
X10: Programming for Hierarchical Parallelism and
Non-Uniform Data Access

(Extended Abstract)

Kemal Ebcioğlu
IBM TJ Watson Research

Center
PO Box 704

Yorktown Heights, NY 10598

kemal@us.ibm.com

Vijay Saraswat
IBM TJ Watson Research

Center
PO Box 704

Yorktown Heights, NY 10598

vsaraswa@us.ibm.com

Vivek Sarkar
IBM TJ Watson Research

Center
PO Box 704

Yorktown Heights, NY 10598

vsarkar@us.ibm.com

ABSTRACT
The challenges faced by current and future-generation large-
scale systems include: 1) Frequency wall: inability to follow
past frequency scaling trends, 2) Memory wall: inability
to support a coherent uniform-memory access model with
reasonable performance, and 3) Scalability wall: inability
to utilize all levels of available parallelism in the system.
These challenges manifest themselves as both performance
and productivity issues in the use of large-scale systems.
X10 is an experimental modern object-oriented program-
ming language being developed to help address the second
and third of these three challenges. It is intended for high-
performance, high-productivity programming of large-scale
computer systems with non-uniformities in data access and
coherence, as well as multiple heterogeneous levels of paral-
lelism. This paper provides a summary of the X10 language
and programming model, and discusses its applicability to
future processor architectures and runtime systems.

1. INTRODUCTION AND MOTIVATION
The challenges faced by current and future-generation large-

scale systems include: 1) Frequency wall: inability to fol-
low past frequency scaling trends due to power and thermal
limitations, 2) Memory wall: inability to support a coher-
ent uniform-memory access model with reasonable perfor-
mance thereby leading to severe nonuniformities in latency
and bandwidth for accessing data in different parts of the
system, and 3) Scalability wall: inability to utilize all levels
of available parallelism in the system, e.g., clusters, SMPs,
multiple cores on a chip, co-processors, SMT, and SIMD lev-
els. The focus of this paper is on language, compiler, and
runtime techniques to address the second and third of these
three challenges, which have increased in urgency given the
paucity of techniques to address the first challenge. It is
now common wisdom that the ongoing increase in complex-

Preprint: To be presented at the 3rd International Workshop on Language
Runtimes: "Impact of Next Generation Processor Architectures On Virtual
Machine Technologies", co-located with the ACM OOPSLA 2004 confer-
ence, Vancouver, October 2004. Permission to make digital or hard copies
of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
.

ity of large-scale parallel systems to address these challenges
has been accompanied by a decrease in software productiv-
ity for developing, debugging, and maintaining applications
for such machines [13]. This is a serious problem because
current trends for next generation systems, including SMP-
on-a-chip and tightly coupled “blade” servers, indicate that
these complexities will be faced not just by programmers for
large-scale parallel systems, but also by mainstream appli-
cation developers.

In the area of scientific computing, the programming lan-
guages community responded to these challenges with the
design of several programming languages, including Sisal,
Fortran 90, High Performance Fortran, Kali, ZPL, UPC,
Co-Array Fortran, and Titanium. The ultimate challenge
facing this community is supporting high-productivity, high-
performance programming: that is, designing a program-
ming model that is simple and widely usable (so that hun-
dreds of thousands of application programmers and scien-
tists can write code with felicity) and yet efficiently imple-
mentable on current and proposed architectures without re-
quiring “heroic” compilation efforts. This is a grand chal-
lenge, and past languages, while taking significant steps for-
ward, have fallen short of this goal either in the breadth of
applications that can be supported or in the ability to de-
liver the underlying performance of the target machine. MPI
still remains the most common model used in obtaining high
performance on large-scale systems, despite the productivity
limitations inherent in its use.

During the same period, significant experience has also
been gained with the design and use of commercial object-
oriented languages, such as Java and C#. These languages,
along with their accompanying libraries, frameworks and
tools, have enjoyed much success in improving productivity
for commercial applications. The object-oriented program-
ming model has also been well-served by the emergence of
managed runtime environments, capable of providing porta-
bility of programs across a variety of architectures. Such
an environment is typically organized around a virtual ma-
chine and provides a number of features aimed at improving
software productivity, such as type safety, value safety, and
automatic memory management.

While the productivity benefits of commercial object-oriented
languages are well established for single-threaded applica-
tions, the results for concurrent applications have been de-
cidedly mixed. Despite much effort [18], attempts to pre-

cisely define the semantics of the memory model for Java –
that is, the concurrent interactions between multiple threads
and a single shared global heap – continue to be very com-
plicated technically and arguably beyond the reach of most
practicing programmers. With some notable exceptions (e.g.
JSR 166 [15]), research on concurrency in such languages
has not addressed the issue of delivering the scalable perfor-
mance that is required by large-scale parallel systems.

X10 is an experimental new language currently under de-
velopment at IBM in collaboration with academic partners.
The X10 effort is part of the IBM PERCS project (Pro-
ductive Easy-to-use Reliable Computer Systems) whose goal
is to design adaptable scalable systems for the 2010 time-
frame, with a technical agenda focused on hardware-software
co-design that combines advances in chip technology, com-
puter architecture, operating systems, compilers, program-
ming environments and programming language design. The
main role of X10 is to simplify the programming model so
as to increase the programming productivity for future sys-
tems like PERCS, without degrading performance. Com-
bined with the PERCS Programming Tools agenda [23], the
ultimate goal is to use a new programming model and a new
set of tools to deliver a 10× improvement in development
productivity for large-scale parallel applications by 2010.

