
Proceedings of the
Third Workshop on

Productivity and Performance in
High-End Computing

(PPHEC-06)

February 12, 2006
Austin, USA

Held in conjunction with the
Twelfth International Symposium on

High Performance Computer Architecture

Program Chair:
Ram Rajamony, IBM Research

Program Committee:
Philip Johnson, University of Hawaii
Nick Nystrom, Pittsburgh Supercomputing Center
Ram Rajamony, IBM Research
Vijay Saraswat, IBM Research
Lawrence Votta, Sun Microsystems

3rd Workshop on Productivity and Performance in High-End Computing

Febryary 12, 2006

Austin, USA

Yes, There Is an “Expertise Gap” In HPC Applications Development . 5

Susan Squires, Michael L. Van De Vanter, and Lawrence G. Votta

The Value Derived from the Observational Component in an Integrated Methodology 11

for the Study of HPC Programmer Productivity

Catalina Danis and Christine Halverson

Parallelization of a Molecular Modeling Application: Programmability . 22

Comparison Between OpenMP and MPI

Russell Brown and Ilya Sharapov

Implementing the CG and MG NAS parallel benchmarks in X10 . 29

Vijay Saraswat

An Experiment in Measuring the Productivity of Three Parallel Programming 30

Languages

Kemal Ebcioğlu, Vivek Sarkar, Tarek El-Ghazawi, and John Urbanic

The SUMS Methodology for Understanding Productivity: Validation . 37

Through a Case Study Applying X10, UPC, and MPI to SSCA#1

Nick Nystrom, Deborah Weisser, and John Urbanic

Proceedings of the
Third Workshop on

Productivity and Performance in
High-End Computing

(PPHEC-06)

Yes, There Is an “Expertise Gap”
In HPC Applications Development

Susan Squires
Sun Microsystems, Inc.

15 Network Circle UMPMK15-204
Menlo Park, CA 94025

1-650-786-3441

susan.squires@sun.com

Michael L. Van De Vanter
Sun Microsystems, Inc.

16 Network Circle UMPMK16-304
Menlo Park, CA 94025

1-650-786-8864

michael.vandevanter@sun.com

Lawrence G. Votta
Sun Microsystems, Inc.

16 Network Circle UMPMK18-216
Menlo Park, CA 94025

1-650-786-7514

lawrence.votta@sun.com

ABSTRACT

The High Productivity Computing Systems (HPCS)
program seeks a tenfold productivity increase in High
Performance Computing (HPC), where productivity is
understood to be a composite of system performance,
system robustness, programmability, portability, and
administrative concerns. Of these, programmability is the
least well understood and perceived to be the most
problematic. It has been suggested that an “expertise gap”
is at the heart of the problem in HPC application
development. Preliminary results from research conducted
by Sun Microsystems and other participants in the HPCS
program confirm that such an “expertise gap” does exist
and does exert a significant confounding influence on HPC
application development. Further, the nature of the
“expertise gap” appears not to be amenable to previously
proposed solutions such as “more education” and “more
people.” A productivity improvement of the scale sought
by the HPCS program will require fundamental
transformations in the way HPC applications are developed
and maintained.

Categories and Subject Descriptors
D.2.0 [Software Engineering]. D.1.3 [Programming
Techniques]: Concurrent Programming –parallel
programming.

Keywords
High Performance Computing, Software Productivity.

1. INTRODUCTION

The development of application software in the High
Performance Computing (HPC) domain is extraordinarily
difficult. Indeed the Defense Advanced Research Project
Agency (DARPA) has called out programmability as one of

the key goals of the High Productivity Computing Systems
(HPCS) program. DARPA understands productivity to be
a composite of system properties and has set HPCS
program goals in each [2]:
• Performance (time-to-solution): speedup critical

national security applications by a factor of 10X to
40X

• Programmability (idea-to-first-solution): reduce cost
and time of developing application solutions (~10X)

• Portability (transparency): insulate research and
operational application software from system

• Robustness (reliability): apply all known techniques to
protect against outside attacks, hardware faults, &
programming errors

• A fifth property, Systems Administration, was added
at the suggestion of Sun Microsystems, one of the
HPCS vendors.

Acknowledging that productivity is fundamentally not well
understood, DARPA has also funded a broad research
program on HPC productivity that engages universities,
research labs, the program vendors, and the HPCS
“Mission Partners,” including the Department of Defense,
Department of Energy and federally funded sites such as
Sandia National Laboratory and Los Alamos National
Laboratory.
Of the system properties that make up productivity,
programmability is the least well understood and perceived
to be the most problematic. It has been suggested that an
“expertise gap” is a significant barrier to increased software
productivity: “Programming today’s HEC1 systems
requires a high level of expertise, but the current trend of
available skills is increasingly one of few HEC expert
programmers …” [12].
A goal of the HPCS Program is to create a base of
empirical data describing all aspects of productivity.
Although the program is far from complete, preliminary
analysis of data concerning programmability confirms that
there is in fact an HPC “expertise gap” and that it is

1 High-End Computing, another term for High Performance

Computing (HPC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference PPHEC’06, February 12, 2006, Austin, Texas, United
States.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

5

fundamental to the ways software is developed in many
areas of the HPC domain.
This paper presents those preliminary analyses, beginning
in section 2 with a discussion of the environment in which
HPC software is developed, maintained, and evolves.
Many of these insights about the environment have
themselves been produced by HPCS program research.
Section 3 describes the interdisciplinary research
methodology used by the Sun productivity program,
drawing on a variety of social science and empirical
software engineering techniques. Selected preliminary
findings are presented in section 4, with primary emphasis
on suggestive case studies. Section 5 discusses some of the
implications of these findings for the HPCS program goals.

2. BACKGROUND AND RESEARCH GOALS

The HPC environment is characterized by very large
problems (measured by both data size and computation)
that require very large, sometimes exotic computing
systems and the exploitation of very high degrees of
parallelism. The focus of the HPCS program has been on
“Mission Partners” in the United States: the Department of
Defense, the Department of Energy, and the intelligence
community. HPC also takes place in commercial
environments and those have been the subject of some
studies as well.
Case studies published to date describe an environment that
has much in common with other kinds of software
development, but which differs markedly in a few respects
[4][5][9][10]. The following characteristics are important
for the purposes of this discussion:
1. HPC codes typically take years to develop.
2. Once developed, HPC codes have a maintenance and

evolution lifetime that can be counted in decades.
3. Because HPC codes have such a long use life, they

may be ported to new machines several times during
their lifetime, possibly every 3-4 years.

4. HPC codes embody very complex science and
numerical methods.

5. As a result of their age, legacy codes are typically
written in Fortran77 and MPI. This sets them apart
from other kinds of programming.

6. New code is often being written in C++.
7. HPC codes are often supported by tools that are

specifically written for them.
The goal of our research is to collect empirical data and
build understanding of HPC application development, with
a particular emphasis on characterizing the key
“bottlenecks” that appear to have negative impact on
application development effectiveness. From this data we
intend to develop a model for reasoning about
programmability and for predicting how bottlenecks might
be ameliorated.

3. METHODOLOGY

To gather more detailed information about HPC software
development, we adopted a case study approach; this
approach provides a data collection framework that is
flexible and allows deep exploration of one or more cases
[4][5][9][10]. We used multiple methods from case study
research [14] that would allow us to gather information
from professionals and teams of professionals who are
writing code for highly parallel machines. These methods
included qualitative data collection including:
• Semi-structured interviews with individual HPC

programmers.

• Structured group sessions (surveys and interviews)
with existing Mission Partner code teams.

We also used quantitative methods that allowed us to
validate case study findings across a larger sample,
including a survey of Mission Partner teams, using a
multiple choice and open-ended questions format.
The use of mixed methods, measuring, observing and
interviewing programmers, has a number of advantages
over reliance on one type of data collection alone. For
example, journal entries allowed us to collect “real-time”
accounts of code development from a programmer
perspective. Individual and group interviews help us
understand long-term team and context issues. Survey
results provide a structured overview and validated
observations.
Of course the raw data alone did not provide us with the
insights we seek. By weaving together the qualitative data,
we were able to compare journal entries, survey responses,
and interviews in order to fill out our understandings and
isolate inconsistencies. From the combined data we then
began to identify patterns across individuals and teams, plot
bottlenecks and create models of HPC programmers based
on empirical data.

4. FINDINGS

The data collected so far shed light on the suggested
“expertise gap” that is widely reported in anecdotal form,
for example as noted by Sarkar et. al. [12]. Analysis can be
carried out from more than one perspective. This paper
examines insights gained by identifying “bottlenecks:”
barriers to the accomplishment of development goals.
Analysis from a workflow perspective will be reported
separately.

4.1 “Hot Spot” interviews

The Sun Microsystems productivity team began to
investigate this evidence with a systematic analysis of data
collected from interviews with five Mission Partners,
conducted through DARPA’s productivity research effort.
There were three components to the data [3]:
1. A set of proposed workflow diagrams, describing

idealized work processes in different aspects of HPC

6

software development; respondents were invited to
review the diagrams and mark those workflow nodes
they perceived to be “hot spots” causing particular
difficulty or expense.

2. Free-form comments from interview respondents.
3. An oral debriefing of the interviewer, during which

additional respondents’ comments, not otherwise
recorded, were reported.

No clear consensus emerged from the respondents’ node
selections, but additional analysis that included both sets of
comments suggested that respondents had experienced
some difficulty mapping the proposed workflows into their
own work practices. A revised analysis at a coarser
granularity, taking full account of the comments, revealed a
clear consensus, as represented in the following chart.

Math
Libraries

Schedule/
Run Code

Optimize
Code

Debug, Test,
V&V

XDevelop
HPC Code

MP1 MP2 MP3 MP4 MP5

n/a

n/a

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

 Chart of Mission Partner Bottlenecks

The chart depicts the areas where data revealed each
Mission Partner to be experiencing difficulty, i.e. where
HPC code developers spend the greatest time and effort.
Five areas were reported by a majority of Mission Partners:

1) Developing HPC Code,

2) Debugging, Testing and Verification &
Validating,

3) Optimizing Code,

4) Scheduling Code Runs, and

5) Creating, Selecting, and Using Math Libraries

Areas identified by fewer Mission Partners do not appear in
the chart. Mission Partner 3 does not develop code.
Importantly, of the five areas that consume time and effort,
Mission Partners unanimously reported that optimizing,
debugging, testing, and Verification and Validation of code
were bottleneck areas.
We concluded that scaling code for HPC systems was the
most likely area to become a bottleneck, which supports
anecdotal reports that specialized "expertise" is crucial for
scaling code for High Performance Computing (HPC). A
lack or “gap” in the availability of that expertise might be
an important factor blocking increased HPC productivity.

4.2 Classroom “defect” studies

Recent quantitative research from a study conducted at the
University of Maryland has confirmed similar bottleneck
areas while studying novice developers [7]. In this study,
students were monitored while developing solutions to
small HPC programming problems; all of the students’
code runs were examined and the “defects” in faulty codes
categorized. Those findings match the first two bottleneck
areas identified in Sun’s analysis: Coding for HPC, and
Optimizing Code. The novices being studied do not engage
in validation, scheduling or significant library use.
We realized that we would need to conduct additional
research to explore and validate our initial findings as well
as expand our knowledge of the expertise gap.

4.3 Scale up with more education?

When people are working hard but do not seem to be
productive enough, it is tempting to think that more
education might address any “expertise gap.”
Will more or better education help solve the expertise gap?
In the case study research with professional HPC
developers, we included questions about education to help
us gain a better understanding of the context of the
developer’s work and associated education challenges. The
following example is representative of the information we
collected.
Don2 is typical of the HPC developers with whom we
talked. His work history provides an example of the
challenges associated with solving the expertise gap
through education.
Don has a Ph.D. in Geophysics with a special interest in
meteorite impact on planetary bodies. Because of his
background in impact studies, he was recruited onto the
Condor team at a Mission Partner Laboratory whose legacy
code modeled impact [5].
The code that Don began to learn has existed for 20 years,
is written in Fortran77 and contains well over 100,000
lines. Over the years this code has developed a large user
base: more than 300 licenses with about 1000 users. Its
users perceive this code as valuable, and Don was hired to
maintain the code: fixing bugs reported by users and
upgrading it when necessary.
Surprisingly, Don joined the code team with no knowledge
of Fortran or MPI. He reports that it took him eight years
to learn his job. Of course it did not take him eight years to
learn Fortran; that took about eight months, which he called
his “on-the-job training.” The reason for his long learning
curve is the complexity of the code itself. The code Don
works on has had many authors over the years. It has also
been ported to new machines several times during its
lifetime use. Not all authors documented their work, and

2 “Don” and other names that appear in case study descriptions are

pseudonyms, used for confidentiality and security.

7

many legacy features in the code were left intact each time
the code was ported.
Don eventually became the lead developer for this code.
Although Don now feels confident with the code, he
admitted that, after fifteen years working with the code, he
still does not understand what all the code does.
Don’s long learning period appears typical for HPC
development. For example, Sarkar et. al. also reported a
10+ year hands-on learning curve to develop such expertise
[12].
Formal education in languages such as Fortran or
parallelizing tools such as MPI or OpenMP would not have
helped in Don’s case. He quickly mastered the skills in
these areas. Instead the bulk of his learning was centered
on acquiring experience with the legacy code. It was the
complexity of this large code that demanded the extra time
to master.
The learning curve requirements of the HPC developer
working with complex code casts doubt on any long-term
strategy of relying on education to solve the problem. Even
if we could provide appropriate education, the timeframe
for such a solution is unrealistic. The hope that the
expertise bottleneck might be solved through education is
not a long-term answer.

4.4 Scale up with more people?

If more education alone will not solve the expertise gap
perhaps building teams of skilled people can cut down on
the time to solution. In another example from our case
studies we learned that the answer is “maybe.”
The Hawk team filled out surveys and participated in a
group interview as part of our case study research [4].
Asok was a founding member of the team, having been
recruited as a graduate student. His expertise in fluid
dynamics was important to a new project challenged to
model a hi-tech plastic to be used in airplanes and armored
vehicles, whose parts would be fabricated using large
molds. However, it is difficult to fill the molds correctly,
without air pockets. Asok was asked to model the mold
filling as an alternative to expensive experimentation.
Although Asok was knowledgeable about the science, he
was not an HPC programmer, so he was teamed with a
Fortran expert.
Asok understood the fluid dynamics, the programmer
understood Fortran, but they did not understand each other.
Four years later the Fortran code was unsuccessful, and the
programmer quit.
A new programmer was assigned to work with Asok.
Mitch was more fluent in C++ and suggested abandoning
the existing code. It was a bold move, but the two decided
to begin all over again with C++. They worked together to
find a working solution to the modeling, this time creating
a successful serial code. Unfortunately neither was expert
in scaling. Their manager, Jean, was an expert in

optimizing code; she stepped in to scale the code, working
closely with Mitch.
Meanwhile the project sponsor started to become impatient,
and a manager was still needed to handle expectations. So
the project management was taken on by another person.
His main role was to run interference for the team, keeping
the sponsor happy. He also negotiated time to run the code
on the large machine.
It took an additional three years to develop a successful
parallel code in C++ but the team effort paid off. The new
C++ code was delivered to the sponsor.
Asok attributed the success to two factors: his new
programming partner and the coding knowledge he gained
during the four years he spent attempting to write the code
in Fortran. The C++ programmer, Mitch, attributed success
to Asok’s expertise in fluid dynamics and Asok’s
willingness to teach Mitch about it. Both agree that the
project would not have succeeded if their manager had not
stepped in to scale the code for a highly parallel machine.
This case study illustrates the potential for overcoming the
expertise gap with appropriately configured teams. In less
than seven years the Hawk team demonstrated that they
could develop a working code in less time than a lone
developer. But it is a cautionary tale. The team was
successful only when they had the appropriate mix of
knowledge represented in four areas:

• Science

• Programming

• Scaling / Optimizing

• Management

The success of a team strategy for overcoming the expertise
gap relies on a conscious division of labor with a specific
mix of domain knowledge. In the Hawk case, the first
effort at assembling a team did not work. Throwing more
people at the problem without consideration for the team
skill mix led to four years of frustration. It was only when
the mix of skills was balanced between science,
programming, scaling, and management did the effort
move forward.
It is also clear that Asok still had to acquire a working
knowledge of programming in order to find a solution. He
admits that the four years working with the Fortran
programmer enabled him to work successfully with the
C++ programmer with whom he was subsequently
partnered. The programmer needed to gain a working
knowledge in Asok’s area of expertise as well.
This example suggests two “best practices” that can help a
team to succeed.
1. The team needs the right mix of skills: science,

programming, scaling/optimizing and management.
2. It is also important that each team member has a basic

working knowledge of the other skill sets on the team
so that they can communicate effectively.

