Research Monographs in
Parallel and Distributed Computing

DAVID GELERNTER, ALEXANDRU NICOLAU
and DAVID PADUA (editors)

_ Languages
and Compilers
for Parallel
Computing

The MIT Press

AR i i L

T g e g

——

RESEARCH MONOGRAPHS IN PARALLEL AND DISTRIBUTED COMPUTING

Edited by

David Gelernter, Yale University,

Alexandru Nicolau, University of California, Irvine, and
David Padua, University of Illinois at Urbana-Champaign

[Languages and Compilers
for Parallel Computing

Pitman, London

The MIT Press, Cambridge, Massachusetts

S e POy

PITMAN PUBLISHING
128 Long Acre, London WC2E 9AN

© D. Gelernter, A. Nicolau, D. Padua 1990
First published 1990

Available in the Western Hemisphere and Israel from
The MIT Press
Cambridge, Massachusetts (and London, England)

ISSN 0953-7767
British Library Cataloguing in Publication Data
Languages and compilers for parallel computing. —(Research
monographs in parallel and distributed computing,
ISSN 0953-7767)
1. Computer systems. Parallel-processor
systems. Programming languages
1. Gelernter, David 1I. Nicolau, Alexandru III. Padua,
David 1V. Series
005.4'5

ISBN 0-273-08820-3

Library of Congress Cataloging-in-Publication Data
Languages and compilers for parallel computing / edited by David
Gelernter, Alexandru Nicolau, and David Padua.
p. cm.—(Research monographs in parallel and distributed
computing, ISSN 0953-7767)
Includes bibliographical references.
ISBN 0-262-57080-7 :
1. Programming languages (Electronic computers) 2. Compilers
(Computer programs) 3. Parallel processing (Electronic computers)
I. Gelernter, David Hillel. 1. Nicolau, Alexandru. III. Padua,
David A. 1V. Series.
QA76.7.L38 1990
0054'53——dc20

All rights reserved; no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or
otherwise without the prior written permission of the publishers or

a licence permitting restricted copying in the United Kingdom

issued by the Copyright Licencing Agency Ltd, 33-34 Alfred Place,
London WCIE 7DP. This book may not be lent, resold, hired out or
otherwise disposed of by way of trade in any form of binding or cover
other than that in which it is published, without the prior consent of
the publishers.

Reproduced and printed by photolithography
in Great Britain by Biddles Ltd, Guildford

Contents

e

Fine-grain Parallelization and the Wavefront Method 1
Alexander Aiken, IBM Almaden Research Center
Alexandru Nicolau, University of California, Irvine

2 Visual Extensions to Parallel Programming Languages 17
Duane A. Bailey, Williams College
Janice E. Cuny, University of Massachusetts

3 A Status Report on CONSUL 37
Douglas Baldwin, University of Rochester

4 A Theory of Loop Permutations 54
Utpal Banerjee, Intel Corporation

S Software Engineering of Parallel Programs in a Computationally
Oriented Display Environment 75

James C. Browne, University of Texas at Austin

6 A Future-based Parallel Language for a General-purpose
Highly-parallel Computer 95
David Callahan, Tera Computer Company
Burton Smith, Tera Computer Company

7 Tuple Analysis and Partial Evaluation Strategies in the Linda Precompiler 114
Nicholas Carriero, Yale University

David Gelernter, Yale University

8 COOL:a Language for Parallel Programming 126
Rohit Chandra, Stanford University
Anoop Gupta, Stanford University
John L. Hennessy, Stanford University

9 Code Generation and Separate Compilation in a Parallel Program Debugger 149
Jong-Deok Choi, University of Wisconsin, Madison
Barton P. Miller, University of Wisconsin, Madison .

10 Blackboard Programming in Shared Prolog 170

Paolo Ciancarini, Universita di Pisa

11

12

13

14

15

16

17

18

19

Experiences U
Ron Cytron, I
Jeanne Ferran
Vivek Sarkar,

A New Compi
Branches on a
Kemal Ebciog
Toshio Nakat:

Compile Time
Christine Eise
William Jalby.
Alain Lichnew

Static Analysis
Dennis Ganne
Vincent A. G
Jenq Kuen Le

Compiling for
Guang R. Gac
Zaharias Para

A Comparison
Boyer—Moore
Williams Ludh
Zahira Amma

Refined C: an
David Klapph
Apostolos D.

Xiangyun Kor

Improving Pai
Andrew W. K
Lubomir Bic,
Daniel D. Gaj

Some Results «
Zhiyuan Li, U
Pen-Chung Y¢

11

12

13

14

15

16

17

18

19

Experiences Using Control Dependence in PTRAN 186
Ron Cytron, IBM T. J. Watson Research Center
Jeanne Ferrante, IBM T. J. Watson Research Center
Vivek Sarkar, IBM T. J. Watson Research Center

A New Compilation Technique for Parallelizing Loops with Unpredictable
Branches on a VLIW Architecture 213

Kemal Ebcioglu, IBM T. J. Watson Research Center

Toshio Nakatani, /BM Tokyo Research Laboratory

Compile Time Optimization of Memory and Register Usage on the Cray 2 230
Christine Eisenbeis, INRIA, Paris