To increase programmer productivity, X10 starts with a
state-of-the-art object-oriented programming model, and then
raises the level of abstraction for constructs that are ex-
pected to be amenable to automatic static and dynamic op-
timizations by 2010 — specifically, X10 introduces atomic
sections in lieu of locks, clocks in lieu of barriers, and asyn-
chronous operations in lieu of threads. To increase per-
formance transparency, X10 integrates new constructs (no-
tably, places, regions and distributions) to model hierarchical
parallelism and non-uniform data access.

X10 is a strongly typed language that emphasizes the use
of static type-checking and the static expression of program
invariants (e.g. about locality of computation). Such static
expression improves both programmer productivity (in doc-
umenting design invariants) and performance. The X10 type
system supports generic type-abstraction (over value and
reference types), is place- and clock-sensitive and guaran-
tees the absence of deadlock (for programs without con-
ditional atomic sections), even in the presence of multiple
clocks. X10 specifies a rigorous, clean and simple semantics
for programming constructs independently from a specific
implementation.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the core features of the X10 program-
ming model. In Section 3, we discuss how programs ex-
pressed in X10 can take advantage (through a suitable com-
piler and runtime system) of various architectural features.
In Section 4, we outline compiler optimizations that we ex-
pect will be important in an X10 context. Finally, Section 5
contains our conclusions.

2. X10 PROGRAMMING MODEL OVERVIEW
This section provides a brief summary of the X10 lan-

guage, focusing on the core features that are most relevant
to locality and parallelism. Figure 1 contains a schematic
overview of the main X10 constructs for concurrency and
data access.

A central concept in X10 is that of a place. A place is a
collection of resident light-weight threads (called activities)

and data, and is intended to map to a data-coherent unit
in a large scale system such as an SMP node or a single co-
processor. It contains a bounded, though perhaps dynam-
ically varying, number of activities and a bounded amount
of storage. Cluster-level parallelism can be exploited in an
X10 program by creating multiple places.

There are four storage classes in an X10 program:

1. Activity-local — this storage class is private to the ac-
tivity, and is located in the place where the activity
executes. The activity’s stack and thread-local data
are allocated in this storage class.

2. Place-local — this storage class is local to a place, but
can be accessed coherently by all activities executing
in the same place.

3. Partitioned-global — this storage class represents a
unified or global address space. Each element in this
storage class has a unique place that serves as its home
location, but the element is accessible by both local
activities (activities in the same place) and remote ac-
tivities (activities in a different place).

4. Values — Instances of value classes (value objects), are
immutable and stateless in X10, following the exam-
ple of Kava[2]. Such value objects are in this storage
class. Since value objects do not contain any updat-
able locations, they can be freely copied from place to
place. (The choice of when to clone, cache or share
value objects is left to the implementation.) In addi-
tion, methods may be invoked on such an object from
any place.

X10 activities operate on two kinds of data objects. A
scalar object has a small, statically fixed set of fields, each
of which has a distinct name. The mutable state of a scalar
object is located at a single place. An aggregate (array) ob-
ject has many elements (the number may be known only
when the object is created), uniformly accessed through an
index (e.g. an integer) and may be distributed across many
places. Specifically, an X10 array specifies 1) a set of indices
(called a region) for which the array has values, 2) a distri-
bution mapping from indices in this region to places, and 3)
the usual array mapping from each index in this region to a
value of the given base type (which may itself be an array
type). Operations are provided to construct regions (distri-
butions) from other regions (distributions), and to iterate
over regions (distributions). These operations include stan-
dard set-based operations such as unions and intersections,
some of which are available in modern languages such as
ZPL [4]. It is also worth noting that commonly-used basic
types such as int, float, complex and string are defined as
value classes in the x10.lang standard library, rather than
as primitive types in the language.

Throughout its lifetime an activity executes at the same
place, and has direct access only to data stored at that place.
Remote data may be accessed by spawning asynchronous
activities at the places at which data is resident. An asyn-
chronous activity is a statement of the form async (P) S

where S is a statement and P is a place expression. Such a
statement is executed by spawning an activity at the place
designated by P to execute statement S. As a convenient
means of identifying the place of a datum in the partitioned-
global storage class, when the expression P specifies an array

Figure 1: Overview of X10 constructs for concurrency and data access.

element or object, it evaluates to the place containing that
array element or object. (P) can also be omitted, in which
case, it is inferred to be the place of the data accessed by
statement S (provide that a single place can be unambigu-
ously inferred). Asynchronous activities that may return
a value to the invoking activity are called futures and are
discussed further below. Activities can also be spawned in
the local place as a high-level abstraction of multithreading.
The foreach construct serves as a convenient mechanism for
spawning local activities across a specified index set (re-
gion). The ateach (pronounced “at each”) construct serves
as a convenient mechanism for spawning activities across a
set of local/remote places or objects.

X10 provides four mechanisms for the coordination of ac-
tivities — clocks, force operations, atomic sections, and con-
ditional atomic sections — which are summarized below in
the following paragraphs.

Clocks. Clocks are a generalization of barriers, which have
been used as a basic synchronization primitive for MPI pro-
cess groups and in other SPMD programming models. X10
clocks are designed to offer the functionality of multiple bar-
riers in the context of dynamic, asynchronous, hierarchical
networks of activities, while still supporting determinate,
deadlock-free parallel computation.