8

But assembling a team of appropriate experts is not a
complete solution. Of the four skill sets, scaling/optimizing
remains a scarce resource, and if Jean had not possessed
those skills the project might have stalled. By putting a
team together that addresses the various expertise needs,
the team approach can bridged the expertise gap. However
this is temporary. As systems get even larger and more
complex, this key expertise will become relatively more
scarce, and teams will be unable to scale. For example
adding more programmers to Asok’s team would not have
helped solve the problem any faster. In fact, more team
members would have added a team / human complexity,
without fundamentally addressing the “expertise gap.”

5. DISCUSSION

A combination of qualitative and quantitative research
methods allowed us to develop a more complete
understanding of the issues faced in the HPC community
than might have been possible with any single method.
Using a case study approach allowed us to deeply explore
the work of individuals and teams of HPC code developers.
Quantitative method provided the breadth of data to
validate our findings on a larger scale.
From our research we conclude that complexity is at the
core of HPC bottlenecks, and it is a system level problem.
Previously proposed solutions such as “more education” or
large team approaches are short-term interventions that will
not be viable unless we address the root cause of the
“expertise gap” – increasing complexity [6]. Very few
individuals have the complete set of skills (science,
programming, scaling and management) necessary to
exploit fully these complex machines. Educating individual
developers in all four skills requires both a gifted individual
and many, many years.
Assembling a team of experts is an alternative that has
short-term potential. However, these teams have a limited
ability to scale. Doubling the number of scientists or
programmers adds another layer of complexity to the team.
As machines get bigger and more complex the pool of
experts who have the ability to deal with the increasing
level of complexity will continue to narrow. Unless we
address the system level cause of the expertise gap,
increasing complexity, we will not solve the problem.

6. CONCLUSIONS

Productivity improvement on the scale sought by the HPCS
program must address scale and complexity by requiring
fundamental transformations in the way HPC applications
are developed and maintained [1][7][11][13]. In the end we
believe that bottlenecks will be resolved with appropriate
application of automation, abstraction and associated tools.
Abstraction, including languages may solve the science
domain expertise gap by reducing the programming
complexity and allowing scientists to reason in the problem

domain. Opportunity here now revolves around grounding
practices in specific problem domains, automating that
which can be automated, and abstracting away the most
challenging aspects of the machine (parallelization).

7. ACKNOWLEDGMENTS

We are grateful to all of our HPCS program colleagues at
Sun Microsystems, especially Eugene Loh, Michael Ball,
and Victoria Livschitz. We also thank Doug Post, Richard
Kendall, Jeremy Kepner, and many others in the HPCS
community for their helpful discussions and comments.
This material is based upon work supported by DARPA
under Contract No.NBCH3039002.

8. REFERENCES

[1] Ahalt, S. C, and Kelley, K. L., Blue-Collar Computing:
HPC for the Rest of Us. ClusterWorld, 2, 11(Nov.
2004).

[2] Defense Advanced Research Project Agency
(DARPA) Information Processing Technology Office,
High Productivity Computing Systems (HPCS)
Program. <http://www.darpa.mil/ipto/programs/hpcs/

[3] Kepner, J, Personal Communication, 2005.
[4] Kendall, R. P., Carver, J., Mark, A., Post, D., Squires,

S., and Shaffer, D., Case Study of the Hawk Code
Project, Los Alamos National Laboratory Report LA-
UR-05-9011, 2005.

[5] Kendall, R. P., Mark, A., Post, D. E., Squires, S.,
Halverson, C., Case Study of the Condor Code Project,
Los Alamos National Laboratory Report LA-UR-05-
9291, 2005.

[6] Levesque, J., Have We Succeeded Because of
Complex HPC Software or In Spite of It? Times N
Systems, Inc., (August 17, 2001).
<http://www.etnus.com/Company/press/press_release.
php?file=hpc>.

[7] Loh, E., Van De Vanter, M. L., and Votta, L. G., Can
Software Engineering Solve the HPC Problem?,
Proceedings Second International Workshop on
Software Engineering for High Performance
Computing System Applications, St. Louis, 15 May
2005.

[8] Nakamura, T., University of Maryland, Personal
Communication, 2005.

[9] Post, D. E. and Kendall, R. P., Software Project
Management and Quality Engineering Practices for
Complex, Coupled Multi-Physics, Massively Parallel
Computational Simulations: Lessons Learned from
ASCI, International Journal of High Performance
Computing Applications: Special Issue on HPC
Productivity, J. Kepner (ed.), 18(4), Winter 2004.

[10] Post, D. E. Kendall, R. P., and Whitney, E. M., Case
Study of the Falcon Code Project, Proceedings Second

9

International Workshop on Software Engineering for
High Performance Computing System Applications, St.
Louis, 15 May 2005.

[11] Post. D. E., and Votta, L. G. Computational Science
Requires a New Paradigm. Physics Today, 58(1): p.
35-41.

[12] Sarkar, F., Williams, C, and Ebcioglu, K, Application
Development Productivity Challenges for High-End
Computing, First Workshop on Productivity and

Performance in High-End Computing (P-PHEC),
Madrid Spain. February 14, 2004.

[13] Squires, S, Tichy, W. G., and Votta, L.G. What Do
Programmers of Parallel Machines Need? A Survey.
Second Workshop on Productivity and Performance in
High-End Computing (P-PHEC), San Francisco, Feb.
13, 2005.

[14] Yu, R. K., Case Study Research: Design and Methods
SAGE Publications, 2002.

10

The Value Derived from the Observational Component in an Integrated
Methodology for the Study of HPC Programmer Productivity

Catalina Danis and Christine Halverson, IBM TJ Watson Research Center, Hawthorne, NY
{danis, krys}@us.ibm.com

1. INTRODUCTION
It is a common lament within the High
Performance Computing (HPC) community that
programmer productivity is not keeping pace
with improvements in processor performance.
This gap is in part attributable to problems of
human productivity that derive from the
complexity of the programming task.
Consequently, understanding the work of HPC
programmers is of utmost importance if the
community is to make significant progress in
narrowing the current gap between the
performance capabilities of high-end computing
(HEC) systems and programmer productivity.
This paper discusses a quasi-experimental
methodology for the study of programming work
which integrates an automatically collected
stream of data with a manually collected stream
to provide a comprehensive view of
programming work. The methodology is an
example of the so-called hybrid methodologies
(Hochstein et al, 2005) previously described in
the literature which exploits the complementarity
of the two streams of data to arrive at more
accurate and more comprehensive
understandings of programming activities. For
periods of programmer activity where there is a
gap in one stream, the other covers the gaps.
And, where both records are available, each can
augment the other.
The scope of programmer work which is of
interest to us begins with the programmer
developing an understanding of the problem to
be solved. While work at this stage can involve
work on a computer such as reading and
experimentation, this work is conceptual and

frequently does not leave behind digital traces.
The next segment of the programmer’s work
consists of developing a high-level conceptual
solution for the problem. This part of the
programmer’s work is again focused on
understanding, for example, how a proposed
algorithm would work in detail. As such, this
work might involve diagramming and sketching
the behavior of the algorithm using informative
data values. In today’s programming
environments, much of this work is done with
paper and pencil rather than with the use of a
computer (Hochstein et al, 2003). The third
segment of the programmer’s work is primarily
focused on the use of programming resources to
create an implementation and consequently
leaves behind a rich record of activity carried out
on the computer. A methodology that combines
data streams capable of recording activities
which take place both off and on the computer is
therefore critical for producing a comprehensive
view of programming work.
In this paper we present the discussion of the
integrated methodology from the standpoint of
the value provided by the manual component. A
detailed explanation of the automatic component
is available in Nystrom et al (2005). Our focus is
on two uses of the manual data: when it is the
sole record of programmer activity and when it
overlaps with data collected through the
automatic component. (See Figure 1.) In both
cases, the value stems from the complementarity
of the two data streams. When combined, they
provide a more complete picture of the sequence
of activities that programmers engage in to
complete programming tasks.

11

Figure 1. This diagram illustrates how both data streams–while fine grained–only capture a portion of the total
events happening in the programmer’s practice. By combining data from each stream we get a more detailed
look at the extent of the programmers’ activities.

2. BACKGROUND ON METHODOLOGIES
FOR MEASURING PROGRAMMING
ACTIVITY
Hochstein et al (2005) refer to methodologies
that combine manually and automatically
collected data as hybrid methodologies. In
principle, manual collection efforts can produce
a record of the entire programming process, from
initial understanding of the problem through
optimization of the solution for an HPC platform.
However, the cost of collecting the data and
practical limitations on the granularity of the data
collected has generally resulted in limited data
being collected. Furthermore, the cost of analysis
is similarly high, including the transcription from
analog records to digital. Automatic data
collection is limited to recording computer-based
events, though it can produce very detailed,
consistent and error-free data (Nystrom et al
REF).

2.1 Manual Observations
One widely used approach for the manual
capture of data is through self reports, either
through the analysis of free-form diaries kept by
programmers (e.g., Perry et al, 1995) or through
the direct selection by programmers of items
from pre-specified lists (e.g., Hochstein et al,
2005).

Free-form self reports in which the programmer
records his or her observations at any point in the
programming task are easiest to collect but are
prone to several problems. For example, Perry et
al (1995) in a post-analysis of project notebooks
and programmer diaries found large variability in
the ways activities were reported and found
insufficient resolution in the labels generated by
the programmers; both problems complicating
data analysis. These problems can be ameliorated
by requiring respondents to select from pre-
specified lists of activities that have been
identified as informative of programmer activity.
Nevertheless, all self-reports, require
programmers to log their activities and therefore
cause interruptions in the primary programming
task.. Switching context between programming
and observing oneself programming introduces a
significant overhead for the programmers and
can result in inaccurate reporting (Johnson et al,
2003). Furthermore, being subjective, these
assessments lend themselves to possible
distortion due to a conflict of interest. For
example, a student reporting on his effort in
programming a classroom exercise might be
tempted to either under- or over-report the time
he spent on the task in order to influence the
instructor’s evaluation appropriately.
Additionally, if the logging activity is done after
the programming task, its accuracy can be
affected by human memory limitations.
Forgetting is especially likely when time

Manual data
stream

Automated
data stream

One stream fills in a
gap in the other

Filling in
the details of
the full picture

Events in
programmer’s
work practice

12

intervals are filled with other activities (Wixted,
2004). However, memory problems can be
decreased by prompting programmers to make
self reports at regular or semantically meaningful
points in the programming activity. For example,
Hochstein et al (2005) requested effort
assessments by programmers whenever they
submitted a program to the compiler. These
researchers were able to improve the accuracy of
time estimates collected from self-reports
(relative to reports by a human observer) by
requesting that the programmer specify start and
end times rather than to report time estimates
only. Without specifying start and end times, the
programmers appeared to be rounding off their
responses to the nearest quarter hour, thus
introducing errors into their estimates.
While prompted and structured self-report data
increases their accuracy, there remain significant
problems from the standpoint of the programmer
who is asked to provide the data. One indication
of this is that programmers fail to adopt the
measurement technology in their work practice
outside of the classroom (Johnson et al, 2003).

2.2 Automatic Observations
The above problems can be eliminated by
instrumenting the programmer’s workstation and
collecting the data automatically. The resulting
data record is objective, accurate and as detailed
as the particular instrumentation allows. For
example, Hochstein et al (2003) instrumented
the programmer’s compiler to collect data to
estimate program development time. A broader
assessment of programmer activities is possible
through the approach embodied in the Hackystat
system developed by Phillip Johnson and
colleagues (Johnson et al, 2003). Hackystat
consists of an extensible framework for
recording programmer activity by means of
“sensors” which record tool-specific
programming activity data (has both server and
client side components). The starting set of
sensors built in to Hackystat by its designers,
including support for the Emacs and the JBuilder
IDEs, the ANT build tool and the JUnit testing
tool, has been extended by others (e.g., the
Eclipse sensor developed by Turker Keskinpala
at Vanderbilt University). Not all clients can be
“wrappered,” that is, some do not support the
attachment of sensors. Johnson et al (2003)
report, for example, that the editor Emacs lends
itself to this approach, while the Windows
system editor—Notepad—does not.

All of the programmer actions captured from one
or more sensors that instrument a workstation
and its associated system output are collected in
a central database to support subsequent analysis.
In its original formulation, Hackystat produced a
Daily Diary which combined the various data
streams into an abstraction of programmer
activity. Its intended use for monitoring of
programmer performance is seen in its support
for defining alerts that are communicated to the
programmer. For example, to signal to the
programmer that some threshold value based on
a complexity metric has been exceeded (Johnson
et al, 2003).
However, Hochstein et al (2003) have pointed
out problems that result from the incompleteness
of the data collected by some of the sensors. For
example, while “wrappering” is possible for
some editors, the measure of activity derived
from such a sensor is dependent on the existence
of computer events. Thus, if a programmer has
an editing session open but is not producing
keystrokes, perhaps because he is reading his
code, the Active Time analysis will show him to
be inactive. The automatic instrumentation
necessarily misses events which are not
computer-based. Furthermore, gaps in activity
detectable through automatic means, such as
those reported by Hochstein et al (2003) may
contain activities that should be legitimately
included in a measure of programmer on-task
time. Automatic data collection systems like
Hackystat (see also GRUMPS by Thomas et al,
2003) necessarily produce an incomplete record
of programming activity and thus point to the
need for hybrid or integrated methodologies.

3. DESCRIPTION OF THE INTEGRATED
METHODOLOGY

3.1 Overview
Like the hybrid methodology of Hochstein et al
(2003), the integrated methodology we report on
depends on the combination of automatic and
manual observations that are carried out
concurrently. However, instead of depending on
self-reports for the manual component of the data,
our integrated methodology makes use of an
independent observer to make the manual
observations. While this still involves a
judgment for the labeling of the programmer’s
activities, the use of an independent observer,
eliminates two of the problems noted above with
self-reported data. It eliminates both the
interruption of the programmer’s focal activity

13

due to switching context to reporting on his
activity and the potential for conflict of interest
in the content of the manual observations.
Further, the observations we recorded manually
were made at a much finer level of granularity
than previously reported. Our integrated
methodology also includes a significantly
improved method for collecting and analyzing
the automatic data component. The Standardized
User Monitoring Suite (SUMS) developed by
Nystrom et al (2005) collects fine-grained
observations of programming activities through
the broad instrumentation of a programmer’s
workstation. Further, it makes use of data
mining techniques (Hastie et al, 2001), including
statistical learning and knowledge discovery, to
analyze the resultant record. Rather than specify
analyses a priori, the SUMS data mining
approach enables analyses to emerge from the
data. Because a broad set of data events is
captured at a fine grain, it is likely that the data
required by emergent analyses will be available.

3.2 First Use of the Integrated
Methodology
The first use of this methodology was in a
comparative programming study comprised of
novice parallel programmers (largely students)
who were tasked with devising a parallel
implementation of the alignment portion of
Smith-Waterman algorithm (SSCA#1).
Participants were assigned to one of three
language groups: C + MPI, UPC or IBM’s new
language, X10, such that the three groups were
balanced with respect to average computing
experience of participants.
The study took place at the Pittsburgh
Supercomputing Center (PSC) from May 23,
2005 through May 27, 2005. The three groups
received training in their assigned language
during the first two days of the study and then
had the next two days to develop a parallel
program implementing the alignment portion of
SSCA #1. The assessment problem was
presented at the end of day 2 so participants had
an opportunity to think about the problem before
they returned to the experimental environment
on day 3. The three language instructors were
available during the two day assessment period
to answer questions. They were limited to
clarifying language constructs and answering
questions about the environment. They were
specifically counseled to avoid helping the
participants with the assessment problem. The
final half day was spent on debriefing the

participants about the problem and interviewing
them about their experiences.
While the three languages were at different
stages of maturity, we endeavored to equate the
environments as nearly as possible. This meant
that we did not provide debuggers, since none
was available for X 10; participants were limited
to using println statements for this purpose. All
development occurred on a 3000-processor
AlphaServer SC system at PSC (Tru64 OS, 2-rail
Quadrics). X10 was run in emulation mode.