William Jalby, INRIA and Universite Rennes

Alain Lichnewsky, INRIA, Paris

Static Analysis and Runtime Support for Parallel Execution of C 254
Dennis Gannon, Indiana University

Vincent A. Guarna Jr., University of lllinois at Urbana-Champaign
Jenq Kuen Lee, Indiana University

Compiling for Dataflow Software Pipelining 275
Guang R. Gao, McGill University
7 aharias Paraskevas, McGill University

A Comparison of Automatic versus Manual Parallelization of the
Boyer—Moore Theorem Prover 307

Williams Ludwell Harrison 111, University of lllinois at Urbana-Champaign
Zahira Ammarguellat, University of lllinois at Urbana-Champaign

Refined C: an Update 331

David Klappholz, Stevens Institute of Technology
Apostolos D. Kallis, Stevens Institute of Technology
Xiangyun Kong, Stevens Institute of Technology

Improving Parallel Program Performance Using Critical Path Analysis 358
Andrew W. Kwan, University of California, Irvine

Lubomir Bic, University of California, Irvine

Daniel D. Gajski, University of California, Irvine

Some Resuits on Exact Data Dependence Analysis 374
Zhiyuan Li, University of lllinois at Urbana-Champaign
Pen-Chung Yew, University of Illinois at Urbana-Champaign

20

21

22

23

24

25

26

Compiling Programs with User Parallelism 402
Samuel P. Midkiff, University of Hlinois ay Urbana-Champaign

The Structure of Parafrase-2: apn Advanced Parallelizing Compiler
for C and Fortran 423

Constantine D. Polychronopoulos

Milind B. Girkar

Mohammad R. Haghighat

Chia L. Lee

Bruce P. Leung

Dale A. Schouten

“all ar University of lllinois ar Urbana-Champaign

Concurrentization: Mapping Parajjej Loops onto a Cluster of
Control Data’s Advanced Paralle] Processors 454
Tom Rochat, Control Dasq Corporation

The XYZ Abstraction Levels of Poker-like Languages 470
Lawrence Snyder, University of Washingron

The PARSEQ Project: an Interim Report 490
Jon A, Solworth, University of lilinois gt Chicago

Desirable Code Transformations for a Concurrent Machine 511
Augustus K. Uht, University of California, San Diego

Loop Rotation 531
Michae] Wolfe, Oregon Graduate Center

12 A New Compilation Technique
for Parallelizing Loops with
Unpredictable Branches on a
VLIW Architecture

Kemal Ebcioglu and Toshio Nakatani

Abstract

Enhanced pipeline-percolation scheduling is a new compilation technique we
developed to extract fine-grain parallelism uniformly from nested loops in general
software. The compilation technique generates code for execution on the IBM
Very Long Instruction Word (VLIW) machine, which is now being built at the
IBM T. J. Watson Research Center. The IBM VLIW architecture has features
that facilitate high performance on general sequential-natured code with unpre-
dictable branches: a decision-tree shaped instruction capable of performing multi-
ple conditional branches emanating from arbitrary paths in the sequential code, a
conditional execution feature that reduces pathlengths, multiple functional units
and multiple ports to data memory, and a shared register file which eliminates
communication delays between functional units. The preliminary version of the
parallelizing compiler for the IBM VLIW machine is now operational both at the
IBM Tokyo Research Laboratory and the IBM T. J. Watson Research Center.
It is shown that a pathlength reduction of 5-11X over a RISC processor can be
achieved on some of the Stanford integer benchmarks and other sequential-natured
C programs.

1. Introduction

7hile vector supercomputers and multiprocessors are capable of achieving very high per-
formance on vectorizable or inherently parallel, scientific code fragments, a considerable
portion of typical, existing programs may not be vectorizable, and may not have the
coarse-grain parallelism to allow separation into different tasks for execution on differ-
ent processors. Typical sequential-natured, non-numerical programs do have a degree
of fine-grain parallelism; but realistic multiprocessor architectures cannot exploit such
parallelism, because communication and synchronization delays can greatly reduce the
speedup.

The Very Long Instruction Word (VLIW) approach has a potential to fill this gap, and
may achieve considerable speed-up on general, sequential-natured programs uniformly.
But the application domain of VLIW architectures has so far been restricted to code
with predictable branches (mainly scientific code), because of the nature of the paral-
lelism extraction techniques developed to date for such architectures, and because of the
assumptions made about the predictability of conditional branches during the design of
such machines ([7] and [8]).

Enhanced pipeline-percolation scheduling is a new compilation technique we developed
to extract fine-grain parallelism uniformly from general nested loops with arbitrary un-
predictable branches. This technique generates code for the IBM VLIW machine, which
is now being built at the IBM T. J. Watson Research Center. The IBM VLIW architec-
ture is intended to achieve good performance on a very wide range of sequential-natured
programs, such as systems, commercial, or A.L code.

To facilitate high performance on general code, the architecture has features such
as decision-tree shaped instructions capable of performing multiple conditional branches
emanating from arbitrary paths in the sequential code, a conditional execution feature
that reduces pathlengths, multiple functional units and multiple ports to data memory,
and a shared register file which eliminates communication delays between functional
units.