A clock is defined as a special value class instance, on
which only a restricted set of operations can be performed.
At any given time an activity is registered with zero or more
clocks. The activity that creates a clock, is automatically
registered with this clock. An activity may register other ac-
tivities with a clock, or may un-register itself with a clock.
An activity may also quiesce on the clocks it is registered
with and suspend until all of them have advanced (by exe-
cuting the blocking next operation), or require that a state-
ment (possibly involving execution of new async activities)
be executed to completion before a clock can advance. At

any given step of the execution a clock is in a given phase.
The first phase of the clock starts when the clock is created.
The clock advances to its next phase only when all its cur-
rently registered activities have quiesced, and all statements
scheduled for execution in this phase have terminated. In
this manner, clocks serve as barriers for a dynamically vary-
ing collection of activities.

Force Operations.When an activity A executes the state-
ment, F = future (P) E, it asynchronously spawns an ac-
tivity B at the place designed by P to evaluate the expression
E. Execution of the expression in A terminates immediately,
yielding a future [9] in F, thereby enabling A to perform
other computations in parallel with the evaluation of E. A
may also choose to make the future stored in F accessible to
other activities. When any activity wishes to examine the
value of the expression E, it invokes a force operation on F.
This operation blocks until B has completed the evaluation
of E, and returns with the value thus computed.

X10 does not allow the invoking activity, A, to register
the spawned activity B with any of the clocks A is regis-
tered with. Further, E is not allowed to invoke a conditional
atomic section.

These restrictions are sufficient to ensure that the evalu-
ation of a future can never deadlock even if the expression
E creates its own clocks and uses futures and unconditional
atomic sections.

Unconditional Atomic Sections.A statement block or
method that is qualified as atomic has the semantics of being
executed by an activity as if in a single step, during which
all other activities are frozen1. Thus atomic sections may

1The implementation may of course allow concurrent execu-
tion of atomic sections, using techniques such as optimistic
concurrency, as long as atomic sections are made to appear

be thought of as executing in some global sequential order,
even though this order is indeterminate. An atomic section
is a generalization of user-controlled locking, so that the user
only needs to specify that a collection of statements should
execute atomically and can leaves the responsibility of lock
management and other mechanisms for enforcing atomicity
to the language implementation. Primitives such as fetch-
and-add, updates to histogram tables, updates to a bucket
in a hash table, airline seat reservations arriving at an online
data base, and many others, are a natural fit for synchro-
nization using atomic sections. X10 also requires that all
accesses to shared mutable data be inside an atomic section,
which can ease the constraints on the memory consistency
model.

It is important to avoid including long-running or block-
ing operations in an atomic section. To this end, we dis-
tinguish between intra-place and inter-place atomic sections
as follows: all data accessed in an intra-place atomic section
reside in the same place as the activity executing the atomic
section, whereas data accessed in an inter-place atomic sec-
tion may reside in a remote place. Since inter-place data
accesses can result in long-running or blocking operations,
we expect intra-place atomic sections to be used more fre-
quently than inter-place atomic sections. In addition, we
call an atomic section analyzable if the locations and places
of all data to be accessed in the atomic section can be com-
puted on entry to the atomic section [21]. An X10 program-
mer can reasonably expect that the overhead of supporting
atomic sections on current and future systems will increase
progressively for the following four classes of atomic sections:
1) analyzable intra-place, 2) non-analyzable intra-place, 3)
analyzable inter-place, 4) non-analyzable inter-place, with
1) being the most efficient and 4) being the most expensive.
We expect implementations of 1) and 2) to be comparable
to implementations of wait-free data-structures.

Conditional atomic sections.Conditional atomic sections
in X10 are akin to conditional critical regions [12], and have
the form when (c) S. If the guard c is false in the current
state, the activity executing the statement blocks until c

becomes true. Otherwise, as far as any other concurrently
executing activity is concerned, the statement is executed
in a single step which begins with the evaluation of c =
true, and ends with the completion of statement S. This
implies that c is not allowed to change between the time
it is detected to be true and the time S begins execution.
X10 currently does not permit the statement S to contain or
invoke a nested conditional atomic section.

A conditional atomic section for which the condition c is
statically true is considered to be equivalent to an uncondi-
tional atomic section.

A number of other features in X10 are not mentioned
here due to space limitations. These include generic in-
terfaces, generic classes, type parameters, sub-distributions,
array constructors, exceptions, place casts and the nullable
type constructor.

Figure 2 contains an overview of our implementation plan
for the compiler and runtime environment for X10 programs.
A static high-level optimizer is used to perform the opti-
mizations outlined in Section 4. The X10 runtime system
and dynamic compiler is part of the X10 virtual machine,

to execute in a “single step” to the programmer.

which interfaces with the PERCS Continuous Program Op-
timization (CPO) system. Both the static optimizer and the
virtual machine use profile feedback and information on the
target hardware to make their optimization decisions.

3. EXPLOITING ARCHITECTURAL FEA-
TURES

In this section we will briefly discuss how X10 can be used
to exploit parallel hardware architectures. The following
ideas are presented only as a general discussion on X10 and
its interaction with architectures, and are not intended to
represent an implementation plan for a specific architecture.