3.3 Manual Component Data Elements
We made manual observations of programmer
actions by having a human observer stand behind
the programmer and note down programmers’
actions during the assessment period of the study
(days 3 and 4 of the study). We synchronized the
manual observations with the automatic
observations by time-stamping the start of
manual observations with respect to the clock
time on the server where the automatic (SUMS)
recordings were saved.
The difference in the work of the human
observer in our integrated methodology and that
which was reported by Hochstein et al (2005)
has to do with the nature and the granularity of
the observations made by the observer.
Hochstein et al (2005) decided to use a human
observer after they became suspicious of the
validity of the data they had collected through
self-reports and through instrumenting the
compiler which was used by the programmers in
their study. They ran two pilot studies in which
a human observer sat by the programmer and
produced a log of his activities by selecting from
the same pre-specified activity categories as used
in the self-reports. These included such high-
level events such as understanding the problem,
experimenting with the environment,
parallelizing and testing. In contrast, the human
observers in our integrated methodology noted
behaviors at a much lower level of granularity,
capturing events such as opening a file, issuing a
batch command, inserting new code in a text file
or non-computer based events such as when the
programmer removed his hands from the
keyboard or talked to the instructor.
A second major difference is that the human
observer in our study sampled the activities of
the programmers for five minute periods several
times over the course of a day rather than
observing a single programmer for the entire
period of the study. This enabled us to cover 27

14

programmers with three human observers over
the course of two full days of assessment.
This sampling method, while not providing the
ideal of complete coverage of all participants at
all times, is well validated in decades of animal
behavior research and has often been used in
human group observations. (E.g. see work by
Shirley C Strum on studying baboon troops in
Africa).
The focus of our manual observations was on all
of the programmer’s activities, whether on or off
the computer. Since this was the first use of the
integrated methodology, our initial strategy was
to capture as much detail as we could. We will
refine both the amount and the granularity of the
observations and the types of events we record
based on subsequent analysis of the data.
Prior to carrying out the manual observations, we
specified the events that were of interest to us
and assigned codes to these to make it make it
more efficient for the observers to note down the
observations. We aimed to capture events at
semantically meaningful levels where possible,
rather than to record literal transcription of
keyboard events. For example, we distinguished
between editing existing code (i.e., modifying it)
and writing new code, but did not note down the
content entered by the programmer. Capturing
semantically meaningful descriptions is
important because it can, for example, help with
distinguishing between both writing and
debugging code, and styles such as cut and past.
Both of these are of relevance to understanding
where effort is spent during programming. We
also recorded shell commands, cursor
movements within files and changes in window
focus.
Sample non-computer events we captured
include talking to the instructor, diagramming
the solution and reading paper-based
documentation. These are activities that are
generally recognized as providing important
support to programmers. In addition, we also
captured low-level, non-verbal events such as
removing one’s hands from the keyboard,
cracking one’s knuckles and “dancing” in one’s
seat (the use of headphones and music players
was common among the study participants). All
of these may or may not be important for
understanding programmer success, however
they are evidence of how programmer time is
being used. Appendix A lists the final set of
codes we used to record our manual observations

and we describe how we came up with them in
the following section.

3.3.1 Manual component collection
method
We employed three observers (the two authors of
this paper plus a second year Computer Science
graduate student) to cover the 27 participants
who were expected to take part in our study (in
actuality, 26 started the study and 25 completed
it). After agreeing to a first set of codes through
informal discussion, we carried out joint
observations of several individuals during one of
their learning practice periods and resolved
differences in our coding practice through
subsequent discussion. We repeated this 3 times
until we came up with a precursor to the list in
Appendix A. The observer selected from the pre-
specified set of codes where possible, and
entered unanticipated behaviors in free form.
We coded these afterwards based on post-
observational discussion, resulting in the final
list. (Some free form comments remained in the
transcriptions.)
We also used this learning period to refine our
sampling technique. Manual observation carried
out by human observers in real time is expensive.
Since we had to plan for 27 participants in our
study, and had access to only three observers, we
had to devise a sampling methodology to provide
even coverage of the programmers’ activities.
Drawing on observation techniques from animal
behavior (where one person is often observing a
group of animal interactions) we chose a
sampling method that would allow us to spread
ourselves across the full subject pool. (Lehner,
1996) Each observer was assigned a group of
nine participants per observation period. Within
each participant group of nine programmers the
observer made observations on an individual for
five minutes and then moved on to the next
member of his or her group. This resulted in
each programmer being observed for two five
minute periods, separated by 45 minutes, during
each 1.5 hour observation period.
In the next observation period, we shifted the
assignment of observers to study a different set
of participants. Over the course of a day, each
participant was observed for at least two five
minute periods by each of the three observers. In
this way, we were able to eliminate any
systematic effect of observer bias from our study.
Individual differences in observer background
(e.g., computing expertise) and in personal
characteristics (e.g., quality of eyesight)

15

necessarily impact observer performance.
Structuring the observation protocol in this way
controls for any remaining observer bias not
eliminated through training.
There were five observation periods on the first
day and four on the second day. In total we
collected 33 hours and 30 minutes of manual
observations. The number of observations per
five minutes ranged from 0 to 52, with an
average of 27.4.
We began each five minute observation period
by noting down the starting state of the
participant’s screen. We noted any open
windows, where possible, their content (e.g.,
editor session, shell) and the window which had
focus. We provided participants with notepads
for their use during the study period. We
collected these at the end of each day and re-
distributed them the next morning.

3.4 Automatic Component Data Elements
In this section, we list and briefly describe the
data acquisition components that comprised the
automatic component or the SUMS part of the
integrated methodology at the time of the study.
For a more in depth treatment of SUMS, see
Nystrom et al (2005). Data acquisition
components were implemented through a variety
of means, including program wrappers, cron
scripts, C utilities and third-party software. The
instrumentation enabled the collection of the
following event types.
1. sums_source captures various statistics to
describe the state of source files at consecutive
two-minute time slices, including the total lines
of code contained, the number added, deleted
and changed since the previous recording.
2. sums_web keeps track of the time-stamped
access to URLs with enough identifying
information to be able to distinguish between
access to web-based documentation and access
to URLs which are not relevant to the
development task (e.g., doing email, playing
games).
3.sums_shell records all commands executed
from a shell.
4. sums_window captures the name and
associated information for the active window.
5. sums_compiler captures each invocation of the
compiler and the associated exit status, errors,
warnings and other output.

6.sums_batch records output from the batch
commands used to invoke the AlphaServer
machine.

3.5 Automatic component analyses
The approach used in the SUMS tool is to
exhaustively instrument machines used in the
development of scalable code, to aggregate the
data collected over time, tasks, populations and
so on. and then to statistically correlate system
features to productivity. A major early thrust of
the analyses was to assign programmer actions
recorded with the SUMS system to code
development phases (authoring, debugging,
parallelizing, executing, other). To accomplish
this, development was first quantized into
uniform intervals. Then, for each interval, inputs
from all of the automatic data acquisition
components were heuristically integrated to
assign the interval to one or more development
activities. Development times for the various
phases are calculated by summing over the
weighted intervals. In addition, first parallel
solutions were identified for each participant
through a combination of automatic analysis of
compiler logs and program output, and manual
examination by the instructors. Based on
learning from the instructors’ processes, the
automatic analysis to identify first solutions was
refined.

4. Results based on Analyses of
Data from the Manual Component

Analyses of Manual Observations
Analysis began with transcribing the handwritten
codes into a digital form that then could be more
easily integrated to observation streams per
person. Manual observations were time-stamped
(at a one minute resolution) and synchronized
with the clock on the SUMS server machine. The
manual data stream produced a dense stream of
observations, including both on and off-
computer actions, captured with a high degree of
detail. Figure 2 illustrates a typical transcript of
the manual observations stream.

16

Figure 2. Snapshot of hand written notes taken
during observation and then transcribed.

The amount of detail captured is much higher
than has been reported by other researchers
making manual observations, whether collected
through self reports or through human observers
(e.g., Hochstein et al, 2005). As was noted
above, the median number of observed events in
a five minute period was 27.
When integrated, the two data streams provide a
more complete record of the programmer’s
activity than either does alone. In some cases,
gaps in one type of record are filled-in by data
from the other. In other cases, the two records
overlap in time, but provide somewhat different,
complementary pictures of programmer activity
due to differences in the type and granularity of
observations collected.
When the manual stream is integrated with the
automatic stream, the manual observations
contribute to two classes of analyses. First, they
can fill in the gaps that exist in the automatically
collected stream. These may be of moderate
length, as in the second example we discuss
below (see Table 1 below) which occurred
during the first day of coding. Or, especially
during the earlier, pre-coding phases of a
programming task, they can be quite long,
especially for complex problems. Even for a
much simpler programming task than the
alignment portion of the Smith-Waterman
algorithm used in our study, Hochstein et al
(2005) report an example of a ten minute gap in
the automatic record during which the study
participant was working out a solution on paper
and which they assigned to “thinking” time.

The second class of complementary analyses
where manual observations provide value occurs
where both streams provide data during a
particular time interval. The function of the
manually collected data is both to provide a more
richly nuanced picture of the programmer’s
activity and to raise hypotheses about the
meaning of data and to validate some of the
inferences made based on the automatic
component. For example, since the
instrumentation of the editors at this point
collects summary statistics rather than capturing
the sequence of events the programmer follows,
it is not easy to determine whether a programmer
is “writing new code” by cutting and pasting
from multiple files or debugging code he had
written from scratch. However, this is relatively
easy for a trained human observer to do. The
value of the human observer is that they can
generate hypotheses based on their observations
and these can then be explored in the
automatically collected data at a large scale.
In what follows we present two concrete
examples that illustrate some of the advantages
of integrating data from two streams.

Example 1: Gap analysis of within and
between subject observation of work
patterns
While analysis within a single subject stream
provides many different patterns, the most
interesting are probably the gaps that show up in
the automatic data collected because the user is
not interacting with the computer directly. We
can observe and analyze these gaps in a number
of different ways. For example, take the
following observation:
Subject: M2 Date: 5/25 Coder: CH
Screen State: 1 ED (ACT); 2 ?; 3 BR
13:30 Lk scr, Lk sp, Matrix draw, Gl rev prob. Stmt.,
Lk scr, Gl np, Lk scr
13:31 Hok, No type, Lk scr, Cu u, Cu u, MEC, Cu d
13:32 Cu u, Lk scr, Cu u, Cu d, Cu u, Cu u, c/ Mv cu/p
13:33 Lk scr, Hok, No type, Hnk, Gesture LH, Hand to
head, Hok, Mv cu, MEC, Gl prob amend., MEC
13:34 Mv cu, Lk scr + + +, Gesture rt hand, Lk sp,

Figure 3 Transcript of five minute observation
period for participant 2 in the C + MPI condition.

This transcribed coding equates to the following
description. Participant M2 is the second
member of the C + MPI language group. He has
three windows open, including an edit session

17

and a web browser. Starting at 13:30, M2
performed a number of actions, none of which
involved the keyboard. He (in order) looked at
the screen, looked into space, drew a matrix
structure on the scratch pad, glanced at the
revised problem statement, looked back at the
screen, glanced at the note pad, and looked at the
screen. In the next segment (13:31) he places his
hands on the keyboard, but doesn’t type, looks at
the screen and then moves the cursor up through
the code and makes a change to existing code
(MEC) then cursors down. In the third segment
he additionally does a copy from one piece of
code, and pastes it to another area of code (c/
MV cu / p). In the fourth and fifth segments we
see him gesturing in space with his hands in
addition to making code changes and looking at
the screen and the revised problem.
Comparing this entry to other observations of the
same programmer helps us draw a picture of his
style. He makes notes on the pad, but they tend
to be quick drawings rather than working out a
problem in detail. We see that he gestures with
his hands, although not pointing directly to the
screen. And we confirm the pattern seen here
that he tends to a style of amending existing
code—either by making changes or copying and
pasting a code segment to another place. In
contrast, other programmers observed with such
a break from the computer leave the room to go
on a cigarette break, or to answer a call on their
cell phone. In the former case, they may still be
thinking through the problem, while in the later
case it is much less likely.
By comparing against other programmers we
begin to get an idea that some programmers
spend more time off the keyboard than others,
and what they do off the keyboard is different.
Some look into space and appear to be thinking
through the problem while others work through
small sample problems in great detail on the note
pad. This included diagramming the matrix
necessary to solve the problem, and “walking
through it” in simulation of the algorithm – often
to verify that a particular approach would work.
Why does this matter? It is important for several
reasons. First because it gives us a glimpse into
the cognitive aspects of conceptualizing the
problem, some aspects of which may transcend
novice subjects. (We would have expected to
have observed more of this had we not given out
the assessment problem at the end of the second
day and then given them overnight to think about

it prior to resuming our observations.) We also
see where development time is spent and how
that is affected by particular patterns of work.
For example, if someone frequently works
through problems off the computer then
development time must include these gaps.
However, if they are getting up to call someone
or have a cigarette every hour, then interpretation
is more ambiguous.

Example 2: Integrating analysis with
automatic data recording
While these insights from a single type of data
are interesting this becomes more powerful when
we begin to compare across data streams. This
comparison can be with other kinds of
qualitative data. Here however, we want to focus
on comparisons with the automatically collected
SUMS observations. To see how informative
comparing these analyses can be, let’s look at
another programmer, working with UPC and
designated U6.
The PSC team analyzed the automatic data for
gaps in activity. Two of those gaps are show in
Table 1 below.

U6 1370 2005-05-25
09:23:50

2005-05-25
09:46:40

U6 788 2005-05-25
09:47:14

2005-05-25
10:00:22

Table 1: Two gaps in the automatically collected
data stream for participant 6 in the UPC language
group.
Our sampling schedule meant that we did not
necessarily overlap all of the gaps that the SUMS
analysis identified. But with U6 we overlap the
end of one gap and the beginning of another.

Subject: U6 Date: 5/25 Coder: JW
State*1: ED
9:45 LK SCR, PG U/D, WR SP, LK HO (Global
alignment)
9:46 LK SCR, HNK, HOK, CL 1, LS [quitting the
editor took him back to a shell prompt], RUN, ED
(Output.txt), HNK
9:47 GL SP, HOK, O (Edmiston_final.c), PG U/D,
CUR D, Left hand on mouth, POINT (MIN
statement)
9:48 HNK, LK HO, FLIP (glob align table), LK
SCR, HNK, POINT (code)

18

9:49 Pen on SP, LK SCR, WR SP (in a table, “seq
1”), LK SCR, WR SP

Figure 4: Transcript of five minute observation
period for participant 6 in the UPC condition.
It is evident that the two data streams are at a
different level of granularity. For example in the
manually collected observation stream (Figure 4
above) we see at 9:46 that the third activity
recorded is placing hands on the keyboard
(HOK), followed by closing his editor window,
and creating a new editor window with output.txt
and taking his hands off the keyboard. From the
detailed information collected through SUMS we
can see that all of the computer interaction
happened in the last 20 seconds of the minute,
meaning that U6 looked at the screen for the first
40 seconds.
Similarly at 9:47 we see that U6’s interaction
with the computer must have occurred within the
first 14 seconds. This does raise an interesting
question about what information is captured. We
can take a closer look at the data streams for
some more detail.

U6 2005-05-25 09:46:40 Shell command: a.out

U6 2005-05-25 09:46:49 Shell command: vim

U6 2005-05-25 09:47:14 Shell command: vim

Table 2: Sequence of shell commands executed by
U6 as captured by SUMS.

Here we can confirm that there is another
difference in the granularity of the observations.
While the automated data is more accurate in
time, the human observer can pickup some data
that would be difficult to instrument. So
comparing Table 2 to Figure 4 we see the
automatic data captures the precise time and the
command executed.

U6 2005-05-25 09:46:49 shell command: vim

Table 3: Record of shell command executed by U6
as captured by SUMS.

The entry in Table 3 equates to the manual
observation in Figure 4 at 9:47: O
(Edmiston_final.c). However the human
observer is capturing other information, such as
moving within the text of the file (paging up and
down, and then more fine movement of the
cursor) as well as actions happening off the
computer during the gaps – in this case looking
at the global alignment table in the handout and

working out a table on the scratch pad. As we
argued above, being able to see in detail what the
programmer is doing while in an edit session is
potentially useful for disambiguating among
several phases of code development. In addition,
when developing programmer’s tools such low
level detail gives us insight into where the
programmer is expending effort.

