Wednesday and Thursday) for the main prob-
lem. During the main programming session, the sub-
jects were allowed to ask questions, but only about lan-
guage constructs and technical problems they encoun-
tered, and not about the algorithmic issues themselves.
All questions and the answers given were recorded. On
Friday, the subjects had half a day of exit interviews

summing up their experience, conducted by the IBM
Research Social Computing team.

3 The problem description

The serial algorithm that the subjects were asked to
parallelize is described below:

The Smith-Waterman local sequence matching algo-
rithm consists of computing the elements of a N + 1
by M + 1 matrix, from two strings of lengths N + 1
and M +1, where M is usually many times larger than
N . Figure 1 depicts the basic computation in serial C
code, and Figure 2 shows the resulting matrix on two
example strings: -GGTCC and -GCCGCATCTT.

#define Match (-1)

#define MisMatch 1

#define Gap 2

int A[N+1][M+1]; //initialized to 0

char *c1=STRING1;

char *c2=STRING2;

for(int j=1;i<=M;j++)

for(int i=1;i<=N;i++)

A[i][j]=

MIN(0,

A[i-1][j]+Gap,

A[i][j-1]+Gap,

A[i-1][j-1]+(c1[i]==c2[j]?Match:MisMatch));

Figure 1. The serial version of the local se-
quence matching algorithm

Figure 2. An example computation

Among several possibilities, we will describe two typ-
ical ways of parallelizing the local sequence matching
problem:

The first one is a wavefront algorithm, as illustrated in
Figure 3. Since each matrix element (i, j) depends on

31



its West ((i, j − 1)), North ((i − 1, j)) and NorthWest
((i − 1, j − 1)) neighbors, at each step, the matrix ele-
ments on a diagonal line can be computed in parallel,
based on the matrix elements computed in previous
steps. This algorithm and its many variants are not
scalable, because of data dependencies: the maximum
parallelism at any given step is limited to min(N,M),
the maximum length of a diagonal line (in units of ma-
trix cells) in Figure 3; but N is small. Yet, this wave-
front algorithm poses programming challenges for the
novice subjects, because of the frequent communica-
tion and synchronization requirements in a distributed
matrix implementation.

Figure 3. The wavefront computation

Figure 4. A scalable algorithm:
Each processor computes its own
columns myFirstCol..myLastCol, using
overlapStartCol..(myFirstCol-1) as warm-
up.

However, thanks to the bio-informatics domain experts
at PSC, the given problem has been shown to also
have a subtle domain-specific property, which allows
some ostensible data dependences to be ignored, in ex-
change for redundant computation, and boosts paral-
lel scalability by a great extent. Namely, starting the

computation of figure 1 at any column of a matrix ini-
tialized to zeros (instead of column 1), and computing
N +abs((N ∗Match)/Gap) consecutive columns to the
right of the start column (1.5N columns in this exam-
ple), ensure that the element values of the next column
(N + abs((N ∗ Match)/Gap) + 1) are correct, i.e. are
identical to what they would have been in the serial
algorithm.

This property allows blocks of columns of the ma-
trix to be subdivided among processors (as if with
a (*,BLOCK) distribution), with each processor pre-
computing only 1.5N columns on the left of its block
as “warm-up” (in a scratch area, without committing
the results), and then, having obtained the correct ele-
ment values for the leftmost column of its block, com-
puting its entire block itself. The domain specific prop-
erty mentioned above ensures that all computations are
equivalent to the result of a serial computation. Figure
4 demonstrates this approach. This property was also
given as a written hint to all the subjects, encouraging
them to obtain higher degrees of parallelism using it.

Of course, adding wavefront computations to the scal-
able approach just described is also possible, for gaining
additional parallelism.

4 A summary result of the productivity
experiment

The productivity study team from IBM and PSC per-
formed many automated and non-automated observa-
tions on the subjects throughout the study, by fre-
quent sampling of the source code changes, recording
of the results of compilation and execution (more than
180,000 events were automatically recorded), face-to-
face observations, and interviews.

Because of the extensive automated recording of source
code changes, it is possible to precisely determine when
the first working parallel code was created. Figure 5
gives one summary of the study results for each sub-
ject. It shows the time between “development start
time” and “development end time” as defined below,
and further breaks down how that time was spent,
using heuristic algorithms for identifying development
phases such as authoring, debugging, and executing a
program. Figure 5 also identifies which subjects never
produced a working parallel program, and which sub-
jects left the study without staying to the end.