3.1 Scalable Parallelism with a Large Number
of Places

A paramount concern in scalable parallel computation is
memory address to physical location mapping. In very early,
cacheless computer systems, a memory address used to de-
note the actual physical location of a datum. In modern ILP,
SMP, and/or SMT architectures, a datum is moved from
physical location to physical location (registers, any cache
level in any processor, memory modules), using caching as-
sumptions and heuristics (such as spatial and temporal lo-
cality, lack of false sharing) as well as register allocation
algorithms that allow memory locations to reside in reg-
isters temporarily. With coherent cache memory systems,
the address-to-location mapping can get arbitrarily complex,
and may involve an expensive broadcast query. This may
look up all the L2 cache directories in the system, consume a
lot of bandwidth and power, and can effectively cause serial-
ization because of resource contention. Alternatively (with a
directory-based cache protocol) one can implement a slower,
up to three-hop lookup that first asks a fixed “home mem-
ory module” of a datum for the current owner of the datum,
and then can read the datum from the current owner proces-
sor’s L2 cache. Despite a number of optimizations that can
be implemented, such coherent cache designs are difficult to
scale to very high degrees of parallelism, and the caching
heuristics and assumptions are not always reliable.

In the MPI programming model, the problem of address-
to-location mapping is left to the programmer, which can
be an error-prone task. The burden of guaranteeing coher-
ence also falls on the programmer, thereby introducing an-
other major source of programming complexity and errors.
Following the paradigm of programming languages such as
UPC and Titanium[7, 11], X10 simplifies the problem of
address-to-location space through the introduction of a par-
titioned global address space. Through distribution map-
pings, the X10 programmer assigns a unique place to each
mutable shared datum in the partitioned-global space. Dur-
ing the execution of any X10 activity, the hardware/compiler
can map any X10 global memory address to a simplified,
easy-to-compute specification of its physical location, of the
form: <placeId, address within place>. In many cases
the lookup can be performed statically by the compiler. No
system wide query is necessary to determine the current
physical location of a global memory address. This approach
offers a high degree of scalability and high performance in
large scale-out systems with a high speed interconnect.

To avoid slowdown in the case of repeated communication
between places that happen to be physically far apart, a
second level place-to-physical-node mapping could be used

Figure 2: Schematic design of X10 implementation

(with the help of a runtime dynamic optimization system) to
remap such frequently communicating places to physically
closer nodes, while taking load balancing into consideration.

A key goal in the design of distributed parallel systems
and software is locality, i.e., the minimization of commu-
nication between remote nodes. By making the program-
mer aware of the cost of remote communication, through
the use of explicit language constructs for remote accesses,
the X10 design is well-suited to future-generation proces-
sor implementations where inter-node communication and
synchronization are expected to be significantly slower and
more expensive compared to intra-node communication and
synchronization.

3.2 Support for Heterogeneous Computing
With an ultra light-weight VM implementation that en-

sures code portability across heterogeneous platforms, and
the ability to define new simple data types and operations
as value classes (following the example of Kava[2]), X10 can
directly execute special hardware operations (e.g. graphics
functions) natively on the platforms that have the proper na-
tive hardware, while using efficient JIT compilation on other
machines that do not have the native hardware. Thus, an
X10 place and its activities can be mapped to heterogeneous
physical nodes, taking advantage of the native hardware fea-
tures of each node, while retaining portability of code across
the heterogeneous platforms.

Heterogeneous hardware configurations that can benefit
from the X10 programming model include specialized co-
processors in a system on-a-chip environment that are not
memory coherent, PIM-like multithreaded processors capa-
ble of tolerating high DRAM latencies, and dedicated stor-
age and I/O processors which are close to the disks and to
each other but are far from the main computation proces-
sors.

3.3 Implementing Fast Communication
X10’s remote activity-spawning constructs may be sup-

ported very efficiently by high speed/highly pipelinable mes-
saging hardware, and/or in software, for communication-
intensive applications. A remote activity invocation from
place i to place j can be achieved by sending a work queue
item (a message) from i to j containing the starting address
of the activity to spawn as a new activity on j, along with
the parameters to be used by the new activity. The message
is inserted in a single work queue in j in the order the mes-
sages are sent from i to j. The new activity at j will cease
when an end-of-activity primitive is executed, returning a
result if the activity was a future. For the case of a future,
j must send a return message with the return value. i will
in turn dequeue items from the future work queue and wake
up the light-weight threads in i that may be waiting for the
future result to arrive.

An important class of X10 applications can be transformed
by compiler techniques into long running activities in each
place, which communicate by fine grain, data flow style send-
receive primitives. High performance synchronized send-
receive communication hardware can be used to implement
such applications.

3.4 Achieving ILP and Thread-level Parallelism
in a Single Place

A key obstacle to achieving strong scalability in current

applications is that it is hard to uncover multiple levels of
parallelism in an MPI programming model based on domain
decomposition. Future systems that require 105-way paral-
lelism will exhibit poor performance on current MPI appli-
cations that can only over 103-way useful parallelism (say),
even after scaling up the data size. Also, since the original
MPI algorithm is often fine-tuned to minimize inter-task
communication, if one were able to break up the original
MPI tasks one could also expose unusually high communica-
tion needs among the new parallel sub-tasks, thus requiring
an architecture paradigm outside of the slow message pass-
ing infrastructure normally connecting processors/memories.
A second obstacle to achieving strong scalability is Amdahl’s
law. For example, if the original program spent, say, 0.1%
of its time in unparallelized code, this would limit perfor-
mance to only 1000X, even if the remaining 99.9% of the
program took zero time. There is therefore a potential ben-
efit in fine-grain parallelization of serial sections and MPI
tasks in general.