Lessons Learned: A Critique of the
Collection of Manual Stream of Data
by Human Observers
While we hope that we have demonstrated the
values that a human observer can bring to the
collection of manual data, the method as we have
used it has some drawbacks. First of all, this is a
very resource intensive method. With three
observers working throughout the study, we able
to only collect approximately 1/9 of the total data
produced. Second, the work is difficult and
error-prone—even with trained observers.
Various factors impact correctness of the record
that is made, including the computing expertise
of the observer, her ability to see the screen well
(these interact), and the rate at which the
programmer produces events. Many of the
programmers split their work over multiple
windows and in certain stages of the work, for
example, debugging, moved across the multiple
windows very quickly. This makes it harder for
a human observer to note down precisely.
Another problem is the impact the human
observer produced on the programmer. In most
cases, as the study progressed, the programmers
seemed to take little note of us. However, in
some cases we formed the impression that some
events were being generated for our benefit. One
participant in particular seemed to be trying to
determine just how fast he needed to cycle across
windows before we could not keep up.
One solution to these problems would be to
“videotape” each participant throughout the
study. This would produce a completely error
free record. Transcription would have to be
selective, however, due to the time cost. (One of
the authors has found 11 to 1 to be a good rule of
thumb. That is, 11 hours of meticulous
transcription for one hour of video.) First, gaps
in the automatically collected stream could be
identified and the corresponding video segments
could be coded in detail to complete the record
that was collected automatically. Second, a
high-level analysis of the entire tape could be
done to generate hypotheses about what style of

19

working the programmer is using, what types of
problems they are encountering, and other high
level impressions that can then be related to the
automatically collected data stream.
There are of course, other options. Rather than
videotaping the screen content, one could
directly capture screen events using screen
recorder technology. For examples see Kou and
Johnson (2005) and the VNC2SWF screen
recorder.

ACKNOWLEDGEMENTS
This work has been supported in part by the
Defence Advanced Research Projects Agency
(DARPA) under contract No. NBCH30390004.
We acknowledge the contributions of our PSC
colleagues, especially Nick Nystrom, John
Urbanic and members of the SUMS support
team who were our partners in the programming
study on which this paper is based. We also
thank the teachers in the three language groups,
Francois Cantonent, Kemal Ebcioglu, Tarek
ElGazawi, Vijay Saraswat, Vivek Sarkar, and
John Urbanic. Most of all, we are grateful to the
26 study participants who endured our
observations with grace and good humor.

REFERENCES
1. Hochstein, L., Basili, V. R., Zelkowitz, M.V.,
Hollingsworth, J.K., and Carver, J. Combining
Self-reported and Automatic data to Improve
Programming Effort Measurement. ESEC-
FSE’05, September 5-9, 2005, Lisbon, Portugal.
2. Perry, D. E., Staudenmayer, N.A., and Votta,
L.G. Understanding and improving time usage
in software development. In Trends in Software:
Software Process, Vol. 5., John Wiley and Sons,
1995.

3. Johnson, P.M., Kou, H., Augustin, J., Chan, C.,
Moore, C., Miglani, J., Zhen, S. and Doane,
W.E.J. Beyond the Personal Software Process:
Metrics Collection and Analysis for the
Differently Disciplined. ICSE, 2003, pp.641-
646.
4. Lehner, Phillip N. Handbook of Ethological
Methods. Cambridge University Press,
Cambridge UK, 1996.
5. Nystrom, N.A., Urbanic, J., and Savinell, C.
Understanding Productivity Through Non-
intrusive Instrumentation and Statistical
Learning. P-PHEC 2005, San Francisco.
6. Hastie, T., Tibsshirani, R., and Friedman, J.
The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer-
Verlag, New York, 2001.
7. Halverson, C. and Nystrom, N.A. Human
Productivity in High-end Computing.
Manuscript, 2005.
8. Thomas, R., Kennedy, G.E., Draper, S.,
Mancy, R., Crease, M., Evans, H. and Gray, P.
Generic Usage Monitoring of Programming
Students. ASCILITE 2003.
9. Wixted, J. T. The Psychology and
Neuroscience of Forgetting. In The Annual
review of Psychology, V. 55, pp. 235-269, 2004.
10. Kou, H. and Johnson, P.M. Automated
Recognition of Low-level Process: A Pilot
Validation
Study of Zorro for Test-driven Development.
csdl.ics.hawaii.edu/techreports/06-02/06-02.pdf.
11. VNC2SWF Screen Recorder.
http://www.unixuser.org/~euske/vnc2swf/.
Accessed February 10, 2006.

APPENDIX A: List of Pre-specified Codes Utilized by Human Observers

Objects:
SH shell
BR web browser
ED editor
HO handout
SP scratchpad
SCR screen

Actions:
O open (O ED ==
open editor, O BR == open browser)
CL close (CL ED ==
close editor, CL BR == close browser)

MAX maximize window
MIN minimize window
MOVE move window

20

RESIZE resize window

SW switch to window or task (like
SW HO, switch to handout)

LS an ‘ls’ command in the shell
CD a ‘cd’ command in the shell
CD/LS a series of ‘cd’ and ‘ls’
commands
CP a ‘cp’ command in the shell
CMD some other unix command
COMPILE some command sequence
which results in them compiling their program
RUN some command sequence
which results in them running their program

ANC add new code
MEC modify existing code
DEL delete code / comments

PR print statement

SAVE file save
EDIT make an edit (e.g., to a CMD)
FIND find text (e.g., search)

CUR M cursor movement (move, typically left
and right)
CUR U cursor movement (up by some
unspecified amount)
CUR D cursor movement (down by some
unspecified amount)

CUR U/D cursor movement (up and
down)
PG U/D page up/down
SC U/D scroll up/down

SEL select text
COPY copy
PASTE paste
C/P copy/paste

HOK hands on keyboard
HNK hands off keyboard (hands not
on keyboard)

GL glance
LK look (longer than a glance)

RD read
WR write

FLIP flip through pages of a handout
or scratchpad
POINT pointing to something (e.g.,
POINT SCR means ‘points to screen’)

RQ HELP request for help
RCV HELP receive help

VOCAL vocalization
SUBVOCAL sub-vocalization

21

Parallelization of a Molecular Modeling Application:
Programmability Comparison Between OpenMP and MPI∗

Russell Brown
Sun Microsystems, Inc.

15 Network Circle
Menlo Park, CA 94025

russ.brown@sun.com

Ilya Sharapov
Sun Microsystems, Inc.

16 Network Circle
Menlo Park, CA 94025

ilya.sharapov@sun.com

ABSTRACT
Important components of molecular modeling applications
are estimation and minimization of the internal energy of a
molecule. For macromolecules such as proteins and amino
acids, energy estimation is performed using empirical equa-
tions known as force fields, which can be rather complicated.
For example, the interactions between a protein and sur-
rounding water molecules may be modeled using the gener-
alized Born solvation model that requires O

`
n3

´
computa-

tional complexity for evaluation.
Fortunately, many force-field calculations are amenable to

parallel execution. This paper describes the steps that were
required to transform the Born calculation from a serial pro-
gram into a parallel program suitable for parallel execution
in both the OpenMP and MPI environments. Measurements
of the parallel performance on a symmetric multiprocessor
reveal that the Born calculation scales well for up to 64 pro-
cessors. Scalability is roughly equivalent for the OpenMP
and MPI implementations, but the OpenMP implementa-
tion performs better and requires less programming effort
than does the MPI implementation.

1. INTRODUCTION
Molecular modeling is one of the most demanding areas

of scientific computing today. Although the high compu-
tational requirements of molecular simulations can produce
long computation times, parallel execution may used to in-
crease the size of molecules that can be analyzed in man-
ageable time.

Several software packages exist for molecular modeling
and estimation of the internal energy of molecules using
non-quantum mechanical, or empirical equations known as
force fields. Some of the more widely known packages from
academe are AMBER [26], CEDAR [8], CHARMM [6], and
GROMOS [25]. A newer, open-source package related to
AMBER is Nucleic Acid Builder or NAB[17], which we use
as the basis for our analysis in this work. All of these pack-
ages use a similar approach to the estimation of internal
energy via a set of potential functions [4].

A typical force field includes several energy terms. The
most complicated energy term models the interactions be-
tween a biomolecule and the solvent, or surrounding water

∗This material is based upon work supported by DARPA
under Contract No. NBCH3039002.

molecules. This energy is known as the Born free energy of
solvation. Using a method known as the generalized Born
[3, 10, 23] approximation, the electrostatic contribution to
this energy is computed as the sum of pairwise interactions:

EBorn = −1

2

X
i

X
j>i

qiqj

266641− e
−κ

vuut
d2

ij+RiRje

−d2
ij

4RiRj

εw

37775 (1)

In this equation, dij represents the distance between atoms
i and j, κ represents a Debye-Huckel screening constant [22]
and εw represents the dielectric constant of water. Ri rep-
resents the effective Born radius that is a measure of the
amount by which the atom i is screened from the solvent by
all of the surrounding atoms k. The effective Born radius is
calculated as the sum of functions of the distance between
atom i and all of the surrounding atoms k [16]:

R−1
i =

1

ρi
+

X
k 6=i

f (dik, ρi, ρk) (2)

In this equation, ρi and ρk represent the (constant) intrinsic
radii of atoms i and k, and f () is a smooth function of the
interatomic distance and the intrinsic radii [19, 16].

Because of the presence of Ri and Rj in equation 1, com-
putation of the Born free energy and its first and second
derivatives can involve considerable complexity. However, it
is possible to reduce this computational complexity via pre-
computation, the details of which are beyond the scope of
this paper and are reported elsewhere [7, 21, 24]. This pre-
computation produces two vectors, R and A, each of length
n (where n is the number of atoms). These vectors are used
to produce four matrices: N (of size n by n) and F, G and
D (each of size 3n by n). Products of these matrices are
used to form the Hessian matrix H (of size 3n by 3n) that
contains the second derivatives. This precomputation re-
duces the computational complexity of the Born free energy
and its first derivatives to O

`
n2

´
, as well as reducing the

complexity of the second derivatives to O
`
n3

´
.

For molecular modeling applications, it is desirable not
only to estimate the internal energy of a molecule, but also
to minimize that energy. Minimization may be performed
using the Newton-Raphson [4, 18] method. One iteration of
Newton-Raphson is calculated as:

x1 = x0 −H−1 (x0)∇E (x0) (3)

In the above equation, x0 represents the initial Cartesian co-
ordinates of the atomic nuclei prior to the Newton-Raphson

22

Computation of the
first three energy terms

Precompute effective radii R
Generate A (ij part)
Generate A (ji part)

Generate N, F, G and D (ij part)
Generate N, F, G and D (ji part)Bo

rn
en
er
gy

co
m
pu
ta
tio
n

Hessian update
(dgemm)

Cholesky factorization of
the Hessian (dposv)

Figure 1: Phases 1-4 of Newton-Raphson. The ij
and ji parts are computed by for loop nests.

iteration, x1 represents the Cartesian coordinates after the
Newton-Raphson iteration, ∇E (x0) represents the gradient
vector of first derivatives that are calculated from the initial
Cartesian coordinates, and H−1 (x0) represents the inverse
of the Hessian matrix of second derivatives that are calcu-
lated from the initial Cartesian coordinates. In practice, in-
version of the Hessian matrix is computationally expensive
and is avoided by solving the linear system via techniques
such as Cholesky factorization [18].

2. IMPLEMENTATION
As shown in Figure 1, each iteration of Newton-Raphson

minimization is subdivided into four phases of computation:
(1) calculation of the first three energy terms (the non-Born
terms) as well as their derivatives; (2) calculation of the
Born free energy, its first derivatives, and the matrices N, F,
G and D; (3) matrix multiplication to produce the Hessian
matrix H of second derivatives; and (4) solution of the linear
system via Cholesky factorization.

We can visualize the phases of an iteration by monitor-
ing the changes in low-level activity in the system. Figure
2 gives an example of the low-level activity that illustrates
the change in the cycle per instruction (CPI) measurements
for different phases of execution of the MPI version of NAB.
The CPI measures the efficiency of the CPU; low CPI val-
ues indicate good performance. Superscalar processors are
capable of executing multiple instructions in one cycle and
therefore CPI values can be less than one for carefully tuned
sections of code. In our experiments we measured the CPI
and other low-level statistics, such as cache miss rates, using
UltraSPARCR© processor on-chip hardware counters [11].

In Phase 1 we observe fairly poor processor efficiency,
which can be explained by non-contiguous memory refer-
ences in the computation of energy terms that involve chem-
ically bonded atoms. Relatively little computation is per-
formed in this phase; therefore, this phase doesn’t signifi-
cantly impact the overall performance.

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600 1800

CP
I

Run time (sec.)

First 3 terms of energy computation (1)

Born energy computation (2)

Hessian update (3)

Cholesky factorization (4)

Figure 2: CPI profile for Phases 1-4 of two iterations
of Newton-Raphson minimization.

In Phase 2 we can see five distinct regions corresponding
to the five Born energy computations outlined in Figure 1.

Phase 3 updates the Hessian matrix via three matrix-
matrix multiplications that are implemented using the pdgemm

subroutine of the Scalable LAPACK library [5]. On a Sun
TM

symmetric multiprocessor, this subroutine ultimately calls

the dgemm subroutine from the Sun Performance Library
TM

,
which is optimized for the SPARCR© processor family [1].

Phase 4 performs Cholesky factorization using the pdposv
subroutine from the Scalable LAPACK library.

To summarize, the computation in Phase 1 has O (n) com-
plexity and contributes only minimally to the total compu-
tation. The computational complexity of Phases 3 and 4
is O

`
n3

´
and is performed by parallelized subroutines from

a scientific library. The computation in Phase 2 exhibits
O

`
n2

´
complexity and must be parallelized in order that the

total computation achieve reasonable scalability [2]. Our ef-
forts have been directed towards the parallelization of this
Phase 2 computation for two different implementations of
NAB. The first implementation is parallelized via OpenMP
[9] and the second is parallelized via MPI [12, 13, 15].

2.1 OpenMP
The computation of Phase 2 of Newton-Raphson mini-

mization involves several summations such as
P
i

P
j>i

or
P
i

P
j 6=i

,

each of which implies a loop nest with i and j as the outer
and inner loop indices, respectively. Each loop nest updates
a vector and a matrix, as shown for the shared vector A and
the shared matrix N in the following fragment of C code
that is (incorrectly) parallelized via OpenMP by adding a
#pragma omp parallel for directive to the serial code:

#pragma omp parallel for private(j)

for (i = 0; i < n; i++) {
for (j = i+1; j < n; j++) {
A[i] += f1(i, j);

A[j] += f2(i, j); //Incorrect!

N[i][i] += f3(i, j);

N[i][j] += f4(i, j);

N[j][j] += f5(i, j); //Incorrect!

N[j][i] += f6(i, j);

}
}

(4)

The above code fragment exhibits a race condition for
the update of A[j] and N[j][j]. Because the j loop index

23

is not partitioned amongst the OpenMP threads, all of the
threads can potentially update A[j] and N[j][j]. There is
no guarantee that these updates will occur atomically, and
therefore the threads may overwrite one another’s updates.
This race condition is easily removed by splitting the loop
nest to create two loop nests. The first loop nest preserves
i as the outer index and j as the inner index, and updates
A[i], N[i][i] and N[i][j]:

#pragma omp parallel for private(j)

for (i = 0; i < n; i++) {
for (j = i+1; j < n; j++) {
A[i] += f1(i, j);

N[i][i] += f3(i, j);

N[i][j] += f4(i, j);

}
}

(5)

The second loop nest uses j as the outer index and i as the
inner index, and updates A[j], N[j][j] and N[j][i] :

#pragma omp parallel for private(i)

for (j = 0; j < n; j++) {
for (i = 0; i < j; i++) {
A[j] += f2(i, j);

N[j][j] += f5(i, j);

N[j][i] += f6(i, j);

}
}

(6)

The combination of i and j loop indices is identical for
both loop nests, i.e., for either loop nest a given value of i is
combined with the same values of j. It is essential that A[i]
and N[i][i] be updated in the first loop nest, and that A[j]
and N[j][j] be updated in the second loop nest; otherwise, a
race condition will result. However, N[i][j] and N[j][i] may
be updated in either loop nest. No race condition can exist
for these updates because each update involves both i and
j matrix addresses.

Nevertheless, the decision to update N[i][j] in the first
loop nest, and to update N[j][i] in the second loop nest, is
not arbitrary. By updating N[i][i] and N[i][j] in the first
loop nest, and by updating N[j][j] and N[j][i] in the sec-
ond loop nest, the matrix elements are partitioned amongst
the OpenMP threads according to matrix row. Groups of
r contiguous rows may be partitioned amongst the threads
by adding a schedule(static, r) clause to the #pragma

omp parallel for directive. This partitioning is known as
row cyclic partitioning. This approach promotes locality of
memory access by each OpenMP thread for a matrix that is
allocated in row-major order. We will return to partitioning
when we discuss parallelization via MPI.