Our new parallelism extraction technique is robust, since it does not require any
restriction to the form of the loops, and avoids the branch prediction problem by not
doing any prediction, i.e. by executing operations on all paths instead, whenever resources
permit. ‘

The preliminary version of the parallelizing compiler for the IBM VLIW machine that
takes the sequential intermediate code of a standard optimizing high-level language com-
piler ([15]) as input, and produces compacted long instruction words, is now operational
both at the IBM Tokyo Research Laboratory and the IBM T. J. Watson Research Center.
It is shown that the average of 5-11X pathlength reduction is obtained (versus a RISC
Processor) on some of the Stanford integer benchmarks and other sequential-natured C
programs.

In this paper, we will first give an overview of our architecture and the related compi-
lation techniques. Second, the enhanced pipeline-percolation scheduling technique will be
described in some detail, and will be compared with previous compiler research in this
area. Finally, some benchmark results will be summarized to show the effectiveness of

214

the new paralleliza

2. Overview ¢

Our machine has o
condition code reg
branch and conditi

The instruction
tree is encoded in
tree there are label
the tree, there is a
code registers). (
register arithmetic
single machine cyc
selection phase ant

At the path se.
the tree to a tip n
that were set in th
given node is true,
to the right.

At the executic
that are on the sel
from the previous
taneously since the
sets the same des
node determines t

Finally the re:
branches to the in
current instructio

For the specifi
arithmetic operat
particular instruc
on its edgescan b
how the seemingl;
fast cycle time, re
to be only 1.3 tix

In Figure 1, w
a fragment of a p:
instruction-tree le
code registers ccl
the tree will be s
ai+4—ai will be «
the previous instr

the new parallelization technique.

2. Overview of the Architecture

Our machine has multiple functional units all of which share a register file and multiple
condition code registers that assume binary values (true or false). It supports multiway
branch and conditional execution.

The instructions of the machine have the form of a decision tree (see Figure 1). The
tree is encoded in binary form in the instruction word. At the terminal nodes of the
tree there are labels, which this instruction can branch to. At each non-terminal node of
the tree, there is a test on a condition code register (the machine has multiple condition
code registers). On each directed edge of the tree there can be zero or more three-
register arithmetic operations, or memory loads/stores. An instruction is executed in a
single machine cycle. Conceptually, there are two phases in the machine cycle: the path
selection phase and the execution phase.

At the path selection phase, the machine determines a unique path from the root of
the tree to a tip node of the tree, based on the old values of the condition code registers
that were set in the previous instructions, in a decision tree like fashion. If the test on a
given node is true, the taken path branches to the left, otherwise the taken path branches
to the right.

At the execution phase, only the three-register arithmetic operations and loads/stores
that are on the selected path are executed, using the old values of the registers available
from the previous instruction as operands or storage addresses. They are executed simul-
taneously since they have no data dependence on each other. If more than one operation
sets the same destination register on the selected path, the operation closest to the tip
node determines the final value in the destination register.

Finally the results of the operations are written into the register file, and control
branches to the instruction whose label is indicated at the tip of the taken branch of the
current instruction. ‘

For the specific implementation, there will be a finite limit on the number of distinci
arithmetic operations, loads/stores, and the number of branch target addresses in a
particular instruction. Otherwise, the shape of the tree and the placement of operations
on its edges can be arbitrary. For a more detailed discussion on the architecture, and on
how the seemingly complex instruction semantics described here is implemented with a
fast cycle time, readers should refer to [5]. The cycle time of this machine is estimated
to be only 1.3 times that of a pipelined RISC machine designed in the same technology.

In Figure 1, we show an example of an instruction in our VLIW architecture, which is
a fragment of a program for finding the minimum of an array. Just before executing the
instruction-tree labeled L1 in the Figure 1, if for example the initial values of condition
code registers ccl and cc0 are false and true, respectively, then the rightmost path in
the tree will be selected. The operations (t<min)—ccl, t—t’, (ai<lim)—cc0, A(ai)—t,
ai+4—ai will be executed in parallel, using the old values t, min, ai, lim, available from
the previous instructions. The instruction will branch to L1 again. The next instruction

215

216

L1
|
|
|
if ccl
/\
t'->min / \
/ \
L2 if not ccO
N\
/ \ (t<min)->ccil
/ \
/ \ (ai<lim)->ccO
/ \ Alai)->t
/ \ ai+4->ai
/ \
Exit L1

Figure 1: An example of an instruction in our VLIW architecture

t
'
s
i
!
i
|
3
i
i

will then observe t
not be executed si:

The difference |
ELI architecture (
that conditional jr
be executed in par
conditional jumps

Our instruction
percolation schedu
conditionally depe
regardless of the |
delays over the ori

3. Outline of

The purpose of th
quential code prod
([15])) for a RISC
and produce a seq
register arithmetic
give an overview o

In our project,
compiler ([15]) int
sary procedure cal
translates the inte;
take as input to ot

The parallelize
Nicolau ([11]) and
two techniques ex:
called enhkanced pi
technique is given

The major dist
lau’s percolation s
of our architectur
up, to eliminate }
dependence), and
and move-cj). We
loops (ignoring ba

Because only f
of enhanced percc
optimal execution
operations are exes
But the compactes

will then observe the updated values of ccl, t’, cc0, t and ai. The operation t’—min will
not be executed since it is not on the selected path.