X10 can offer a solution for increasing instruction-level
and thread level parallelism within a place. At the lower
levels of the parallelism hierarchy, within a single place, X10
offers explicit parallelism constructs of the form:

future T x = future(P){B}
A;
T y = x.force();

which specifies that B and A have no dependences (except for
any atomic sections in them) and can be executed in parallel.
Assume that the place P is known to be the same place as
the current one i.e., P = here . To implement this construct,
an SMT architecture may start executing the new activity
body B with an independent program counter and also con-
tinue the current activity with A. An SMP architecture may
spawn the new activity B on a currently idle processor, and
continue the current activity with A. In a statically sched-
uled architecture such as a VLIW[6] or EPIC[5] machine, or
in the semi-statically scheduled TRIPS architecture[19], the
compiler may “snip off” the dependence edges going from
B to A in its conservatively constructed dependence graph,
and schedule operations as usual. For a scalable superscalar
architecture with a wide issue window [8], the compiler may
insert a special instruction just before A that forces instruc-
tions in A not to depend on instructions in B, but to pos-
sibly depend on instructions that precede future{B}. The
explicit parallelism constructs are very useful for achieving
aggressive, uninhibited parallel execution, which would not
always be possible through automatic parallelization, since
the latter would need to (1) automatically group the original
code into B and A and (2) prove the independence of B and
A, at compile time.

Higher level X10 parallelism constructs (such as parallel
loops) can be expressed as multiple invocations of simpler
primitives that spawn a single activity, so the observations
here can be generalized to higher level constructs as well.

3.5 Implementing Synchronization Efficiently
Sometimes one would like to write a consumer operation

without having to guarantee that the producer operation is
executed first. An individual cell in a mesh computation
where the cell expects inputs from some of its sides, and
produces outputs at its remaining sides, is a typical exam-
ple, where one would like to write the code for the behavior
of the cell, without knowing if the cell inputs have already

been computed or not. For example, a data flow buffer
implemented with a conditional atomic section as well as
data structures built using future’s are all suitable for effi-
ciently expressing this kind of producer-consumer synchro-
nization in X10. The implementation techniques range from
hardware-supported global P/V semaphores to software sim-
ulated I-structures (involving a ready bit, a value and a wait-
ing threads queue for each future datum). I-structures were
previously used in data flow machines.

Techniques such as thread-level speculation [24] may be
used to efficiently implement atomic sections, with hardware
support. This approach maintains “speculatively written”
bits in cache lines written during the execution of an atomic
code fragment, and either rolls back by discarding the cache
line when a data race is detected, or commits by remov-
ing the speculative state from the cache line. Other hard-
ware/software approaches to atomic sections have recently
been described in [10, 1].

Classical barrier network hardware (a simple AND gate)
can be used to implement a barrier when the compiler can
statically establish the set of activities that will participate
in a clock synchronization. The general case is implemented
through a global counting semaphore. Combining networks
could be used (as in the RP3 parallel computer, [17]) to
update counting semaphores efficiently, in order to prevent
the semaphores from becoming high-contention hot-spots.

Overall, we believe that X10 will fit today’s distributed ar-
chitectures (as well as their enhanced future versions) well.
It has the potential to provide high degrees of cluster level,
thread level, and instruction level parallelism. However,
there are still many challenges in implementing atomic sec-
tions, fast asynchronous thread spawning, fast transmission
of results, and fast activity group synchronization in a scal-
able manner.

4. COMPILER OPTIMIZATIONS
The compiler plays a crucial role in X10’s productivity

goals. State-of-the-art parallelizing compiler techniques can
in many cases transform an X10 program that provides a
high level specification of what should be done, to a more
efficient program (perhaps another X10 program), that de-
scribes how it should be done. Figure 3 shows an example
of such a transformation. Version 1 of the code describes a
parallel array copy operation (between arrays with unequal
distributions) at a high level; this X10 program (albeit in-
efficient if implemented literally) is clear and easy to code
and understand. Version 3 of the code (which can also be
derived from version 1 by a state-of-the-art compiler) de-
scribes a more efficient form of array copying, which aggre-
gates messages, and minimizes the total number of inter-
node communication events. Version 3 is also a clear and
easily comprehensible code fragment, thanks to the very
high level parallelization constructs in X10. However, for
achieving productivity goals, such as reducing the time for
obtaining the first correct parallel program with reasonable
performance, or facilitating the rapid teaching of X10 to a
group of non-expert programmers, it is important to provide
state-of-the-art compiler techniques among the productivity
arsenal for X10, that can perform code transformations as in
Figure 3 automatically. Note that the best production-level
performance most probably will still be achieved by manual
optimization of a parallel algorithm, and we have striven
to make this manual optimization process as productive as

possible for X10, by design.
In the present section, we will describe a subset of state-of-

the-art compiler techniques applicable to X10. Due to space
limitations, we outline two main classes of optimizations —
inter-place optimizations, and optimization of clocks and
atomic sections. In addition, we briefly discuss the bene-
fits that accrue to compiler optimization from X10’s strong
typing and single-assignment (functional) programming fea-
tures. There are several more opportunities for optimization
of X10 programs that are beyond the scope of this paper
e.g., optimization of value classes, optimization of data dis-
tributions and redistributions, optimization of streams and
arrays, intra-place optimizations, and runtime optimizations

4.1 Inter-place optimizations
The X10 programming model supports the notion of a

global address space distributed across places. A single
place is assumed to map to a data-coherent hardware unit
of a large scale parallel system, such as a Symmetric Multi-
Processor (SMP) chip or a single processor core with sup-
port for thread-level and instruction-level parallelism. In
contrast, some degree of software support is necessary to
support a consistency model for data accesses across places.
In this section, we outline important optimizations for X10
programs that use multiple places.