Code fragments 5 and 6 exemplify the parallelization that
is accomplished via OpenMP for Phase 2 of Newton-Raphson
iteration. In addition to splitting some for loops, the paral-
lelization of Phase 2 requires the resolution of issues such as
false sharing, which occur commonly in OpenMP programs
and which are beyond the scope of this discussion.

For Phases 3 (matrix multiplication) and 4 (Cholesky fac-
torization), parallel execution is performed by subroutines
from a parallelized scientific library. For example, the Sun
Performance Library provides multi-threaded versions of the
LAPACK subroutines dgemm and dposv, which perform ma-
trix multiplication and Cholesky factorization, respectively.

2.2 MPI
The parallelization of Phases 2-4 of Newton-Raphson min-

imization is more complex for MPI than for OpenMP. The
increased complexity is due principally to the Scalable LA-
PACK (or ScaLAPACK) scientific library that is used with
the MPI implementation of NAB. The ScaLAPACK library
does not support global, shared vectors and matrices; in-
stead, it supports vectors and matrices that are distributed
across all of the MPI processes. Under this distributed
paradigm, each process has exclusive access to a unique sub-
set of the global vector or matrix, which we will call the
sub-vector or sub-matrix. Each process initializes its sub-
vector or sub-matrix, and then the ScaLAPACK subrou-
tines distribute computation such as matrix multiplication
and Cholesky factorization across all of the processes.

Before a vector or matrix can be processed by a ScaLA-
PACK subroutine, it must be distributed onto a process grid.
The process grid is a group of MPI processes that are placed
on a rectangular grid of nprow rows by npcol columns. Each
process has unique row and column coordinates myrow and
mycol that indicate the location of the process on the grid.
The matrix elements are not mapped onto the process grid in
a contiguous manner but rather in a block cyclic manner [5]
wherein a matrix of m rows by n columns is subdivided into
blocks of mb rows by nb columns (see details below). Block
cyclic mapping is used by ScaLAPACK to achieve reason-
able load balancing across the MPI processes. For example,
the solution of a system of linear equations is accomplished
by sweeping through a matrix from upper left to lower right
in such a way that an anti-diagonal processing wavefront
advances along the principal diagonal of the matrix. Block
cyclic mapping ensures that the wavefront encounters data
from all processes at each stage of its advance.

Figure 3 illustrates the block cyclic distribution of a 13
by 8 matrix onto a 3 by 2 process grid, using 2 by 3 blocks.
Scanning from top to bottom along the leftmost column of
the matrix, we see that the upper left block of the matrix
(which begins with element a1,1) maps to the upper left
block of process (0,0). The block that begins with element
a3,1 maps to the upper left block of process (1,0). The block
that begins with element a5,1 maps to the upper left block
of process (2,0). The block that begins with element a7,1

begins a new cycle and maps to the block beneath the up-
per left block of process (0,0). The block that begins with
element a9,1 maps to the block beneath the upper left block
of process (1,0). The block that begins with element a11,1

maps to the block beneath the upper left block of process
(2,0). The (partial) block that begins with element a13,1 be-
gins a new cycle and maps to the lower left block of process
(0,0). A similar cyclic mapping in the horizontal direction
fills the process grid and produces the required block cyclic
distribution of the matrix onto the process grid.

As mentioned above, each MPI process has exclusive ac-
cess to a unique sub-vector or sub-matrix. Thus, the i and
j loop indices of a loop nest must be restricted to only those
values that are required to update the accessible sub-vector
or sub-matrix elements. Moreover, the loop nest must be
split because a process that can access N[i][j] cannot nec-
essarily access N[j][i]. The (partially correct) code frag-
ment 7 satisfies these constraints and accomplishes the nec-
essary block cyclic partitioning of matrix elements amongst
the MPI processes.

24

Figure 3: ScaLAPACK matrix distribution. A 13 by 8 matrix is subdivided into blocks of 2 by 3 matrix
elements, and distributed onto a 3 by 2 process grid in a block cyclic manner. The numbers along the top
and left edges of the process grid indicate the row and column coordinates, respectively, of each process on
the grid. The blocks are separated by thin spacing, and the grid processes are separated by thick spacing.

for (i = 0; i < n; i++) {
if ((i/mb)%nprow != myrow) continue;

for (j = i+1; j < n; j++) {
if ((j/nb)%npcol != mycol) continue;

A[i] += f1(i, j); //Incorrect!

N[i][i] += f3(i, j); //Incorrect!

N[i][j] += f4(i, j);

}
}

for (j = 0; j < n; j++) {
if ((j/mb)%nprow != myrow) continue;

for (i = 0; i < j; i++) {
if ((i/nb)%npcol != mycol) continue;

A[j] += f2(i, j); //Incorrect!

N[j][j] += f5(i, j); //Incorrect!

N[j][i] += f6(i, j);

}
}

(7)

Restriction of the i and j loop indices in the manner de-
picted above parallelizes the computation because each pro-
cess handles a unique subset of i and j that is selected by
the myrow and mycol coordinates of that process.

Although code fragment 7 does correctly restrict the i

and j addresses to only those values that correspond to the
sub-vector or sub-matrix elements of a given process, this
example is misleading for several reasons. First, although
the first loop nest can access N[i][j], it cannot necessar-
ily access N[i][i]. Similarly, although the second loop nest
can access N[j][i], it cannot necessarily access N[j][j]. The
diagonal elements of the matrix N are not guaranteed to
belong to the process that calculates updates to those ele-
ments because each process owns only a sub-matrix of the
distributed matrix N, which we will call sub N. A solution
to this problem is for each process to maintain a private
copy of the diagonal elements of the matrix N. Because N
is a square matrix of dimensions n by n, the private copy
of the diagonal elements can be stored in a vector of length
n, which we will designate by the vector diag N . When all
of the processes have finished updating their private copies
diag N , all of the copies of diag N are combined to pro-
duce the vector Q that is then rebroadcast to each process.
The MPI Allreduce function is perfectly suited to combining
(reducing) diag N and rebroadcasting the resulting vector Q
in this manner. Upon receipt of the vector Q, each process
copies from Q into the diagonal elements of its sub-matrix
sub N only those elements that exist in sub N.

The second problem with code fragment 7 arises due to
a ScaLAPACK convention that requires that a distributed
vector such as the vector A exist only in column zero of the

25

process grid. Hence, only a process that exists in column
zero of the grid possesses a sub-vector of the vector A, which
we will call sub A. A particular process that calculates up-
dates to the vector A may not lie in column zero of the grid
and therefore may not be able to access the elements that
it needs to update. This problem is very similar to the first
problem discussed above, and it has a similar solution. Each
process must maintain a private copy of the distributed vec-
tor A, which we will call priv A. When all of the processes
have finished updating their private copies priv A, all of the
copies of priv A are combined, and the resulting vector S is
rebroadcast to each process via the MPI Allreduce function.
Upon receipt of the vector S, each process in column zero
of the process grid copies from S into the elements of its
sub-vector sub A only those elements that exist in sub A.

The third problem with code fragment 7 is that the matrix
elements N[i][j] and N[j][i], which are accessible by a given
process, are not accessed as elements of the global matrix
N, but rather as elements of the sub-matrix sub N that is
owned by that process. Moreover, the sub-matrix sub N is
not addressed using the global [i][j] or [j][i] address directly.
Instead, the global address is converted to an offset into the
sub-matrix sub N. The address conversion is accomplished
via the following adrmap function that requires, in addition
to i and j, the number of rows or local leading dimension lld

of the sub-matrix so that adrmap can perform column-major
addressing as required by ScaLAPACK:

size t adrmap(int i, int j) {
size t lbi, lbj;

lbi = i/mb/nprow;

lbj = j/nb/npcol;

return (lld*(nb*lbj + j%nb)

+ mb*lbi + i%mb);

}

(8)

Code fragment 7 may be rewritten to call the adrmap func-
tion as follows:

for (i = 0; i < n; i++) {
if ((i/mb)%nprow != myrow) continue;

for (j = i+1; j < n; j++) {
if ((j/nb)%npcol != mycol) continue;

priv A[i] += f1(i, j);

diag N[i] += f3(i, j);

sub N[adrmap(i, j)] += f4(i, j);

}
}

for (j = 0; j < n; j++) {
if ((j/mb)%nprow != myrow) continue;

for (i = 0; i < j; i++) {
if ((i/nb)%npcol != mycol) continue;

priv A[j] += f2(i, j);

diag N[j] += f5(i, j);

sub N[adrmap(j, i)] += f6(i, j);

}
}

(9)

After the vectors priv A and diag N have been updated by
each process as indicated in code fragment 9, they are com-
bined and rebroadcast to all processes by the MPI Allreduce

function, then copied by each process into the sub-vector
sub A and into the sub-matrix sub N, respectively.

Figure 4: 6,370-atom 1AKD molecule.

Code fragments 8 and 9 demonstrate that mapping from a
global matrix address to a local sub-matrix address involves
several integer divisions and several modulus operations for
access to each element of the matrix. However, because the
divisors are mb, nb, nprow and npcol (which are constants
for a given matrix), and further because the dividends are
i and j whose values lie in the range 0 ≤ i < n, all of the
divisions and modulus operations may be precomputed and
stored in eight lookup tables, each of length n. Because a
matrix requires O

`
n2

´
memory, these tables that require

O (n) memory represent only a small fraction of the size of
a typical matrix, so they offer the possibility of accelerated
computation at the expense of minimal additional storage.

The above discussion describes the parallelization that is
accomplished via MPI for Phase 2 of the Newton-Raphson
minimization. Phases 3 and 4 are executed by the pdgemm

and pdposv subroutines, respectively, of the ScaLAPACK
scientific library.

3. PERFORMANCE AND SCALABILITY
In this section we make scalability and performance com-

parisons between the OpenMP and MPI implementations
of the Newton-Raphson minimization. In our performance
measurements, we used the 1AKD molecule [20] from the
RCSB Protein Data Bank1. We modified the 1AKD X-ray
crystal structure by removing all of the water oxygens and
other non-amino-acid atoms and then by adding hydrogen
atoms, which produced a molecular model of 6,370 atoms
(see Figure 4).

Figure 5 shows the scalability of Newton-Raphson min-

imization of the 1AKD molecule using a Sun Fire
TM

15K
server with 72 UltraSPARC III processors. The scalability
of the MPI implementation is marginally better than the
OpenMP implementation for 64 processors. This figure was

1http://www.rcsb.org/pdb/

26

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Sp
ee

du
p

Number of Processors

Linear

MPI
OMP

Figure 5: Scalabilities of OpenMP and MPI for
Newton-Raphson minimization of the 1AKD model.
The “OMP” and “MPI” plots represent the scal-
abilities of OpenMP and MPI, respectively. The
“Linear” plot represents perfect scalability.

generated using data from Table 1. Each column of the ta-
ble reports an OpenMP measurement and an MPI measure-
ment for 4, 9, 16, 25, 36, 49 and 64 processors. (The num-
ber of processors is chosen to be an integer squared because
ScaLAPACK requires a square process grid for Cholesky
factorization.) The “Newton-Raphson” column shows the
total execution time for two iterations of Newton-Raphson
minimization. The remaining columns show the execution
time for Phases 2 through 4 of Newton-Raphson minimiza-
tion. The OpenMP implementation outperforms the MPI
implementation by a factor of 1.3 to 2.0, as can be seen by
comparing the OpenMP and MPI execution times for each
row within a particular column.

4. PROGRAMMABILITY
Creating two versions of the same application using dif-

ferent parallelization approaches allowed us to compare the
effort required to implement both versions. Parallelizing
Phase 2 of the computation required the splitting of nested
loops in both cases. Once this splitting was completed,
the OpenMP implementation was straightforward. How-
ever, creating the MPI version required substantial addi-
tional effort (required by ScaLAPACK) to map global ma-
trices onto a two-dimensional process grid, and to modify
one-dimensional row cyclic parallelization to obtain two-
dimensional block cyclic parallelization.

Whereas the OpenMP version accesses global, shared ma-
trices and vectors, the MPI version accesses distributed ma-
trices and vectors. Each MPI process must maintain not
only a sub-matrix for each distributed matrix, but also a
private copy of the diagonal elements of that matrix, as well
as division and modulus lookup tables for the matrix in or-
der to facilitate address mapping. Furthermore, each MPI
process must maintain a private, complete copy of each dis-
tributed vector, as well as a sub-vector for that vector.

We have estimated the relative complexity of the two ver-
sions of NAB by counting the non-comment source code
lines that are related to the Newton-Raphson minimization

and to the calculation of the Born energy and its deriva-
tives. Three categories of source code lines were counted:
(1) source code lines that are required for serial execution,
(2) source code lines that are required to modify the serial
code for parallel execution by OpenMP, and (3) source code
lines that are required to modify the serial code for par-
allel execution by MPI. The serial line count is 1643. The
OpenMP line count is 180. The MPI line count is 962. These
line counts reveal that adaptation of the serial code for MPI
and ScaLAPACK produced significantly (i.e., a factor of
five) more source code than adaptation of the serial code for
OpenMP. This finding suggests that the programmer’s pro-
ductivity may be higher when an application that relies on
linear algebra is parallelized using OpenMP instead of MPI.
Moreover, parallelization with MPI may be facilitated by
parallelizing first with OpenMP. We were able to debug via
OpenMP the basic code transformations necessary for par-
allelization prior to moving to the more challenging aspects
of MPI parallelization that were required by ScaLAPACK.

5. DISCUSSION
This article is a case study of parallelizing a molecular

modeling application. We have demonstrated that energy
minimization computations can be implemented in a highly-
scalable manner that can utilize up to 64 processors effi-
ciently. Our experiments demonstrate that the performance
and programmability of the OpenMP version are superior
to those of the MPI version.

However, we recognize that the MPI version can run not
only on symmetric multiprocessors, but also in distributed
environments, such as Beowulf [14] clusters. Clusters may
have better nominal price/performance characteristics than
large symmetric multiprocessors, although cluster perfor-
mance may be impeded by relatively slow interconnects typ-
ically used in those environments. A performance compar-
ison between symmetric multiprocessors and clusters is be-
yond the scope of this work.

6. ACKNOWLEDGMENTS
We thank David Case, Guy Delamarter, Gabriele Jost,

Daryl Madura, Eugene Loh and Ruud van der Pas for helpful
comments.

The NAB software is distributed under the terms of the
GNU General Public License (GPL), and can be obtained
at http://www.scripps.edu/case/ .

7. TRADEMARK LEGEND
Sun, Sun Microsystems, SPARC, UltraSPARC, Sun Fire

and Sun Performance Library are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States
and other countries.

8. REFERENCES
[1] Sun Studio 10: Sun Performance Library User’s

Guide. Sun Microsystems, Inc. http://docs.sun.com.

[2] G. M. Amdahl. Validity of the single-processor
approach to achieving large scale computing
capabilities. In AFIPS Conference Proceedings, pages
483–485, Reston, VA, 1967. AFIPS Press.

[3] D. Bashford and D. Case. Generalized born models of
macromolecular solvation effects. Ann. Rev. Phys.
Chem, 51:129, 2000.

27

Number Newton-Raphson Phase 2 Phase 3 Phase 4
of CPUs OpenMP MPI OpenMP MPI OpenMP MPI OpenMP MPI

4 3,600.41 5,253.95 78.26 197.75 2,699.23 3,896.19 805.87 1,132.16
9 1,695.13 2,618.45 39.35 89.18 1,242.28 1,946.99 403.14 564.89
16 977.87 1,533.54 22.97 51.05 710.29 1,130.90 237.29 339.63
25 634.78 957.39 14.97 33.61 454.66 682.38 158.88 230.64
36 456.81 718.74 11.88 23.94 322.78 521.87 115.59 163.67
49 345.98 515.93 10.23 18.78 239.84 364.78 89.78 123.49
64 280.30 398.97 11.04 22.41 184.16 267.99 74.12 97.43

4/64 12.84 13.17 7.09 8.82 14.66 14.54 10.87 11.62

Table 1: Execution time (seconds) comparison between OpenMP and MPI for the 1AKD model and a Sun
Fire 15K server with 72 UltraSPARC III processors. The “Newton-Raphson” column shows execution time
for Newton-Raphson minimization. The remaining columns show execution time for Phases 2 through 4 of
the minimization. The “4/64” row gives the ratio of the 4-processor and 64-processor execution times.

[4] U. Berkert and N. Allinger. Molecular mechanics. ACS
Monograph 177, American Chemical Society, 1982.

[5] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongara, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and
R.C.Whaley. Scalapack Users’ Guide. Society for
Industrial and Applied Math, 1977.