• The development start time was assumed to be the
first running of the serial program for the sequence

32



Figure 5. Development times and activities

matching problem, or the appearance of the first
parallel construct in the program, in case the user
never ran the serial program.

• The development end time was taken to be the cre-
ation of a parallel program for sequence matching
that gave the correct result in the PSC environ-
ment, on the reference input of N = 10, M = 100,
and a fixed random pair of strings, and that in-
deed exhibited greater than 1X parallelism on the
main computation of the matrix elements (the lat-
ter verified by a human expert). In case the sub-
ject was never able to produce such a program,
the development end time was just taken to be
the time the subject stopped work.

Of course, some of the subjects continued to improve
and optimize their programs after creating their first
working parallel program. Figure 5 does not include
such optimization activities.

The additional summary result in figure 6 indicates
that x10 had an edge over C+MPI and UPC for the
particular productivity metric of time-to-first-parallel-
solution. Needless to say, all results are preliminary:
in the conclusions section, we provide some additional
insights for further study.

In the appendix of this paper, we will also focus on one
additional type of analysis of the results: our technical
team’s own old-fashioned reading of the sequences of
code produced by the subjects, which can provide some

Figure 6. Development time by language

more detailed insight into the experiment. Future pa-
pers from the team will also describe other aspects of
the experiment more comprehensively. The present pa-
per is not intended to be a comprehensive presentation
of the study.

5 Conclusions

Overall, we think the event that took place at PSC
had the tenets of a well-designed major study. We will
now summarize some of the informal observations and
conclusions we have reached as the technical sub-team.
We feel that these remarks may be valuable for the
future experiments. While these insights are not new,
it is interesting to observe their re-emergence as part
of the practical productivity experiment.

Productivity insights for future language and
tools design:

Abstraction mismatch: Some subjects were over-
whelmed by the complexity of parallel programming
(to the extent of being unable to generate any cor-
rect parallel program), or made their own work unduly
complicated. The reason appears related to the inabil-
ity to use the right concise abstractions, that specify
what needs to be done at a high level. The parallel lan-
guage and/or component library must have an arsenal
of the right abstractions to express the task at hand.
For example, for x10, it would have been better to use

33



an existing (*,BLOCK) distribution as an abstraction or
readily available component (subject X5 had to simu-
late his/her own (*,BLOCK) distribution instead). For
C+MPI, it would have been better to have the abstrac-
tion to print a distributed matrix, rather than build
a distributed matrix printing routine with low level
synchronization and message passing. For languages
using C as a base, mysterious segmentation violations
(reflecting a C design trade-off that was once made in
favor of performance vs. safety) are neither friendly
nor can pass as a high level abstraction for a parallel
programming task.

Lack of performance transparency: Tools that pro-
vide high-level, approximate feedback about the per-
formance and parallelism being achieved by a user’s
program, would also be very useful to programmers at
the early design stages. These tools would help recog-
nize ostensibly parallel programs that give the correct
results, but yet are not really parallel because of errors
(X4 created such a program). The tools could also pro-
vide performance awareness about language features,
such as random access to arbitrary distributed array
elements in UPC, or array distributions that can lead to
bad locality in x10 (some x10 subjects chose a cyclic
distribution for the matrix).

Lack of programming style and discipline: Program-
mers must not only be taught the constructs of a par-
allel language, but also a design style that shuns com-
plexity and that rings mental bells of danger when a
program fragment becomes too complex. Some sub-
jects created unduly complex programs that probably
reduced their potential productivity at the end. The
lack of proper abstractions may have fueled this.

Lack of knowledge of parallel design idioms: Program-
mers must be taught the elementary parallel program-
ming idioms such as data flow computation, divide
and conquer,..., (somewhat like the design patterns
of parallel programming). One UPC subject used an
approach where each thread was continuously polling
memory (busy-waiting), for its inputs to become avail-
able. Also, some subjects precipitated toward the com-
fort of having all processors do the same computation,
or having all threads wait while thread 0 does all the
work. Had we taught some more basic parallelism id-
ioms up front, along with the language instruction, this
could perhaps be avoided.