One of the strengths of X10 is that it can be used as a sin-
gle language that supports multiple programming paradigms.
Table 1 highlights the range of programming paradigms that
can be followed when using multiple places in X10, and the
important optimizations that need to be performed in each
case. Many of these optimizations have been developed in
past work on specific programming paradigms, and can be
leveraged for X10 as well.

The most convenient mechanism for inter-place interac-
tions in X10 is through fine-grained asynchronous opera-
tions, which include asynchronous statements (one-way mes-
sages) and asynchronous expressions (futures). While this
capability can aid programmer productivity, typical hard-
ware support for inter-place interactions is better suited to
fewer large-grained communications than many fine-grained
communications. It is therefore very important to provide
compiler optimizations for aggregation of async operations.

The basic rule for aggregation is that two dynamic async
operations can be combined if they have the same source
and destination places, and if program dependences do not
require that some other intervening statement be performed
between the two operations. There are two special cases of
aggregation that are important to exploit for X10:

1. Loop-level aggregation — in this case a single foreach or
for loop is strip-mined/tiled so as to ensure that each
tile executes in the same place, and all instances of the
same async operation in a tile have the same destina-
tion. In the absence of additional program dependence
constraints, it should then be possible to combine all
instances of that async operation within the tile into
a single coarse-grained async operation. As described
above, Figure 3 shows three equivalent versions of a
simple Array Copy example, where versions 2 and 3
are obtained by performing loop-level aggregation on
version 1.

2. Object-level aggregation — in this case, certain object
reference fields are analyzed as being “local” i.e., the

Programming
Paradigm

Activities Storage Classes Important Optimizations

Message-passing
e.g. MPI

Single activity per
place

Place-local Domain decomposition, message ag-
gregation, optimization of barriers
& reductions

Data parallel e.g.
HPF

Single global program Partitioned-global SPMDization, communication &
synchronization optimizations

PGAS e.g. Tita-
nium, UPC

Single activity per
place

Partitioned-global,
place-local

Localization, SPMDization, com-
munication & synchronization opti-
mizations

DSM e.g. Tread-
Marks

Multiple (w/ implicit
place affinity)

Partitioned-global,
activity-local

Data Layout, page locality opti-
mizations

NUMA Multiple (w/ explicit
place affinity)

Partitioned-global,
activity-local

Data distribution, consistency &
synchronization optimizations

Co-processor e.g.
STI Cell

Multiple (w/ implicit
& explicit place affin-
ity)

Partitioned-global,
place-local

Consistency & synchronization opti-
mizations

Active messages /
futures

Multiple (w/ explicit
place affinity)

Place-local, Activity-
local

Message aggregation, synchroniza-
tion optimizations

Full X10 Multiple Partitioned-global,
place-local, activity-
local

All of the above

Table 1: Important Optimizations for Programming Paradigms that use Multiple Places

target of the object reference is guaranteed to be in
the same place as the object containing the field. Once
again, it should be possible to combine all async opera-
tions from the same place performed on objects reach-
able through local fields.

These rules form the basis for a task-partitioning algo-
rithm that enforces the acyclicity constraint [22, 20] so as to
ensure that each thread is non-blocking.

4.2 Optimization of Clocks and Atomic Sec-
tions

X10 activities are created by using asynchronous opera-
tions and foreach/ateach concurrent statements. Clocks and
atomic sections are the two primary mechanisms used to
coordinate activities. The usage of clocks and atomic sec-
tions helps improve programmer productivity, but can po-
tentially lead to large overheads when used across multiple
places. Past approaches (e.g., [25]) have highlighted oppor-
tunities for compiler optimization of barriers either by re-
placing them by equivalent weaker coordination primitives
such as pair-wise or one-to-all synchronizations, or by elim-
inating the barriers outright. These approaches can be ex-
tended to optimization of clocks.

A promising opportunity for optimizing atomic sections
across places is to replace them by user-defined reduction
operations. There are two key restrictions that need to be
imposed on atomic sections to enable this transformation:
1) the atomic section should be analyzable as defined in [21],
and 2) multiple instances of the same atomic section should
be commutative and associative.

4.3 Optimization Benefits of Strong Typing
and Single-Assignment features inX10

The strongly typed X10 language, along with interpro-
cedural type inference techniques that can further identify

the run-time type of an object, permit better static mem-
ory address disambiguation of object references (especially
compared to C/C++ and Fortran). Better static memory
disambiguation can in turn result in fewer perceived depen-
dences between memory accesses and higher instruction-
level, thread-level and cluster-level parallelism. Also, the
use of ownership types [3] in X10 can simplify escape analy-
sis and determination of which data accesses are local.