[6] B. Brooks, R. Bruccoleri, B. Olafson, D. States,
S. Swaminathan, and M. Karplus. CHARMM: A
program for macromolecular energy, minimization,
and dynamics calculations. J. Comp. Chem., 4:87–217,
1983.

[7] R. Brown and D. Case. Second derivatives in
generalized born theory. J. Comp. Chem., 2006.
Accepted for publication.

[8] M. Carson and J. Hermans. The molecular dynamics
workshop laboratory. In J. Hermans, editor, Molecular
Dynamics and Protein Structure, pages 165–166.
University of North Carolina, Chapel Hill, 1985.

[9] R. Chandra, R. Menon, L. Dagum, D. Kohr,
D. Maydan, and J. McDonald. Parallel Programming
in OpenMP. Morgan Kaufmann, 2000.

[10] M. Feig, W. Im, and C. Brooks. Implicit solvation
based on generalized born theory in different dielectric
environments. J. Chem. Phys., 120:903–911, 2004.

[11] R. P. Garg and I. Sharapov. Techniques for
Optimizing Applications: High Performance
Computing. Prentice Hall, PTR, 2001.

[12] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir. MPI: The
Complete Reference, Vol. 2, The MPI Extensions.
MIT Press, Cambridge, MA, 1998.

[13] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Programming with the
Message-Passing Interface, 2nd ed. MIT Press,
Cambridge, MA, 1999.

[14] W. Gropp, E. Lusk, and T. Sterling, editors. Beowulf
Cluster Computing with Linux. MIT Press, second
edition, 2003.

[15] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2:
Advanced Features of the Message Passing Interface.
MIT Press, Cambridge, MA, 1999.

[16] G. Hawkins, C. Cramer, and D. Truhlar. Parametrized
models of aqueous free energies of solvation based on

pairwise descreening of solute atomic charges from a
dielectric medium. J. Phys. Chem, 100:19824–19839,
1996.

[17] T. Macke. NAB, a language for molecular
manipulation. PhD thesis, the Scripps Research
Institute, 1996.

[18] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. Numerical Recipes in Fortran.
Cambridge University Press, second edition, 1992.

[19] M. Schaefer and C. Froemmel. A precise analytical
method for calculating the electrostatic energy of
macromolecules in aqueous solution. J. Mol. Biol.,
216:1045–1066, 1990.

[20] I. Schlichting, C. Jung, and H. Schulze. Crystal
strucure of cytochrome p-450cam complexed with the
(1s)-camphor enantiomer. FEBS Lett., 415:253–257,
1997.

[21] C. Sosa, T. Hewitt, M. Lee, and D. Case.
Vectorization of the generalized born model for
molecular dynamics on shared-memory computers. J.
Mol. Struct. (Theochem), 549:193–201, 2001.

[22] J. Srinivasan, M. Trevathan, P. Beroza, and D. Case.
Application of a pairwise generalized born model to
proteins and nucleic acids: inclusion of salt effects.
Theor. Chem. Acc., 101:426–434, 1999.

[23] W. Still, A. Tempczyk, R. Hawley, and
T. Hendrickson. Semianalytical treatment of solvation
for molecular mechanics and dynamics. J. Am. Chem.
Soc, 112:6127–6129, 1990.

[24] V. Tsui and D. Case. Theory and applications of the
generalized born solvation model in macromolecular
simulations. Bioploymers (Nucl. Acid. Sci.),
56:275–291, 2001.

[25] W. van Gunsteren, H. Berendsen, J. Hermans,
W. Hol, and J. Postma. Computer simulation of the
dynamics of hydrated protein crystals and its
comparison with x-ray data. Proc. Natl. Acad. Sci.
USA, 80(14):4315–4319, 1983.

[26] P. Weiner and P. Kollman. AMBER: Assisted model
building with energy refinement. a general program
for modeling molecules and their interactions. J.
Comp. Chem., 2:287–303, 1981.

28

Implementing the CG and MG NAS parallel benchmarks in X10
1 Vijay Saraswat

IBM Research

We discuss issues in the implementation of some NAS parallel benchmark problems (specifically CG

and MG) in X10, a new language for high-productivity, high-performance computing. We show that

the natural representation of these programs in X10 is quite compact. The size of the MG program,

for instance, is comparable to the corresponding ZPL program, held up by some researchers as a

benchmark for productivity. Additionally, in further confirmation of the results reported earlier2,

we show that the parallel and distributed versions of the X10 programs are obtained as a very small

delta from the sequential version. Finally we show that these programs in fact lie within the set of

those X10 programs which can statically be recognized as determinate and deadlock-free. Thus, a

large class of potential concurrency-related errors can be ruled out for such programs.

1This work has been supported in part by the Defense Advanced Research Projects Agency (DARPA) under
contract No. NBCH30390004.

2“X10: An Object-Oriented Approach to Non-Uniform Cluster Computing”, by Philippe Charles et. al., in
Proceedings of OOPSLA 2005

29

An Experiment in Measuring the Productivity of Three Parallel
Programming Languages

Kemal Ebcioğlu and Vivek Sarkar
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA∗

Tarek El-Ghazawi
The George Washington University

801 22nd Street NW
Washington, DC 20052, USA

John Urbanic
Pittsburgh Supercomputing Center

4400 Fifth Avenue
Pittsburgh, PA 15213, USA

Abstract

In May 2005, a 4.5 day long productivity study was
performed at the Pittsburgh Supercomputing Center as
part of the IBM HPCS/PERCS project, comparing the
productivity of three parallel programming languages:
C+MPI, UPC, and the IBM PERCS project’s x10 lan-
guage. 27 subjects were divided into 3 comparable
groups (one per language) and all were asked to par-
allelize the same serial algorithm: Smith-Waterman
local sequence matching – a bio-informatics kernel in-
spired from the Scalable Synthetic Compact Applica-
tions (SSCA) Benchmark, number 1. Two days of tu-
torials were given for each language, followed by two
days of intense parallel programming for the main prob-
lem, and a half day of exit interviews. The study par-
ticipants were mostly Science and CS students from
the University of Pittsburgh, with limited or no parallel
programming experience.

There were two typical ways of solving the sequence
matching problem: a wavefront algorithm, which was
not scalable because of data dependencies, and yet posed
programming challenges because of the frequent syn-
chronization requirements. However, the given problem
was shown to also have a subtle domain-specific prop-
erty, which allowed some ostensible data dependences
to be ignored in exchange for redundant computation,
and boosted scalability by a great extent. This prop-
erty was also given as a written hint to all the par-
ticipants, encouraging them to obtain higher degrees of

∗Current author contact emails: kemal.ebcioglu@acm.org,

vsarkar@us.ibm.com, tarek@gwu.edu, urbanic@psc.edu.

parallelism.

The programming activities of the study participants
were recorded, both through face-to-face observations by
the IBM/PSC teams, as well as through frequent au-
tomated sampling of the programs being written, such
that it was later possible to analyze the progress of each
study participant in great detail, including the thought
process and the difficulties encountered. The detailed
logs also allowed us to infer precisely when the first
correct parallel solution was arrived at (this “time to
first correct parallel solution” metric was used as one
measure of productivity). This paper describes the re-
sults of the experiment, with particular emphasis on
our technical observations on the codes produced by the
anonymous participants. Interesting insights have been
obtained into the problem-solving process of novice par-
allel programmers, including those exposing productiv-
ity pitfalls in each language, and significant differences
among individuals and groups.

1 Introduction

High-performance supercomputers are heading toward
increased complexity, and thus, high productivity tools
and languages are very much on the agenda of super-
computing researchers. In order to be able to evalu-
ate such productivity tools and languages with quan-
titative measures, there is an increased need for per-
forming field experiments using human programmers
as subjects. Feedback from such field experiments will
be crucial as a guiding tool for future innovation in

30

productivity.

In this paper, we will embark on describing the tech-
nical insights into one such field experiment, compar-
ing the parallel languages C+MPI[1], UPC[2], and x10[3],
where the latter is IBM HPCS/PERCS project’s new
parallel programming language. The detailed design
rationales for the languages themselves are beyond the
scope of this paper, which will focus on the productiv-
ity study.

2 The productivity experiment

From Monday, May 23 to Friday, May 27, 2005, a
4.5 day long productivity study was performed at
the Pittsburgh Supercomputing Center (PSC) as part
of the IBM HPCS/PERCS project, comparing the
productivity of three parallel programming languages
mentioned above: C+MPI, UPC, and x10. 27 sub-
jects were divided into 3 comparable groups (one 9-
person group per language) and all were asked to par-
allelize the same serial algorithm: Smith-Waterman lo-
cal sequence matching – a bio-informatics kernel in-
spired from the Scalable Synthetic Compact Applica-
tions (SSCA) Benchmarks [4], number 1. The prob-
lem was suggested to us by David Bader. The serial
algorithm was provided to the subjects as a working
sequential program (serial C for the C+MPI and UPC
groups, and serial x10 for the x10 group).

The study participants were mostly Science and CS
students from the University of Pittsburgh, mostly
with limited or no parallel programming experience.
The distribution of subjects to language groups were
performed by the IBM Research Social Computing
Group and PSC management, with no input from
the technical language teams. Throughout the experi-
ment, the subjects remained anonymous to the techni-
cal teams.

The experiment began with two days of tutorials (Mon-
day and Tuesday) and hands-on exercises, taught by
experts in each language. The availability of the PSC
lab terminal and supercomputer resources were in-
strumental in making this possible. Then the sub-
jects performed intense parallel programming for two
days (Wednesday and Thursday) for the main prob-
lem. During the main programming session, the sub-
jects were allowed to ask questions, but only about lan-
guage constructs and technical problems they encoun-
tered, and not about the algorithmic issues themselves.
All questions and the answers given were recorded. On
Friday, the subjects had half a day of exit interviews

summing up their experience, conducted by the IBM
Research Social Computing team.

3 The problem description

The serial algorithm that the subjects were asked to
parallelize is described below:

The Smith-Waterman local sequence matching algo-
rithm consists of computing the elements of a N + 1
by M + 1 matrix, from two strings of lengths N + 1
and M +1, where M is usually many times larger than
N . Figure 1 depicts the basic computation in serial C
code, and Figure 2 shows the resulting matrix on two
example strings: -GGTCC and -GCCGCATCTT.

#define Match (-1)

#define MisMatch 1

#define Gap 2

int A[N+1][M+1]; //initialized to 0

char *c1=STRING1;

char *c2=STRING2;

for(int j=1;i<=M;j++)

for(int i=1;i<=N;i++)

A[i][j]=

MIN(0,

A[i-1][j]+Gap,

A[i][j-1]+Gap,

A[i-1][j-1]+(c1[i]==c2[j]?Match:MisMatch));

Figure 1. The serial version of the local se-
quence matching algorithm

Figure 2. An example computation

Among several possibilities, we will describe two typ-
ical ways of parallelizing the local sequence matching
problem:

The first one is a wavefront algorithm, as illustrated in
Figure 3. Since each matrix element (i, j) depends on

31

its West ((i, j − 1)), North ((i − 1, j)) and NorthWest
((i− 1, j − 1)) neighbors, at each step, the matrix ele-
ments on a diagonal line can be computed in parallel,
based on the matrix elements computed in previous
steps. This algorithm and its many variants are not
scalable, because of data dependencies: the maximum
parallelism at any given step is limited to min(N,M),
the maximum length of a diagonal line (in units of ma-
trix cells) in Figure 3; but N is small. Yet, this wave-
front algorithm poses programming challenges for the
novice subjects, because of the frequent communica-
tion and synchronization requirements in a distributed
matrix implementation.

Figure 3. The wavefront computation

Figure 4. A scalable algorithm:
Each processor computes its own
columns myFirstCol..myLastCol, using
overlapStartCol..(myFirstCol-1) as warm-
up.

However, thanks to the bio-informatics domain experts
at PSC, the given problem has been shown to also
have a subtle domain-specific property, which allows
some ostensible data dependences to be ignored, in ex-
change for redundant computation, and boosts paral-
lel scalability by a great extent. Namely, starting the

computation of figure 1 at any column of a matrix ini-
tialized to zeros (instead of column 1), and computing
N +abs((N ∗Match)/Gap) consecutive columns to the
right of the start column (1.5N columns in this exam-
ple), ensure that the element values of the next column
(N + abs((N ∗ Match)/Gap) + 1) are correct, i.e. are
identical to what they would have been in the serial
algorithm.

This property allows blocks of columns of the ma-
trix to be subdivided among processors (as if with
a (*,BLOCK) distribution), with each processor pre-
computing only 1.5N columns on the left of its block
as “warm-up” (in a scratch area, without committing
the results), and then, having obtained the correct ele-
ment values for the leftmost column of its block, com-
puting its entire block itself. The domain specific prop-
erty mentioned above ensures that all computations are
equivalent to the result of a serial computation. Figure
4 demonstrates this approach. This property was also
given as a written hint to all the subjects, encouraging
them to obtain higher degrees of parallelism using it.

Of course, adding wavefront computations to the scal-
able approach just described is also possible, for gaining
additional parallelism.

4 A summary result of the productivity
experiment

The productivity study team from IBM and PSC per-
formed many automated and non-automated observa-
tions on the subjects throughout the study, by fre-
quent sampling of the source code changes, recording
of the results of compilation and execution (more than
180,000 events were automatically recorded), face-to-
face observations, and interviews.

Because of the extensive automated recording of source
code changes, it is possible to precisely determine when
the first working parallel code was created. Figure 5
gives one summary of the study results for each sub-
ject. It shows the time between “development start
time” and “development end time” as defined below,
and further breaks down how that time was spent,
using heuristic algorithms for identifying development
phases such as authoring, debugging, and executing a
program. Figure 5 also identifies which subjects never
produced a working parallel program, and which sub-
jects left the study without staying to the end.

• The development start time was assumed to be the
first running of the serial program for the sequence

32

Figure 5. Development times and activities

matching problem, or the appearance of the first
parallel construct in the program, in case the user
never ran the serial program.

• The development end time was taken to be the cre-
ation of a parallel program for sequence matching
that gave the correct result in the PSC environ-
ment, on the reference input of N = 10, M = 100,
and a fixed random pair of strings, and that in-
deed exhibited greater than 1X parallelism on the
main computation of the matrix elements (the lat-
ter verified by a human expert). In case the sub-
ject was never able to produce such a program,
the development end time was just taken to be
the time the subject stopped work.

Of course, some of the subjects continued to improve
and optimize their programs after creating their first
working parallel program. Figure 5 does not include
such optimization activities.

The additional summary result in figure 6 indicates
that x10 had an edge over C+MPI and UPC for the
particular productivity metric of time-to-first-parallel-
solution. Needless to say, all results are preliminary:
in the conclusions section, we provide some additional
insights for further study.

In the appendix of this paper, we will also focus on one
additional type of analysis of the results: our technical
team’s own old-fashioned reading of the sequences of
code produced by the subjects, which can provide some

Figure 6. Development time by language

more detailed insight into the experiment. Future pa-
pers from the team will also describe other aspects of
the experiment more comprehensively. The present pa-
per is not intended to be a comprehensive presentation
of the study.

5 Conclusions

Overall, we think the event that took place at PSC
had the tenets of a well-designed major study. We will
now summarize some of the informal observations and
conclusions we have reached as the technical sub-team.
We feel that these remarks may be valuable for the
future experiments. While these insights are not new,
it is interesting to observe their re-emergence as part
of the practical productivity experiment.

Productivity insights for future language and
tools design:

Abstraction mismatch: Some subjects were over-
whelmed by the complexity of parallel programming
(to the extent of being unable to generate any cor-
rect parallel program), or made their own work unduly
complicated. The reason appears related to the inabil-
ity to use the right concise abstractions, that specify
what needs to be done at a high level. The parallel lan-
guage and/or component library must have an arsenal
of the right abstractions to express the task at hand.
For example, for x10, it would have been better to use

33

an existing (*,BLOCK) distribution as an abstraction or
readily available component (subject X5 had to simu-
late his/her own (*,BLOCK) distribution instead). For
C+MPI, it would have been better to have the abstrac-
tion to print a distributed matrix, rather than build
a distributed matrix printing routine with low level
synchronization and message passing. For languages
using C as a base, mysterious segmentation violations
(reflecting a C design trade-off that was once made in
favor of performance vs. safety) are neither friendly
nor can pass as a high level abstraction for a parallel
programming task.