Nondeterminism considered harmful: Nondetermin-
ism (available in most parallel languages, including
x10) appears to be a dangerously powerful feature for
novices. Nondeterminism makes it possible to write
parallel programs easily, at the risk of being correct

only some of the time by accident, and never noticing
that in different circumstances the answer may be in-
correct. The x10 team has been doing research in defin-
ing deterministic subsets of x10 to remedy this problem
[5]. Also, the implementation of non-determinism must
be made defensive, such that the probability of getting
the right answer by accident is lowered, for example,
by increasing randomness in the way threads schedulers
work.

Insights for future experimental methodology
and tutorials:

Tutorials are very important for getting across the ba-
sic concepts and impacting the productivity results.
But sometimes it is hard for an instructor to read
whether the message has gone across. The tutorials
could have a non-intrusive online quiz component to
them, via laptops or terminals, to provide immediate
feedback to the instructors on how effective the learn-
ing has been.

Very common novice parallel programming pitfalls
such as having all threads compute the same thing re-
dundantly, or just having thread 0 do all the work,
should be covered and advised against.

Correctness testing for parallel programming projects
must be made rigorous, quickly testing many corner
cases, and checking for deterministic stability, and
should be spelled out to the subjects as well.

If at all possible, multi-day experiments must have 24-
hour monitoring to accurately measure development
time, not just during the day. Competitive brilliant
minds will not rest, even when asked to rest during the
off-hours!

Overall conclusions:

Overall, we believe that the present productivity ex-
periment was an excellent experience. Through such
a methodology, we believe that we can get one step
closer to the goal of having a quantitative, measurable
criterion on productivity, to guide future designs of lan-
guages and tools.

Acknowledgments

This work has been supported in part by the Defense
Advanced Research Projects Agency (DARPA) under
contract No. NBCH30390004. First, we are very grate-
ful to our hard-working anonymous subjects. We thank
David Bader for his suggestion for using the Smith-
Waterman serial algorithm in a productivity experi-

34



ment. We are in particular grateful to Alexander Ro-
pelewski and Hugh B. Nicholas, the bio-informatics ex-
perts at PSC, for their help with the domain specific
property that made the scalable computation of the
local sequence alignment problem possible. We are
also grateful to Nick Nystrom from PSC, to Chris-
tine Halverson, Catalina Danis, and Wendy Kellogg
from the IBM Research Social Computing group, as
well as to Mootaz Elnozahy, Ram Rajamony, and Vijay
Saraswat, for making this sizable productivity experi-
ment possible.

Appendix: Observations on codes pro-
duced by subjects

In this Appendix, we will provide our analysis of the
codes produced by each of the subjects (based on old-
fashioned code reading). These are preliminary, and
are subject to change in the future, as we gain a better
insight into the large database of programs.

5.1 X10 subjects

• X1: Essentially used the following algorithm: for
each element (i, i) on the diagonal, 1 ≤ i ≤ N ,
compute the element, and then in parallel do: { se-
quentially compute the row elements (i, i+1 : M);
sequentially compute the column elements (i + 1 :
N, i) }. This is not a very parallel or scalable solu-
tion, but does exhibit a minimum amount of paral-
lelism (less than 2X). Also, some matrix elements
were computed and written more than once, which
surprisingly did not give incorrect results (the mul-
tiple writes wrote the same value).

• X2: This subject misunderstood the hint. X2 sub-
divided the matrix into blocks of 1.5N columns
each, and computed these blocks independently
and in parallel. Surprisingly (perhaps as an id-
iosyncrasy of the java thread scheduler at PSC),
this nondeterministic parallel program gave the
correct answers at PSC in a repeatable manner.

• X3: Another nondeterministic program (paral-
lel loop with inter-iteration dependences) that
worked correctly by coincidence.

• X4: This subject also misunderstood the hint.
He intended to subdivide the matrix into 1.5N
columns and process them independently. How-
ever, he/she mixed up columns and rows and cre-
ated multiple threads (x10 activities), where only

one thread was computing the entire matrix se-
quentially, and the remaining threads were doing
nothing. Also, there was a data race (nondeter-
minism) which could print the matrix before it
was completely computed, but the data race did
not actually occur at PSC. Because the parallelism
was never greater than 1X, X4’s parallel program
was disqualified.