While allowing the user all the benefits of an imperative,
multiple assignment-based, object-oriented language with
mutable data structures, X10 also makes it easy to write
methods and other code fragments in a functional, single-
assignment style. Some of the X10 language features that fa-
cilitate the single-assignment style include immutable value
classes, final and clocked final variables, and array construc-
tors. Also, even when a code fragment written by a program-
mer contains mutable data structures with multiple assign-
ment, it is sometimes possible for a compiler to convert a
code fragment to a pure functional form through static sin-
gle assignment transformations design for arrays and other
aggregate data structures [14].

The functional style is easy to recognize for a compiler,
and has a number of well-known benefits for parallel execu-
tion. When a method or code fragment written in the func-
tional style is examined through inter-procedural analysis,
it is possible to prove the lack of side effects, which can en-
able higher levels of redundancy elimination and parallelism
transformations than in traditional imperative languages:
for example, a parallelizing compiler can spawn functional
method calls as independent parallel activities, or can elim-
inate entire function calls from frequently executed paths
when they are proved to be partially redundant or partially
dead. Also, in an SMP multiprocessor context, when the
last assignment to a (clocked) final variable is executed on
one processor, it can be broadcast to the other processors
that use its value as a shared read-only variable from that

// VERSION 1:
// Creates a total of 2*N
// activities, one for each
// index in 0..N-1,
// and one for each future.

int N = ... ;
region R = [N] ;
distribution D1 = block(R);
distribution D2 = cyclic(R);
// D1 and D2 have the
// same region, R
. . .
// a and b have same
// element type T
T[D1] a;
T[D2] b;
. . .
ateach (i:a) {

// for each index i
// of a do in parallel:
// In the place of a[i],
// remotely read b[i],
// write its value to a[i]

// Note:
// As a convenience,
// a[i]=!^b[i]; or
// a[i]=b[i];
// can serve as a
// shorthand for
// the synchronous remote
// read:
// a[i] = future(b[i])
// .force();

a[i] = b[i];

}

// VERSION 2:
// Creates a total of P+N
// activities, one for each
// of the P places, and one
// for each future.

int N = ... ;
region R = [N] ;
distribution D1 = block(R);
distribution D2 = cyclic(R);
// D1 and D2 have the
// the same region, R
. . .
// a and b have same
// element type T
T[D1] a;
T[D2] b;
. . .
ateach(

distribution
.unique(D1.places)) {

// At each place
// which contains elems
// of a, do in parallel:
// Current place="here"

// for all indices j such
// a[j] is in "here"
// (serial for loop)

for (j : D1 | here) {

// copy b[j] from
// whatever place it is
// in, to a[j] in "here"

a[j] = future(b[j])
.force();

}
}

// VERSION 3:
// Creates a total of P+P*P
// activities, one for each
// <src,dest> place pair

int N = ... ;
region R = [N] ;
distribution D1 = block(R);
distribution D2 = cyclic(R);
// D1 and D2 have the
// same region, R.
. . .
// a and b have same
// element type T
T[D1] a;
T[D2] b;
. . .
ateach(

distribution
.unique(D1.places)) {

// At each place
// which contains elems
// of a, do in parallel:
// Current place="here"
// LD1={i|a[i] in "here"}

region LD1
= (D1|here).region;

// for each place p
// containing any b elems
// with indices in LD1

for(p:D2[LD1]) {
region LD2

= (D2 | p).region;
region Common

= LD1 && LD2;
// copy all the b elems
// with indices in LD1
// from place p, to the
// corresponding a elems
// in place "here"
// (message aggregation)
a[Common]=

future(b[Common])
.force();

}
}

Figure 3: Example of loop-level aggregation for Array Copy example

point on. Immutable variables that are assigned once, elim-
inate the overhead of the usual coherence issues of keeping
multiple replicated copies of a datum in different caches or
memory modules and can create several opportunities for
additional optimization [16].

5. CONCLUSION
X10 is considerably higher-level than thread-based lan-

guages in that it supports dynamically spawning very light-
weight activities, the use of atomic operations for mutual
exclusion, and the use of clocks for repeated quiescence de-
tection of a data-dependent set of activities. Yet it is much
more concrete than languages like HPF in making explicit
the distribution of data objects across places. In this, the
language reflects the designers’ belief that issues of locality
and distribution cannot be hidden from the programmer of
high-performance code in high-end computing. A perfor-
mance model that distinguishes between computation and
communication must be made explicit and transparent. At
the same time we believe that the interaction between the
concurrency constructs and the place-based type system (in-
cluding first-class support for type parameters) will enable
much of the burden of generating distribution-specific code
and coordination of activities to be moved from the pro-
grammer to the underlying implementation.

We expect the next version of the language to be sig-
nificantly informed by experience in implementing and us-
ing the language, and through productivity studies compar-
ing X10 with existing programming models such as MPI,
OpenMP, and UPC. Our directions for future work include
constructs that support inter-place activity migration, con-
tinuous program optimization, and fault tolerance.

Acknowledgments
X10 is being developed in the context of the IBM PERCS
(Productive Easy-to-use Reliable Computing Systems) project,
which is funded by DARPA. We are grateful to the following
people for their feedback and contributions to the design and
implementation of X10: David Bacon, Bob Blainey, Philippe
Charles, Perry Cheng, Julian Dolby, Guang Gao, Christian
Grothoff, Allan Kielstra, Robert O’Callahan, Filip Pizlo,
Christoph von Praun, V.T. Rajan, Lawrence Rauchwerger,
Mandana Vaziri, and Jan Vitek. We are also grateful to
John McCalpin, Mootaz Elnozahy and Lisa Spainhower for
helpful discussions.