Lack of performance transparency: Tools that pro-
vide high-level, approximate feedback about the per-
formance and parallelism being achieved by a user’s
program, would also be very useful to programmers at
the early design stages. These tools would help recog-
nize ostensibly parallel programs that give the correct
results, but yet are not really parallel because of errors
(X4 created such a program). The tools could also pro-
vide performance awareness about language features,
such as random access to arbitrary distributed array
elements in UPC, or array distributions that can lead to
bad locality in x10 (some x10 subjects chose a cyclic
distribution for the matrix).

Lack of programming style and discipline: Program-
mers must not only be taught the constructs of a par-
allel language, but also a design style that shuns com-
plexity and that rings mental bells of danger when a
program fragment becomes too complex. Some sub-
jects created unduly complex programs that probably
reduced their potential productivity at the end. The
lack of proper abstractions may have fueled this.

Lack of knowledge of parallel design idioms: Program-
mers must be taught the elementary parallel program-
ming idioms such as data flow computation, divide
and conquer,..., (somewhat like the design patterns
of parallel programming). One UPC subject used an
approach where each thread was continuously polling
memory (busy-waiting), for its inputs to become avail-
able. Also, some subjects precipitated toward the com-
fort of having all processors do the same computation,
or having all threads wait while thread 0 does all the
work. Had we taught some more basic parallelism id-
ioms up front, along with the language instruction, this
could perhaps be avoided.

Nondeterminism considered harmful: Nondetermin-
ism (available in most parallel languages, including
x10) appears to be a dangerously powerful feature for
novices. Nondeterminism makes it possible to write
parallel programs easily, at the risk of being correct

only some of the time by accident, and never noticing
that in different circumstances the answer may be in-
correct. The x10 team has been doing research in defin-
ing deterministic subsets of x10 to remedy this problem
[5]. Also, the implementation of non-determinism must
be made defensive, such that the probability of getting
the right answer by accident is lowered, for example,
by increasing randomness in the way threads schedulers
work.

Insights for future experimental methodology
and tutorials:

Tutorials are very important for getting across the ba-
sic concepts and impacting the productivity results.
But sometimes it is hard for an instructor to read
whether the message has gone across. The tutorials
could have a non-intrusive online quiz component to
them, via laptops or terminals, to provide immediate
feedback to the instructors on how effective the learn-
ing has been.

Very common novice parallel programming pitfalls
such as having all threads compute the same thing re-
dundantly, or just having thread 0 do all the work,
should be covered and advised against.

Correctness testing for parallel programming projects
must be made rigorous, quickly testing many corner
cases, and checking for deterministic stability, and
should be spelled out to the subjects as well.

If at all possible, multi-day experiments must have 24-
hour monitoring to accurately measure development
time, not just during the day. Competitive brilliant
minds will not rest, even when asked to rest during the
off-hours!

Overall conclusions:

Overall, we believe that the present productivity ex-
periment was an excellent experience. Through such
a methodology, we believe that we can get one step
closer to the goal of having a quantitative, measurable
criterion on productivity, to guide future designs of lan-
guages and tools.

Acknowledgments

This work has been supported in part by the Defense
Advanced Research Projects Agency (DARPA) under
contract No. NBCH30390004. First, we are very grate-
ful to our hard-working anonymous subjects. We thank
David Bader for his suggestion for using the Smith-
Waterman serial algorithm in a productivity experi-

34

ment. We are in particular grateful to Alexander Ro-
pelewski and Hugh B. Nicholas, the bio-informatics ex-
perts at PSC, for their help with the domain specific
property that made the scalable computation of the
local sequence alignment problem possible. We are
also grateful to Nick Nystrom from PSC, to Chris-
tine Halverson, Catalina Danis, and Wendy Kellogg
from the IBM Research Social Computing group, as
well as to Mootaz Elnozahy, Ram Rajamony, and Vijay
Saraswat, for making this sizable productivity experi-
ment possible.

Appendix: Observations on codes pro-
duced by subjects

In this Appendix, we will provide our analysis of the
codes produced by each of the subjects (based on old-
fashioned code reading). These are preliminary, and
are subject to change in the future, as we gain a better
insight into the large database of programs.

5.1 X10 subjects

• X1: Essentially used the following algorithm: for
each element (i, i) on the diagonal, 1 ≤ i ≤ N ,
compute the element, and then in parallel do: { se-
quentially compute the row elements (i, i+1 : M);
sequentially compute the column elements (i + 1 :
N, i) }. This is not a very parallel or scalable solu-
tion, but does exhibit a minimum amount of paral-
lelism (less than 2X). Also, some matrix elements
were computed and written more than once, which
surprisingly did not give incorrect results (the mul-
tiple writes wrote the same value).

• X2: This subject misunderstood the hint. X2 sub-
divided the matrix into blocks of 1.5N columns
each, and computed these blocks independently
and in parallel. Surprisingly (perhaps as an id-
iosyncrasy of the java thread scheduler at PSC),
this nondeterministic parallel program gave the
correct answers at PSC in a repeatable manner.

• X3: Another nondeterministic program (paral-
lel loop with inter-iteration dependences) that
worked correctly by coincidence.

• X4: This subject also misunderstood the hint.
He intended to subdivide the matrix into 1.5N
columns and process them independently. How-
ever, he/she mixed up columns and rows and cre-
ated multiple threads (x10 activities), where only

one thread was computing the entire matrix se-
quentially, and the remaining threads were doing
nothing. Also, there was a data race (nondeter-
minism) which could print the matrix before it
was completely computed, but the data race did
not actually occur at PSC. Because the parallelism
was never greater than 1X, X4’s parallel program
was disqualified.

• X5: Quickly created a first parallel solution us-
ing a wavefront algorithm. Remarkable sequence
of programs: one can see how he/she starts with
a stock wavefront pattern, encounters problems,
and solves them successfully. He/she was also the
only x10 group subject who understood the hint
and later used it to create a scalable and correct
parallel solution. There were many if-then-else
statements to optimize for different cases, which
made the code unduly complex. An HPF-style
(*,BLOCK) distribution in x10, which was not
available at the time, could have simplified X5’s
programming.

• X6: The first parallel solution was a wavefront
computation.

• X7: Used wavefront parallelism, but with a cyclic
distribution which has poor locality.

• X8: The program does not work when N does
not divide M evenly, but works (using wavefront
parallelism) when it does.

• X9: Uses fine-grain wavefront parallelism.

5.2 C+MPI subjects

• M1: No correct parallel solution. M1’s code gen-
erated numerous compile-time and run-time errors
which M1 never fully resolved.

• M2: Remarkably concise and elegant wavefront
solution based on pure send-receive synchroniza-
tion. Each processor is assigned a block of rows
of the matrix (a (BLOCK,*) distribution), and se-
quentially performs the following for each column
of its block: receive the top element of the col-
umn from the previous processor (wait if it not
available yet), then compute this column from top
to bottom sequentially, and then send the bottom
element of this column to to the next processor.
This solution is essentially a wavefront algorithm,
but it is not lock-step synchronized (it is data-flow
synchronized via ordinary MPI send and receive),

35

and should be able to tolerate variable latencies
very well. Unfortunately, this solution will not
scale, because the maximum parallelism is limited
with the wavefront approach.

• M3: Essentially the same solution as M2’s.

• M4: Has used the hint correctly, to create a scal-
able parallel solution.

• M5: No correct parallel solution. M5’s initial at-
tempt at parallelization generated a segmentation
violation, which M5 was unable to correct despite
several attempts.

• M6: No correct parallel solution.

• M7: Each processor is computing the same en-
tire matrix sequentially. This solution was not ac-
cepted as a parallel one. M7 tried to create more
elaborate parallel solutions later, but did not suc-
ceed.

• M8: No correct parallel solution. Generated nu-
merous MPI, malloc, and language errors (both
compile-time and run-time)

• M9: Has used the hint correctly to create a scal-
able parallel solution.

5.3 UPC subjects

• U1: Did not complete the study.

• U2: seems to have obtained perhaps the best
wavefront solution across the teams, with low com-
munication overhead. Uses a (*,BLOCK) distri-
bution which eliminates vertical communication
among matrix elements, and performs wavefront
computation with each wave consisting of cells of
size 1 by 25 (for the 10 by 100 input). But of
course, the wavefront solution is not scalable.

• U3: Did not obtain any correct and parallel solu-
tion.

• U4:

• U5: Did not complete the study.

• U6: Did not obtain any correct and parallel solu-
tion. U6’s initial attempt to parallelize the task
was unusually complex, relying heavily on pointer
arithmetic and never generating a correct solution.

• U7:

• U8:

• U9: Even though this UPC program is ostensi-
bly parallel, only thread 0 is computing the entire
matrix sequentially. Threads other than 0 are not
doing anything. This was not accepted as a par-
allel solution.

References

[1] Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker, and Jack Dongarra. “MPI: The
Complete Reference”, Massachusetts Institute of
Technology Press, 1996.

[2] Tarek El-Ghazawi, William Carlson, Thomas Ster-
ling, Katherine Yelick. “UPC: Distributed Shared
Memory Programming”, Wiley Interscience, ISBN:
0-471-22048-5, 252 p., June 2005.

[3] Philippe Charles, Christopher Donawa, Kemal
Ebcioglu, Christian Grothoff, Allan Kielstra, Vi-
jay Saraswat, Vivek Sarkar, Christoph von Praun.
“X10: An Object-Oriented Approach to Non-
Uniform Cluster Computing”, Proc. OOPSLA
2005.

[4] David Bader. “Scalable Synthetic Com-
pact Application Benchmarks”, available at
http://www.highproductivity.org/Benchmarks.
Contact the web site owners to request access to
the code.

[5] Vijay Saraswat, Radha Jaghadeesan, Ar-
mando Solar-Lezama, Christoph von Praun.
Determinate Imperative Programming: A
clocked interpretation of imperative syntax.
http://www.saraswat.org/cf.html

36

Th e SUMS Methodology for Understanding Productivity:
Validation Th rough a Case Study Applying X10, UPC, and MPI to SSCA#1

Nick Nystrom, Deborah Weisser, and John Urbanic
Pittsburgh Supercomputing Center

{nystrom,dweisser,urbanic}@psc.edu

Abstract
Improving the designs of computers and programming

environments to increase programmers’ productivity requires
detailed understanding of factors that hinder or promote cre-
ation of scalable soft ware. Th e SUMS methodology, which
applies statistical techniques to comprehensive, fi ne-grained
instrumentation of programmers’ activities, enables objec-
tive evaluation of soft ware development processes. SUMS is
explicitly designed to support high-end computing, without
sacrifi cing generality. Th rough aggregation of data across
multiple experiments and over time, SUMS overcomes other-
wise limited sample size and broadens the scope of hypotheses
that may be tested. Aft er briefl y reviewing the SUMS meth-
odology and its current implementation, we present results
from an intensive 4½-day study in which 27 subjects received
training in UPC, MPI, or X10, which they then applied to
DARPA’s Synthetic Scalable Compact Application #1, a prob-
lem in bioinformatic sequence analysis. 180,524 raw events
were recorded for the SSCA#1 task, providing a wealth of
information which is analyzed statistically and graphically
to test hypotheses and to identify signifi cant relationships.
Th is study establishes that SUMS supports robust, real-time
instrumentation and that the data resulting from that in-
strumentation is suffi ciently detailed to support meaningful
statistical analyses. Having validated the SUMS methodol-
ogy and its implementation, additional studies will amass
the statistical weight necessary to allow empirical evaluation
of programming models, environments, and practices.

1 Introduction

As high-end computational science transitions to pet-
ascale systems, demands on the scalability, complexity, and
maintainability of applications will increase dramatically.
Ensuring uniform load balance, hiding latency, prefetching
data from remote memory, and managing code complex-
ity will rise in importance, exceeding their already-critical
roles for applications that run at only the terafl op scale.
As DARPA’s High Productivity Computing Systems [1]

program nears its implementation phase, and as market
pressures and processor and interconnect technologies
converge to independently realize petascale systems, which
programming models and tools will be appropriate for those
systems remains an open question. Will MPI prove viable to
manage hundreds of thousands of processes, or will explic-
itly parallel languages be necessary to manage parallelism
and complex memory systems? If the latter, what costs can
project managers expect for developing new applications
and for rewriting legacy applications, and what will be the
performance gain? What are the characteristics of tools
necessary for debugging and optimizing performance at
those scales? As a community, we have signifi cant experi-
ence with message passing and shared memory paradigms
at smaller scales, but we have very little experience with
partitioned global address space (PGAS) languages, e.g.
UPC [2], Co-Array Fortran [3], and Titanium [4], or even
newer, experimental languages such as X10 [4], Chapel [6],
and Fortress [7], and we have essentially no experience
managing O(105–106) threads. While experience gained on
today’s systems is undoubtedly valuable, it does not provide
an adequate foundation from which we might soundly ex-
trapolate soft ware engineering techniques to systems that
are larger by two orders of magnitude.

SUMS [8] is a methodology for understanding factors
aff ecting programmers’ productivity, together with an
implementation of that methodology. SUMS instruments
programmers’ activities comprehensively and at high res-
olution, producing minutely detailed data ideally suited
for both real-time and offl ine analysis. Instrumentation
is unobtrusive, so as to avoid perturbing programmers’
natural workfl ows. Th e detailed data support testing of
hypotheses and generation of inferences through statisti-
cal analyses, and as the volume of data grows, techniques
from data mining and statistical learning will become ap-
plicable. Th rough SUMS, we seek to learn which elements
of architecture, programming models and languages, tools,
systems soft ware, and hardware design contribute to sys-
tem productivity, and how. Data may be gathered from

37

Data Acquisition Components
• non-intrusively collect detailed, timestamped

software development data
• language-, system-, and tool-independent

exp. design
window.

accounting

source code
shell
batch

compiler
Eclipse-spec

web

Productivity database
• data aggregation across time and experiments
• data preparation, filtering, dimension reduction
• bridge acquisition and analysis

Analysis and Discovery
• supervised & unsupervised learning
• heuristics
• knowledge discovery

database
ops

cluster
analysis HMMs

... Bayesian
analysis

per-subject and cross-subject analyses

Experiment
Director

Subjects
(software developers)

define experiment raw instrumentation; client- and server-side

raw instrumentation data (anonymized)

analysis resultsprepared data

Presentation User Interface Visualization Publication

classroom/workshop settings and ongoing research devel-
opment, refl ecting designed experiments as well as actual
soft ware development. Analyses may then select subsets
of data, aggregating data to span diff erent programming
tasks, architectures, models, languages, hardware, and
soft ware. Th is statistical treatment of objectively gathered
programming data produces quantitative inferences with
statistically meaningful interpretations and bounds.

2 Architecture and Implementation

Th e SUMS architecture features distinct layers (Figure 1):
acquisition components, deployed at productivity experi-
ments to acquire raw data; analysis and discovery compo-
nents, which implement techniques of data mining and
machine learning to cluster, recognize patterns in, and
draw inferences from the SUMS data; and presentation
components, which provide a user interface through which
analysts explore and interact with the data. Complement-
ing the architecture, the SUMS database effi ciently and
securely bridges data acquisition and analysis layers. Imple-
mentation of the data acquisition components has matured
slightly from that presented in [8]; however, the overall ar-

chitecture and design goals of SUMS are unchanged.

2.1 Summary of Studies Supported by SUMS

Table 1 summarizes studies in which SUMS was used to
instrument programmers’ activity. Each validated a suc-
cessive stage in the development and deployment of the
tools which ultimately must run reliably and with minimal
impact on their host systems in production environments.
Th ese studies were conducted on TCS, a 3000-processor
AlphaServer SC system (Tru64 OS, 2-rail Quadrics), which
was simultaneously running in full production at the
Pittsburgh Supercomputing Center. Specifi c queues were
confi gured to provide study participants with reasonable
turnaround times.

3 SUMS Experiment 3:
Contrasting MPI, UPC, and X10

In this paper, we focus on the third study in which SUMS
was deployed, which was held at the Pittsburgh Supercom-
puting Center on May 23-27, 2005. Th e goal of this study
was to contrast programmer productivity in MPI, UPC, and

 Figure 1. SUMS architecture.

38

X10 for a particular programming task, the parallelization
of the alignment portion of the Smith-Waterman algorithm
(SSCA#1). Th is programming task was selected because it
can be described to a general audience in a succinct lec-
ture, and it represents a class of algorithms of interest to
DARPA mission partners. Analysis of SUMS data gathered
during the experiment included the inference of devel-
opment timelines for each subject, which in turn yielded
distinctions between diff erent programming languages.
Earlier experiments are discussed in detail in [8]. Addi-
tional productivity studies are planned, addressing a range
of programming models and subject backgrounds.