• X5: Quickly created a first parallel solution us-
ing a wavefront algorithm. Remarkable sequence
of programs: one can see how he/she starts with
a stock wavefront pattern, encounters problems,
and solves them successfully. He/she was also the
only x10 group subject who understood the hint
and later used it to create a scalable and correct
parallel solution. There were many if-then-else
statements to optimize for different cases, which
made the code unduly complex. An HPF-style
(*,BLOCK) distribution in x10, which was not
available at the time, could have simplified X5’s
programming.

• X6: The first parallel solution was a wavefront
computation.

• X7: Used wavefront parallelism, but with a cyclic
distribution which has poor locality.

• X8: The program does not work when N does
not divide M evenly, but works (using wavefront
parallelism) when it does.

• X9: Uses fine-grain wavefront parallelism.

5.2 C+MPI subjects

• M1: No correct parallel solution. M1’s code gen-
erated numerous compile-time and run-time errors
which M1 never fully resolved.

• M2: Remarkably concise and elegant wavefront
solution based on pure send-receive synchroniza-
tion. Each processor is assigned a block of rows
of the matrix (a (BLOCK,*) distribution), and se-
quentially performs the following for each column
of its block: receive the top element of the col-
umn from the previous processor (wait if it not
available yet), then compute this column from top
to bottom sequentially, and then send the bottom
element of this column to to the next processor.
This solution is essentially a wavefront algorithm,
but it is not lock-step synchronized (it is data-flow
synchronized via ordinary MPI send and receive),

35



and should be able to tolerate variable latencies
very well. Unfortunately, this solution will not
scale, because the maximum parallelism is limited
with the wavefront approach.

• M3: Essentially the same solution as M2’s.

• M4: Has used the hint correctly, to create a scal-
able parallel solution.

• M5: No correct parallel solution. M5’s initial at-
tempt at parallelization generated a segmentation
violation, which M5 was unable to correct despite
several attempts.

• M6: No correct parallel solution.

• M7: Each processor is computing the same en-
tire matrix sequentially. This solution was not ac-
cepted as a parallel one. M7 tried to create more
elaborate parallel solutions later, but did not suc-
ceed.

• M8: No correct parallel solution. Generated nu-
merous MPI, malloc, and language errors (both
compile-time and run-time)

• M9: Has used the hint correctly to create a scal-
able parallel solution.

5.3 UPC subjects

• U1: Did not complete the study.

• U2: seems to have obtained perhaps the best
wavefront solution across the teams, with low com-
munication overhead. Uses a (*,BLOCK) distri-
bution which eliminates vertical communication
among matrix elements, and performs wavefront
computation with each wave consisting of cells of
size 1 by 25 (for the 10 by 100 input). But of
course, the wavefront solution is not scalable.

• U3: Did not obtain any correct and parallel solu-
tion.

• U4:

• U5: Did not complete the study.

• U6: Did not obtain any correct and parallel solu-
tion. U6’s initial attempt to parallelize the task
was unusually complex, relying heavily on pointer
arithmetic and never generating a correct solution.

• U7:

• U8:

• U9: Even though this UPC program is ostensi-
bly parallel, only thread 0 is computing the entire
matrix sequentially. Threads other than 0 are not
doing anything. This was not accepted as a par-
allel solution.

References

[1] Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker, and Jack Dongarra. “MPI: The
Complete Reference”, Massachusetts Institute of
Technology Press, 1996.

[2] Tarek El-Ghazawi, William Carlson, Thomas Ster-
ling, Katherine Yelick. “UPC: Distributed Shared
Memory Programming”, Wiley Interscience, ISBN:
0-471-22048-5, 252 p., June 2005.

[3] Philippe Charles, Christopher Donawa, Kemal
Ebcioglu, Christian Grothoff, Allan Kielstra, Vi-
jay Saraswat, Vivek Sarkar, Christoph von Praun.
“X10: An Object-Oriented Approach to Non-
Uniform Cluster Computing”, Proc. OOPSLA
2005.

[4] David Bader. “Scalable Synthetic Com-
pact Application Benchmarks”, available at
http://www.highproductivity.org/Benchmarks.
Contact the web site owners to request access to
the code.

[5] Vijay Saraswat, Radha Jaghadeesan, Ar-
mando Solar-Lezama, Christoph von Praun.
Determinate Imperative Programming: A
clocked interpretation of imperative syntax.
http://www.saraswat.org/cf.html

36