The difference between the instruction semantics of our VLIW machine and J. Fisher’s
ELI architecture ([7]), which was the basis for the Multifiow VLIW machines ([8]), is
that conditional jumps that are not necessarily on a single path through the code can
be executed in parallel in our machine, whereas the ELI allows the parallel execution of
conditional jumps on a single “most probable” path.

Our instruction semantics is also different from A. Nicolau’s original formulation of the
percolation scheduling programming model ([11]), since our machine executes operations
conditionally depending on where the instruction branches to, and thus gains headway
regardless of the path taken. The conditional execution feature reduces critical path
delays over the original percolation scheduling model.

3. Outline of the Compiler

The purpose of the compilation techniques for our machine is to take as input the se-
quential code produced by a traditional optimizing compiler (presently the PL.8 compiler
([15])) for a RISC machine, find groups of operations that can be executed in parallel,
and produce a sequence of compacted instructions, each of which contains multiple three-
register arithmetic operations, loads/stores, and multiway conditional jumps. We will
give an overview of the compilation techniques in this section.

In our project, a frontend code generator has been developed, which takes the PL.8
compiler ([15]) intermediate code for each procedure as an input, inlines all the neces-
sary procedure calls, solves the register save/restore problem by renaming registers, and
translates the intermediate code to the sequential (abstract) RISC machine code that we
take as input to our parallelizing compiler, using a rule-based code generation technique.

The parallelizer in our project is based on percolation scheduling derived from A.
Nicolau ([11]) and software pipelining derived from K. Ebcioglu ([4]). We modified the
two techniques extensively and merged them together as a new parallelizing technique
called enkanced pipeline-percolation scheduling. A more detailed description on this new
technique is given in the next two sections. Here we will briefly describe this technique.

The major distinction of our enhanced percolation scheduling technique from Nico-
lau’s percolation scheduling is: 1) reformulation into the conditional execution semantics
of our architecture, 2) renaming of destination registers of operations that are moved
up, to eliminate inhibition of parallelism due to read-before-write dependence (anti-
dependence), and 3) new integration of core transformations (we have only move-op
and move-cj). We apply this technique for loop-free code (DAG), like bodies of inner
loops (ignoring backward edges).

Because only flow dependences remain after register renaming, a greedy application
of enhanced percolation scheduling in the presence of unlimited resources, guarantees
optimal execution of the original acyclic program. That is, in the compacted code,
operations are executed as soon as their operands are ready, regardless of the path taken.
But the compacted code stops executing the remaining operations on a path, as soon as

217

it is known that the path is not to be taken by the original sequential code, so resources
are conserved. Optimal execution on acyclic code is not achievable with trace scheduling
or standard percolation scheduling, even with infinite resources.

The following is an overview of enhanced pipeline scheduling. First, the top level
procedure picks an innermost loop as an instruction list. Here the instructions in the list
are sorted in topological order of the control flow graph, ignoring backedges. Enhanced
percolation scheduling is applied to move operations and conditional jumps to the first
instruction of the instruction list, until the resource constraint limitation is encountered.
We call this process “flling” the first instruction. Motion of operations is always in the
upward direction of the instruction list and, in this initial stage, motion across backedges
is inhibited. Motion across the original backedges is subsequently enabled and software
pipelining occurs.

Once the first instruction is filled, it is placed at the bottom of the instruction list.
It now represents the initiation of the second iteration of the loop. The successors (the
level 2 instructions) of the first instruction, which have not already been filled and which
are within the instruction list, are now filled, with the motions always in the upward
direction of the instruction list. We note here that, in this scheme, operations from the
first instruction of the second iteration can move into the level 2 instructions of the first
iteration; thus, software pipelining is being done.

This procedure will then be repeated by moving down the level 2 instructions to the
bottom of the instruction list, making the unfilled successors (the level 3 instructions) of
the level 2 instructions the new set of instructions to be filled, and so on. This process will
be repeated until no unfilled successors of the current level exist. A special rule applies
for upward code motion out of already filled instructions to guarantee termination: if
any operation or test is moved up on a given path from the filled instruction, then all
operations and tests in the filled instruction must be moved up on that path.

At the end of this process, the innermost loop will have been transformed into the
compacted tree instructions, which execute the loop in software pipelined fashion. Typ-
ically a number of additional instructions will be generated that start up the software
pipeline (loop “prelude”) and drain the software pipeline (loop “postlude”).

For the next step, the pipeline startup and draining instructions of the inner loop are
merged with the outer loop. The strongly connected part of the software pipelined inner
loop is represented as an atomic unit in the outer loop. The same procedure is applied
to the outer loop. The procedure is then again applied to the next level.outer loop, etc.
until the whole program is compacted and software pipelined.

4. Move-op in Enhanced Percolation Scheduling *

In this section, we will describe a crucial component of enhanced percolation scheduling,
the modified move-op transformation.