In experiment 3, 27 subjects participated in a compre-
hensive study consisting of 48.5 hours on-site over 4.5 days
at PSC. Th e subjects were screened for experience in C and/
or Java and divided evenly by experience into 3 groups of 9,
one group for each of MPI, UPC, and X10. Environmental
factors were minimized as much as possible: All subjects
were given the same programming task. Programming
environments were the same, excepting compilers. Expert
training and support were provided for each language.
Meals were provided on-site, and instruction rooms were
selected to be equidistant from the training center. Data
were collected in two ways: through instrumentation via
SUMS, and through observations and interviews by Chris-

tine Halverson, Catalina Danis, and Justin Weisz of IBM’s
Social Computing Group [9].

Th e fi rst two days of the experiment included lectures
and exercises to establish baseline familiarity with the
programming environment and task. Th e subjects fi rst at-
tended a lecture on parallel programming followed by three
tracks of language-specifi c instruction. Th e subjects were
given coding exercises and then attended a lecture on the
Smith-Waterman algorithm. On the third, fourth, and fi ft h
days, the subjects worked on the programming task, par-
allelizing a serial implementation of the Smith-Waterman
algorithm. Additional exercises were provided for those
who fi nished early. Th e experiment ended with debriefi ngs
and interviews.

Initial preprocessing and anonymization of raw data
yielded 180,524 time-stamped, categorized events, which
were stored in the SUMS database. Each event contains de-
tailed information which was then used for contextual and
temporal analysis. Th e data relevant to this study includes:

Source code: full source; diff erences between versions;
classifi cation of individual changes into tasks
(parallelizing, serializing, debugging, commenting,
cleanup, unassigned); SLOC (using sclc); subsequent
classifi cation into parallel vs. serial, runs correctly vs.

•

experiment subjects
programming

model(s) programming exercise milestones

1. Workshop:
Introduction to Terascale
Code Development
(PSC, 9/13-14/04)

 4 undergraduates
 7 graduate students
 2 postdocs
 2 faculty
 4 research staff
19 total

MPI:
C, Fortran

Solution of Laplace’s
equation
assigned from serial
reference codes
C: 72 lines of code;
Fortran: 82 lines of code

•

•

•

SUMS proof-of-concept
Successful deployment of data acquisition
components
Successful instrumentation of development
activity: 19,717 actions recorded

•
•

•

2. Class: Parallel
Programming
(Pitt, 11/29-12/2/04)

10 undergraduates MPI,
OpenMP:

C

Iterative Jacobi solution of a
tridiagonal system
assigned as pseudocode
serial reference
implementation:
45 lines of code

•

•
•

Successful deployment at an external
institution
Designed experiment: 5 subjects performed
the exercise with OpenMP while the other
5 used MPI. Th e groups then switched to
the other programming model, potentially
allowing for discrimination of learning
eff ects

•

•

3. Study: Implementing
the Smith-Waterman
Algorithm SSCA#1 Using
X10, UPC, and MPI
(PSC, 5/23-27/05)

27 undergrad and
graduate students

X10,
UPC,
MPI

parallelize the Smith-
Waterman algorithm
described in SSCA#1
a serial solution was
provided

•

•

Large, homogeneous subject pool
4.5-day duration, controlled environment
Framework and methodology for
unobtrusively and exhaustively
instrumenting development and
quantitatively analyzing resulting data
External deployment and study of X10
Programming task represents a class of
algorithms of interest to DARPA mission
partners

•
•
•

•
•

Table 1. Summary of productivity experiments 1, 2, and 3.

39

incorrectly; subsequent analysis of correctness and
measurement of execution time
Compiler: all compiler invocations; command lines;
compiler output; errors and warnings; number of
processors (when specifi ed)
Batch system: submission, execution, and completion
times; number of nodes and processors; job name;
queue; queue delay;
system-specifi c resources
Web access: URL; classifi cation into task (accessing
documentation, off -task)
Window focus: application name; application class;
classifi cation into window type (terminal, browser,
debugger, IDE, performance, system)
Process accounting: commands, processors, execution
time
Runtime output: subjects’ X10 output obtained from
compiler logs; MPI and UPC output generated for each
source version using the assigned 10x100 problem
Shell: commands

Th e data collected is summarized in Table 2.
Th rough subsequent analysis of SUMS data, including

program output and source code [10], development time
was segmented into up to 5 milestones for each subject:

•

•

•

•

•

•

•

the time at which the subject copied the provided serial
code, the time the fi rst parallel construct was inserted
into the source code, the time the fi rst correct serial out-
put was obtained, the time the fi rst correct parallel output
was obtained on four processors, and the time of the fi nal
recorded source, compile, or batch event, or the time at
which the subject left the study. For this study, “correct out-
put” was defi ned to require correct results for the 10×100
alignment and normal termination of the program. Total
development time was defi ned as beginning the fi rst time
the subject obtains correct serial output or copies the serial
code and as ending the fi rst time the subject obtains correct
parallel output, or when the subject stops developing code.

By analyzing the time-stamped events for each subject
in the SUMS database, e.g. source code changes, program
output, and compiler output, 5-minute intervals were cat-
egorized into combinations of 8 types:

Accessing Documentation: Access to web pages
pertaining to languages of interest, parallel
programming, or other educational content; access
to man pages or online tutorials
Debugging: Code modifi cations indicative of
debugging: code changes, compilation, execution
following an unsuccessful compile or run.

•

•

user_id source src_diff compiler batch shell web window total
M1 132 353 179 168 1,305 9,775 2,450 14,362
M2 155 366 151 463 1,975 346 2,259 5,715
M3 237 465 330 107 1,386 2,736 2,483 7,744
M4 69 134 81 30 432 3,801 1,664 6,211
M5 119 271 139 24 608 299 1,458 2,918
M6 327 313 287 79 1,235 366 2,658 5,265
M7 409 1,067 427 77 1,920 1,300 3,691 8,891
M8 258 766 342 73 1,355 3,250 2,504 8,548
M9 116 247 160 59 875 913 1,224 3,594
U1 129 145 254 138 1,485 20 416 2,587
U2 224 525 256 240 1,669 733 2,222 5,869
U3 236 449 268 427 8,053 1,014 4,204 14,651
U4 316 420 162 298 1,301 580 1,478 4,555
U5 82 63 20 24 274 486 653 1,602
U6 297 388 179 227 1,479 389 1,691 4,650
U7 207 661 419 104 1,625 7,396 1,550 11,962
U8 244 500 238 303 7,529 645 1,563 11,022
U9 422 847 402 342 2,492 1,793 2,268 8,566
X1 767 354 645 0 2,104 987 2,056 6,913
X2 162 228 404 0 1,109 30 687 2,620
X3 766 329 432 0 1,421 91 1,419 4,458
X4 236 420 455 0 1,341 1,007 3,518 6,977
X5 680 251 669 0 1,809 844 1,753 6,006
X6 291 348 663 0 1,809 1,446 1,661 6,218
X7 238 484 595 0 1,731 307 1,396 4,751
X8 405 452 582 0 1,727 888 2,465 6,519
X9 217 319 887 0 2,634 1,025 2,268 7,350

total 7,741 11,165 9,626 3,183 52,683 42,467 53,659 180,524

Table 2. Instrumented raw events for the full SSCA#1 experiment.

40

Parallelizing: Adding parallel constructs to source
code or repeated execution while scaling data or
processors
Authoring: Adding code when not in “Debugging” or
“Parallelizing” states
Cleaning: Commenting, reformatting
Executing: Running the application, either as a batch
job or interactively
Off -task: Time unrelated to the assigned task: reading
email, visiting unrelated URLs
Idle: Time during which no activity was
instrumented

Development time is defi ned to include only on-task
activities: Accessing Documentation, Debugging, Parallel-
izing, Authoring, Cleaning, and Executing. Development
timelines for each subject are shown in Figure 2.

3.1 Analysis

In Figure 3, we see that in comparing average de-
velopment times between languages, the average total
development time for subjects using X10 was signifi cantly
lower than that for subjects using MPI or UPC. Th e rela-

•

•

•
•

•

•

tive time spent debugging was roughly the same across
all three languages. Subjects using MPI spent more time
accessing documentation (tutorials were online; more doc-
umentation is available), whereas X10 programmers spent
relatively more time executing code and relatively less time
authoring and debugging code. Also, because at the time of
this study X10 was a research language translated to Java,
X10 programs were executed interactively, whereas MPI
and UPC programs were submitted to a batch system. Th is
diff erence in execution environments introduced an un-
avoidable but signifi cant diff erence in subjects’ workfl ows.

Figure 4 shows the larger maximum and median times
to correct parallel outputs as well as the increased variabil-
ity in development times. Of the subjects who obtained
correct parallel output, those using MPI succeeded in 117
to 594 minutes with median 182 minutes. Subjects us-
ing UPC showed similar minimum and maximum times,
125 minutes and 590 minutes, respectively, but their me-
dian time was approximately twice as high, 399 minutes.
Subjects who obtained correct parallel output using X10
did so in 10 to 562 minutes, with median 289 minutes.
Examination of source code snapshots [10] revealed that
the remarkably rapid 10 minute solution with X10 was in
fact nondeterministic and would not extend to general se-

Figure 2. Development timeline for each subject. Each vertical bar depicts 5 minutes of development time, colored by the distribution
of activities within the interval.

41

Absolute Time Percentage of Total

Figure : Average development time by language.

Figure 3: Development time from serial output (provided) to fi rst correct parallel output (where obtained)
or to end of study (where no correct parallel output was obtained).

Subjectobtained correct parallel output
did not complete study

42

quence alignments; however, it did produce correct results
for the specifi ed input.

Interestingly, of the 9 subjects in each group, the dis-
tribution of those producing correct parallel output within
the alotted time was nonuniform. 4 succeeded with MPI,
4 with UPC, and 8 with X10. Whether this observation
refl ects properties of the languages or whether it is due to
diff erences in programming environments or individuals’
talents would require expansion of the sample size.

Collaborating on this study, C. Danis and C. Halver-
son applied observational results to provide insights into
periods during which no activity is instrumented (“gap
analysis”), and observational data were also integrated with
data automatically collected by SUMS. Th ese techniques,
which can lead to insights regarding programming habits
and diffi cult-to-instrument actions (e.g. visual focus among
multiple windows), are discussed extensively in [9].

Also collaborating, V. Sarkar, K. Ebcioglu, and T. El-
Ghazawi examined every source code snapshot to identify
the algorithms the subjects implemented and to analyze
their correctness and parallelization technique. Th is analy-
sis led to insights regarding nondeterminism that would
guide the evolution of X10, and it revealed subtleties of
the source codes that would be diffi cult to ascertain auto-
matically. V. Sarkar and K. Ebcioglu present their analyses
in [10].

Th e three approaches of quantitative and objective
instrumentation, direct observation, and source code anal-
ysis are complementary. However, there is a fundamental
diff erence in their scalability because both observation and
source code analysis are extremely labor-intensive. Achiev-
ing statistically signifi cant results that overcome diff erences
in individuals’ backgrounds and skill will require large
sample sizes, and broadening inquiry to include realistic
research applications mandates studies that span months to
years, not days. Automated instrumentation scales to arbi-
trary numbers of experiments over any duration; however,
manual observation and manual source code analysis will
have to be coupled selectively, where specifi c insights are
desired.

4 SUMS 1.0

SUMS 1.0 supports the following data acquisition compo-
nents, supporting both Linux (server- and client-side) and
Windows (client-side).

Source Logger
Implementation: Script invoked by source daemon
to capture timed, incremental snapshots and by the
compiler component to capture snapshots before every
build.
Strength: Frequent snapshots of all relevant fi les assure

•

capture of complete code development history.

Compiler Logger
Implementation: Wrappers in the SUMS bin directory,
confi gured into the user’s path via shell startup fi les.
Strength: Capturing complete compiler options and
output facilitates determination of code state; e.g. fun-
damental syntax errors vs. subtle warnings.

Shell Command Logger
Implementation: An executable pre-loader intercepts all
executables, recording commands and arguments.
Strength: Instruments the most basic level of developer
activity; man page access; tracks use of arbitrary tools;
redundancy with other components (corroboration)

Window Focus Tracker
Implementation: Lightweight process monitors window
manager events; X Windows and MS Windows.
Strength: Relate attention to active window; follow usage
patterns within debuggers and performance tools; iden-
tify client-side activity (editors, local compilation, …)
and off -task activity (e-mail, chat, non-development
applications).

Web Access Logger
Implementation: Squid proxy.
Strength: Track accesses to documentation, course ma-
terials, and other on- and off -task web documents.

Batch System Logger
Implementation: Built-in PBS job recording utilities
extract job timing and size information.
Strength: Record execution scripts, environment
(number of processors, environment variables, …), and
runtime, enabling analysis of performance and scal-
ability.

5 Conclusion and Future Work

We make use of SUMS to understand programmer
productivity by transparently obtaining fi ne-grained, com-
prehensive data spanning the soft ware implementation
process. Th ree initial productivity experiments provided
seed data, which we are now using to establish eff ective
data mining techniques. Additional experiments will in-
crease SUMS data to statistical signifi cance. We are actively
seeking new participants in those and in research settings
to improve sampling. Experimental systems, programming
models and languages, and problem domains will be ex-
panded as new architectures, compilers, and development
environments become available.

Due to the large volume of high-dimensional data,

•

•

•

•

•

43

visual tools are helpful for initially identifying features and
trends, aft er which carefully constructed queries yield the
most fruitful analyses. (As productive lines of inquiry are
identifi ed, automated analyses are being developed.)

Possible areas of inquiry for future experiments include
exploration of diff erent tools and environments, e.g. IDEs;
parallelization approaches, e.g. parallelization of serial code
vs. ab initio parallelization and diff erent strategies for data
distribution; diff erent languages, models, architectures, ex-
ploration of individual language constructs; instructional
techniques conducive to generating comparable results,
e.g. goal-oriented vs. broad language overviews.

5 Acknowledgments

SUMS is supported by IBM through PERCS [Grant
number W01229580], in collaboration with Rami Melhem
and Raymond Hoare (University of Pittsburgh). We also
thank Vivek Sarkar, Kemal Ebcioglu, Vijay Saraswat, and
Tarek El-Ghazawi for their contributions in the experiment,
which included the X10 and UPC compilers along with
teaching the X10 and UPC. We would also like to thank
Ram Rajamony, and Mootaz Elnozahy (IBM Research) for
insightful discussions, Alex Ropelewski for presenting the
Smith-Waterman algorithm, and Victor Puchkarev and
Courtney Machi for their contributions to SUMS soft ware
and analysis.

6 References

[1] DARPA High Productivity Computing Systems pro-
gram. http://www.darpa.mil/ipto/programs/hpcs/

[2] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick,
E. Brooks, and K. Warren, Introduction to UPC and
language specifi cation, Technical Report CCS-TR-
99-157, Center for Computing Sciences, Bowie, MD,
May 1999.

[3] R. W. Numrich and J. K. Reid, Co-Array Fortran for
parallel programming, Technical Report RAL-TR-
1998-060, Rutherford Appleton Laboratory, Oxon,
UK, August 1998.

[4] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B.
Liblit, A. Krishnamurthy, P. Hilfi nger, S. Graham, D.
Gay, P. Colella, and A. Aiken, Titanium: A high-
performance Java dialect, in ACM 1998 Workshop
on Java for High-Performance Network Computing,
1998.

[5] Th e X10 Programming Language, http://domino.
research.ibm.com/comm/research_projects.nsf/pag-
es/x10.index.html

[6] Chapel: Th e Cascade High-Productivity Language,
http://chapel.cs.washington.edu/

[7] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S.

Ryu, G. L. Steele Jr., and S. Tobin-Hochstadt, Th e
Fortress Language Specifi cation, v0.785, http://re-
search.sun.com/projects/plrg/fortress0785.pdf

[8] Understanding Productivity through Non-intrusive
Instrumentation and Statistical Learning. In Th e Sec-
ond Workshop on Productivity and Performance in
High-End Computing (P-PHEC-2), San Francisco,
CA, 2005. http://www.research.ibm.com/arl/pphec/
P-PHEC-2005.html

[9] C. Danis and C. Halverson, Th e Value Derived from
the Observational Component in an Integrated
Methodology for the Study of HPC Programmer
Productivity. In Th e Th ird Workshop on Produc-
tivity and Performance in High-End Computing
(P-PHEC-3), Austin, Texas, 2006.

 [10] V. Sarkar and K. Ebcioglu, An Experiment in
Measuring the Productivity of Th ree Parallel Pro-
gramming Languages. In Th e Th ird Workshop on
Productivity and Performance in High-End Com-
puting (P-PHEC-3), Austin, Texas, 2006.

44