6. REFERENCES
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.

Leiserson, and S. Lie. Unbounded transactional
memory. In 11th International Symposium on High
Performance Computer Architecture (HPCA-11), San
Francisco, CA, February 2005. To appear.

[2] D. Bacon. Kava: A Java dialect with a uniform object
model for lightweight classes. Concurrency – Practice
and Experience, 15:185–206, 2003.

[3] C. Boyapati, B. Liskov, and L. Shrira. Ownership
types for object encapsulation. In POPL ’03.
Proceedings of the 30th ACM SIGPLAN-SIGACT on
Principles of programming languages, New York, NY,
USA, 2003. ACM Press.

[4] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, and
L. Snyder. The high-level parallel language ZPL

improves productivity and performance. In
Proceedings of the IEEE International Workshop on
Productivity and Performance in High-End
Computing, 2004.

[5] C. Dulong. The IA-64 architecture at work. IEEE
Computer, 31(7):24–32, July 1998.

[6] K. Ebcioğlu. Some design ideas for a VLIW
architecture for sequential natured software. In
Proceedings of the IFIP WG 10.3 Working Conference
on Parallel Processing, pages 3–21. North Holland,
1988. Michel Cosnard et al., editors.

[7] T. El-Ghazawi, W. Carlson, and J.Draper. UPC
Language Specification v1.1.1, October 2003.

[8] M. Galluzzi, V. Puente, A. Cristal, R. Beivide, J.-A.
Gregorio, and M. Valero. A first glance at
kilo-instruction based multiprocessors. In Proceedings
of the first conference on computing frontiers on
Computing frontiers, pages 212–221. ACM Press, 2004.

[9] R. Halstead. MULTILISP: A language for concurrent
symbolic computation. ACM Transactions on
Programming Languages and Systems, 7:501–538,
1985.

[10] L. Hammond, V. Wong, M. Chen, B. Hertzberg,
B. Carlstrom, M. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence
and consistency. In Proceedings of the 31th Annual
International Symposium on Computer Architecture
(ISCA-31), Munich, June 2004.

[11] P. Hilfinger, D. Bonachea, D. Gay, S. Graham,
B. Liblit, G. Pike, and K. Yelick. Titanium Language
Reference Manual. Technical Report CSD-01-1163,
University of California at Berkeley, Berkeley, Ca,
USA, 2001.

[12] C. Hoare. Monitors: An operating system structuring
concept. CACM, 17(10):549–557, October 1974.

[13] HPL Workshop on High Productivity Programming
Models and Languages, May 2004.
http://hplws.jpl.nasa.gov/.

[14] K. Knobe and V. Sarkar. Array SSA form and its use
in Parallelization. In POPL ’98. Proceedings of the
25th ACM SIGPLAN-SIGACT on Principles of
programming languages, Jan. 1998.

[15] D. Lea. The Concurreny Utilities, 2001. JSR 166,
http://www.jcp.org/en/jsr/detail?id=166.

[16] I. Pechtchanski and V. Sarkar. Immutability
Specification and its Applications. Proceedings of the
ACM 2002 Java Grande/ISCOPE Conference,
October 2002.

[17] G. Pfister, W. Brantley, D. George, S. Harvey,
W. Kleinfelder, K. McAuliffe, E. Melton, V. Norton,
and J. Weiss. The Research Parallel Processor
Prototype (RP3): Introduction and Architecture. In
Proceedings of the 1985 International Conference on
Parallel Processing, pages 764–771. IEEE Press,
August 1985.

[18] W. Pugh. Java Memory Model and Thread
Specification Revision, 2004. JSR 133,
http://www.jcp.org/en/jsr/detail?id=133.

[19] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,
J. Huh, D. Burger, S. W. Keckler, and C. R. Moore.
Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture. In Proceedings of

the 30th International Symposium on Computer
Architecture, 2003.

[20] V. Sarkar. Partitioning and Scheduling Parallel
Programs for Multiprocessors. Pitman, London and
The MIT Press, Cambridge, Massachusetts, 1989. In
the series, Research Monographs in Parallel and
Distributed Computing.

[21] V. Sarkar and G. R. Gao. Analyzable atomic sections:
Integrating fine-grained synchronization and weak
consistency models for scalable parallelism. Technical
report, CAPSL Technical Memo 52, February 2004.

[22] V. Sarkar and J. Hennessy. Partitioning Parallel
Programs for Macro-Dataflow. ACM Conference on
Lisp and Functional Programming, pages 202–211,
August 1986.

[23] V. Sarkar, C. Williams, and K. Ebcioğlu. Application
development productivity challenges for high-end
computing. In Proceedings of Workshop on
Productivity and Performance in High-End Computing
(P-PHEC), February 2004.
http://www.research.ibm.com/arl/pphec/pphec2004-
proceedings.pdf.

[24] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C.
Mowry. A scalable approach to thread-level
speculation. In Proceedings of the 27th Annual
International Symposium on Computer Architecture,
June 2000.

[25] C.-W. Tseng. Compiler optimizations for eliminating
barrier synchronization. Proceedings of the fifth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 144–155,
August 1995.