In Figure 2, we describe by an example how we have modified the move-op transfor-
mation of‘percolation scheduling, so that anti-dependences are eliminated. This transfor-
mation is the key to the optimal schedules produced by enhanced percolation scheduling

218

befor

afte:

(ori

before move-op of x+y->z from L2 to left branch of Li:

L1
|
|
|
if cct
w<0->cc2/\
x'->x / \
/ \
L2 L3

after move-op:
L1
|
|
!
if cci
w<0->cc2/\
x->x / \
x’'+y=>z'/ \
L2’ L3

(original L2 is deleted if it no longer has predecessors)

Figure 2: Elimination of anti-dependence in move-op

L2

|

I

I

if cc2

N\
A(Z)->y / \ z+y->z
x+y->v / \

L4 LS
L2’
I
|
|
if cc2
AN

A(2)->y / \ z!->z
z'=>vy / \
L4 L5

219

on acyclic code.

To move an operation x+y—z (where x, y, z are registers) from an instruction n to
the end of a branch #p of a predecessor instruction m, first the following check is made:
if the source registers x,y are set via a non-copy operation in branch ¢p, then the move
cannot be done and move-op fails (copy operations are register transfers such as x’—x,
other operations are non-copy operations). Otherwise, the move can be made. A copy of
n is made and is renamed as n’, and branch ¢p of m is made to go to n’ instead of n. If
n no longer has any predecessors, it is deleted.

The operation x+y—z is modified as follows when moving it from n’ into branch ¢p of
m: given that there are copy operations x1—yl,... xk—yk in branch ¢p of m, the source
registers of the operation are modified by substituting xi for yi (to get the new value of
vi, it suffices to look into xi in m). The destination register z of x+y—z is also modified
by changing it to a brand new register z’ before making the move, to guarantee that
those operations, which need the old value of z in n’ and after n’, still get the old value
of z. All operations that have the same sources and opcode as x+y—z in n’, namely
x+y—z, x+y—zl, ..., are changed to z’—z, z’—>zl, As a special case, as in ordinary
compaction techniques, if the original destination register z of x+y—z is not used by
any operation other than x+y—... in n’, and for each branch of n’, z is either set in the
branch or is dead at the target of the branch, then z can be used instead of the brand
new register z’ (this obviates the need for the z’—z copy operation). Many of such copies
will subsequently be eliminated through register coloring with coalescing ([3]) or dead
code elimination.

The example in Figure 2 shows how the operation x+y—z is moved from instruction
L2 to the left branch of L1. Since there is a copy operation x’—x in this branch of L1,
the operation x+y—... has been modified as x’+y—.... Also, the destination register z
of x+y—z has been renamed as z’, since the old value of z cannot be destroyed (the old
value is needed by another operation, namely, A(z)—y).

Other enhancements have also been made to move-op in our implementation for reduc-
ing pathlengths, such as compile-time disambiguation of memory references for moving
loads above stores, and a “combining” feature ([6}), which removes flow dependences
between seemingly dependent ops; e.g. y>10—ccl can move to a predecessor containing
x+2—y, as x>8—ccl.

5. Enhanced Pipeline Scheduling Algorithm

We will now describe enhanced pipeline scheduling. The version described here applies to
a single inner loop for simplicity. The algorithm takes a global list (the instruction list in
the previous section) of VLIW instructions “prog”, which is initially sorted in depth-first
order ([1]), as input, and modifies “prog” so it becomes parallelized.

220

procedure enhanc

for each instruc
let fence= {ent1
while fence is 1
for each inst
£i11(n)

let newfence:

Remove all :
Append all 1@
For all n i1
fence= newfe
end while
end enhanced_pij

As far as correc
constrained compa
such as one based -
compaction algorit

procedure £ill:

/* This procedu:
operations and 1
resource constr:
prog. When movi:
instruction n’ ¢
in prog from n’
moved up to n o1

end fill

Enhanced pipe
paction algorithm
serving compactios

scheduling {[11])).

procedure enhanced_pipeline_sched()

for each instruction n in prog do filled(n)=false
let fence= {entry imstruction of prog}
while fence is not empty do:
for each instruction n in fence do
£i11(n) /* move to n operations in prog
that are below n, subject to resource constraints */

let newfence= {s | (exists n in fence)
[s is in prog and
8 is not in fence and
not filled(s) and
s is a successor of n and
s occurs after n in progl}

Remove all n in fence from prog
Append all n in fence to the end of prog
For all n in fence, set filled(n)=true
fence= newfence

end while

end enhanced_pipeline_sched

As far as correct operation of enhanced pipeline scheduling is concerned, any resource-
constrained compaction algorithm for acyclic programs would do in place of fill(n) here,
such as one based on [6]. We will not give the implementation details of our acyclic code
compaction algorithm since this is beyond the scope of this paper.

procedure £ill(n)

/* This procedure modifies the global list prog. Moves all
operations and tests which can be moved to n (subject to

resource constraints), from instructions below n in the list

prog. When moving operations and tests from an already filled
instruction n’ to the fence instruction n on a given upward path p
in prog from n’ to n, either all operations and tests in n’ are,
moved up to m on that path p, or n’ is left intact. */

end f£ill

Enhanced pipeline scheduling is clearly correct or semantics preserving, if the com-
paction algorithm used by “fill” is semantics preserving (an example of a semantics pre-
serving compaction algorithm would be one that uses core transformations of percolation
scheduling ([11])). To see informally why enhanced pipeline scheduling should terminate

221

for an inner loop, notice that once an operation is placed in a fence instruction and the
instruction is marked filled, that operation will always end up in instructions that are
marked filled at the end of each iteration of the enhanced pipeline scheduling loop. Since
the new fence at the end of each iteration has to come from instructions that are not
marked filled, there will eventually be no more operations left to form such unfilled in-
structions, and the fence will be empty. Rigorous proof of this claim will of course require
a detailed description of basic compaction algorithm “fill,” which is omitted here.

6. A Parallelization Example

We will now give an example of the application of enhanced pipeline scheduling. Consider
the following loop:

for(i=0;i<n;i++)
{if (£(x)<k) x=h(x); else x=g(x);}

where f, h and g are single cycle operations.

In the following examples, we will use the notations “opl, op2, ..., goto label”, or
“opl, 0p2, ..., if ccl (instrl) else (instr2)” to represent the instruction trees of our VLIW
machine; we hope the correspondence between this notation and the instruction-trees will
be obvious to the reader. The input for the enhanced pipelining algorithm (the initial
value of prog) is a set of sequential tree-instructions for the loop, where each instruction
contains at most one conditional branch or one operation:

loop: i<mn->ccO, goto L2
L2: if not ccO (goto exit) else (goto L3)
L3: f£(x)->t, goto L4
L4: t<k->cci, goto LS
L5: if not ccl (goto L7) else (goto L6)
L6: h(x)->x, goto L8
L7: g(x)->x, goto L8
L8: i+1->i, goto loop
exit: c¢cO,cci,t,i are dead in here;
x is live in here.

Prog after filling the first fence = {loop}:

loop: i<n->ccO, f(x)->t, g(x)->x’, h(x)->x’’, i+1->i, goto L2’
L2’: if not ccO (goto exit) else (x’’->x, goto L4’)

L4’: t<k->ccl, goto LB’

L5’: if not ccl (x’->x, goto loop) else (goto loop)

Now the current fence {loop} is removed from prog and appended to the end of prog.
The next fence is {L2’}, which, when filled, results in the following state in prog:

222

L2?: if not ccO
else (x’’~
t<k-

i<n~

£(x’

glx’

h(x’

£(x’

g(x’

h(x*®

i+1-

goto

L5’?: if not cc
else (t’—>
loop: i<n->ccO0,

Then L2 is ta
result in prog (aft

/* let xj= valu
/* it. 0 comput
loop: i<n->ccO,

L2’: if not cc
else (x*’
t<k-

i<n-

f(x’

glx’

h(x’

£(x’

glx’

h(x’

i+i-

goto

/* invariant as
(j=0 the fir
x=h(x(j))
x’=g(x(j))
t=£f (g(x(j)))
x’? ’=E(S(X<J
x’? =h(g(x(j

L2’: if not cc0 (goto exit)
else (x’’->x,
t<k->ccl,
i<n->ccO,
£(x’)->t,
g(x’)->x”’
h(x’)->x”
£(x?’)->t’
g(x)))_>x))1)
h(x”)->x””’
i+1->3
goto L5’’)
L5’?: if not ccl (x’->x,x’’’->x’, goto L2’)
else (t’->t, x’?’’=>x?, x’??’?~>x"’, goto L2')
loop: i<n->cc0, £(x)->t, g(x)->x’, h(x)->x’’,i+1->i, goto L2’

Then L2’ is taken to the bottom of prog and the new fence {L5”} is filled. The final
result in prog (after taking L5” to the end of prog) is given below, with comments:

/* let xj= value of x before iteration j */
/* it. 0 computes f£(x0),g(x0), h(x0) */
loop: i<n->ccO, £(x)->t, g(x)->x’, h(x)->x’’, i+1->i, goto L2’

L2’: if not ccO (goto exit) /* it. O exits with x=x0 */
else (x’’->x,
t<k->ccl, /* it. 0 computes f(x0)<k =/

i<n->cc0,

£f(x’)->t, /* ver. A of it. 1 =/
g(x’)->x’’’/* assumes x1= x’ = g(x0) */
h{x?)->x’

f(x?’)->t’ /* ver. B of it. 1 */
g(x??)->x’?? /* assumes xi=x’’=h(x0) =*/
h(x”)—>x””’

i+i->i
goto L5’)
/* invariant assertions before execution of L5’’ for j=0,1,... *

(j=0 the first time) t’ =f(h(x(j)))
x=h(x(j)) = gz
x’=g(x(j)) x'' = h(h(x(3N))
t=£(g(x(§)) i = i(+2)
x’? =g (g(x(3))) " eel = (£(x(3§))<k)
x’’ =h(g(x(j))) cc0 = (i(j+1)<n) =/

223

L5’?: if not cci (x’->x, /* this branch taken if xi=x’=g(x0) */
x’ 1 ->x?,
if not ccO (goto exit) /» it. 1 exits with x=x1%/
else (x’’->x,
t<x->ccl, /* it 1. computes f£(x1)<k */
i<n->ccO,
£(x???)->t, /* ver. A of it. 2 assumes */
g(x))))_>1;);/* xz::l))=s(xl) */
h(z”’)->x”
£(x?)->t’ /* ver. B of it. 2 assumes */
glx??)=->x?27 /* x2=x’’=h(x1) */
h(x”)->x””’
i+i->1
goto L5'7))
else (x’’’’->x’, /* this path taken if x1=x=h(x0)#*/
if not cc0 (goto exit) /* it. 1 exits with x=x1 »/
else (x’?’?’->x,
t’<x->ccl, /* it. 1 computes £(x1)<k */
i<n->ccO,
£(x’???)->t, /* ver. A of it. 2 assumes*/
g(x””)->x’”/*x2=x”"=g(x1) */
h(x””)—>x”
£(x?????)->t? /* ver. B of it. 2 assumes */
S(x)»)»))_>x;;)» /* x2=x’’??'=h{x1) */
h(x””’)->x”"’
i+1->1
goto L57’))

The resource requirements for the largest instruction L5” are: 4 way branching, 16
arithmetic/compare units, and 5 copy units.

The enhanced pipeline scheduling technique parallehzes this loop optimally (one iter-
ation/cycle), in an interesting manner. Let x0, x1, ...be the value of x at the beginning
of iteration i = 0, 1, ...of the given loop.

In the first cycle (loop) of the code produced by enhanced pipeline scheduhng, iteration
0 computes f(x0), and both of h(x0) and g(x0), to make optimal preparanon for both of
the paths that might be taken by iteration 0.

In the second cycle (L2"), iteration 0 starts evaluating f(x0) < k while two versions
of iteration 1 are started, each of which computes f(x1), h(x1) and g(x1). One version of
iteration 1 uses the value of h(x0) as x1, and the other version uses g(x0) as x1. Here we
do not know which version of iteration 1 will be the correct one, since f(x0) < k is not
evaluated yet, so we proceed on both paths.

Finally, in the third cycle (L5"), the value of f(x0) < k becomes available for iteration
0, and the decision is made as to which value, h(x0) or g(x0), will be assigned to x in
iteration 0. The version of iteration 1, which made the incorrect assumption about the

224

i
¢
i
{
}
i
i
|
i
|
{

path taken mac
iteration 1 star
of which evalu:
version uses g(:
steady state.
That is, for
ecution of L57.
started version
starts computi
pute f(x(j+2)),
another versior
therefore allow:
The salient
values are assi
On at least one
is shorter than
path taken by
root finding by
The resourc
by A.K. Uht (]
([12]), about t
techniques. Frc
of the depende
not input depe
such loops opti
The enhanc
Although in ge
of such loops, i
by enhanced p
resources.

7. Compar

Aiken and Nicc
pipelining of lo
number of tim
starting from t.
is another instr
the meaning of
perhaps that t]
are then redire

This compe

should be a lix

path taken made by iteration 0, is abandoned. At the same time the surviving version of
iteration 1 starts to evaluate f(x1) < k, and two versions of iteration 2 are started, each
of which evaluates f(x2), h(x2), and g(x2). One version uses h(x1) as x2, and the other
version uses g(x1) as x2. The code will then branch back to instruction L5”, which is a
steady state.

That is, for j = 0, 1, 2, ..., the following simultaneous events happen in each ex-
ecution of L5”. Iteration j makes its choice of path to take, one of the two previously
started versions of iteration j+1 is abandoned, the surviving version of iteration j+1
starts computing f(x(j+1)) < k, and two versions of iteration j+2 are started that com-
pute £(x(j+2)), h(x(j+2)), and g(x(j+2)): one version using h(x(j+1)) as x(j+2) and
another version using g(x(j+1)) as x(j+2). The enhanced pipeline scheduling technique
therefore allows one iteration/cycle (optimal) execution of this loop.

The salient properties of this loop are: 1) iteration j has multiple paths where different
values are assigned to a variable x, which is always used by the next iteration j+1. 2)
On at least one path in iteration j, the dependence chain to compute the new value of x
is shorter than the dependence chain to compute the condition code that determines the
path taken by iteration j. Loops for some practical problems such as binary search, or
root finding by bisection method fall into this category.

The resource requirements for the optimal parallelization of such loops were analyzed
by A.K. Uht ([14]), in an attempt to disprove a previous claim by Riseman and Foster
([12]), about the excessiveness of the resource requirements for such eager evaluation
techniques. From polynomial to exponential resources are required, in terms of the length
of the dependence chain to compute the condition code. The resource reguirements are
not input dependent. But the problem of actually finding the algorithm to parallelize
such loops optimally was left open by Uht.

The enhanced pipeline scheduling algorithm provides one answer to this problem.
Although in general the resource requirements may be exponential for optimal execution
of such loops, in many serial loops of systems/commercial code, the schedules generated
by enhanced pipeline technique can be small enough to fit within a VLIW with large
resources.

7. Comparison to Previous Work

Aiken and Nicolau’s perfect pipelining technique ([2]), is a different approach to software
pipelining of loops with tests. In this approach, the loop is first unrolled for a sufficient
number of times and compaction is made. Then on each path of the compacted code
starting from the entry instruction, a search is made for an instruction n such that there
is another instruction n’, not necessarily on the same path, which is equivalent to n. Here
the meaning of equivalence is: starting in n gives the same result as starting in n’, except
perhaps that the iteration trip counter i has to be incremented. All edges that go to n
are then redirected to n’.

This compaction algorithm, however, must be well-behaved in the sense that there
should be a limit on the number of cycles (we call gaps) between the execution of opera-

225

tions of the same iterations. Having no gaps between operations of an iteration seems to
allow reasonable convergence rates in perfect pipelining (this is the simple rule of Aiken
and Nicolau). If large gaps are allowed, the number of unrollings required to guarantee
convergence of the algorithm on all paths must be increased.

Enhanced pipeline scheduling is an outgrowth of pipeline scheduling ([4]), and allows
gaps between the operations of the same iteration without sacrificing the convergence
time. Gaps between operations of the same iteration can be crucial for optimal perfor-
mance. Namely, there are loops where iteration n+1 has to start as soon as its first
operation can start, and then potentially wait. This is the only way we can achieve good
performance if the following optimistic assumption holds: iteration n and n+1 will both
take paths such that iteration n will provide data in time for subsequent operations of
iteration n+1, and iteration n+1 will continue without pausing. But if the optimistic
assumption fails and iteration n+1 orn takes a path where the data needed for iteration
n+1 is not yet available from iteration n, subsequent operations of iteration n+1 may
have to pause and wait until data is available (they may wait till the end of iteration n).
Thus allowing large pauses (or gaps) does increase performance in loops with conditional
jumps.

M. Lam ([9]) has also designed an algorithm for pipelining loops with tests, which
is based on an extension of software pipelining of IFless loops. This technique pads out
the shorter path of an if-then-else with no-ops, and subsequently treats the aggregate
if-then-else as a single operation that is moved as a unit, thus allowing the use of the
basic algorithm for software pipelining of IFless loops.

In general, however, two paths of an if-then-else may imply two different dependence
cycles and two different iteration issue rates, and treating the if-then-clse as a single unit
entails accepting the worst of the two different iteration issue rates.

Enhanced pipeline scheduling, like pipeline scheduling ([4]), does not make such an
assumption and generates schedules with variable, data-dependent iteration issue rates.

The optimal schedules produced by enhanced pipeline scheduling on many practi-
cal examples lead to the interesting question whether enhanced pipeline scheduling will
achieve optimal performance on arbitrary loops.

Achieving time-optimal performance on arbitrary loops with tests, however, even
when assuming unlimited resources and limiting ourselves to one iteration per cycle, is
impossible for any software pipelining algorithm, as it was proved in [13]. This proof pro-
ceeds by demonstrating a loop whose optimal execution requires an amount of resources
which is input-dependent; in particular, the number of paths on which speculative execu-
tion of an operation must be performed increases with the input. Thus, opjimal execution
cannot be achieved by any finite VLIW program.

Despite its suboptimality in general, however, our enhanced pipeline scheduling gives
good results in practice as shown in the next section.

226

8. Some Ber

We have run seve
at the IBM Toky
The intermediate
the frontend, wh
and inlined subrc
by our VLIW pa
scheduling techn
register transfer

constraints used

and unlimited ov

In Figure 3, v
machine which ¢
or store in a sin
VLIW machine
some of the Stan
the simulation t:
do the following:
for a matching e
array).

We note hers
into our compil
unrolling feature
hancement using

9. Conclusi

We have present
tively extract fin

e e e - e et e i et e e

s g

Program Name Sequential Parallel

Count Count | Ratio
Sieve (size=15, it=1) 419 75 5.6
Sibubble (size=10) 894 115 7.8
Siperm (size=3) 747 99 7.5
Siquick (size=10) 1025 209 4.9
Sitree (size=15) 2474 436 5.7
Mergec (size=20) 403 46 8.8
Inserc (size=10) 1145 197 5.8
Pointerc (size=20) 169 26 6.5
Minmaxc (size=171) 1047 96 | 10.9

Figure 3: Benchmark results

8. Some Benchmark Results

We have run several examples through our VLIW parallelizing compiler now operational
at the IBM Tokyo Research Laboratory and at the IBM T.J. Watson Research Center.
The intermediate code produced by the PL.8 compiler from C programs were fed to
the frontend, which translated the intermediate code to VLIW sequential RISC format
and inlined subroutines. Then this sequential RISC code was automatically parallelized
by our VLIW parallelizing compiler that implements the enhanced pipeline-percolation
scheduling technique. Finally the parallel code was assembled and simulated on our
register transfer level simulator for our VLIW architecture (written in C). The resource
constraints used here were 16 arithmetic operations, 16 loads or stores, 16 way branching,
and unlimited overhead copy operations (generated by the compiler during compaction).

In Figure 3, we give the number of RISC instructions executed in the abstract RISC
machine which can do one arithmetic operation, or one conditional branch, or one load
or store in a single instruction, and the number of VLIW instructions executed in the
VLIW machine after the RISC code has been compacted. The programs used include
some of the Stanford integer benchmarks (with array bounds reduced in order to decrease
the simulation time), and some other sequential-natured C programs (that respectively
do the following: merge two sorted arrays into a third sorted array, insertion sort, search
for a matching element in a list of linked records, find the minimum and maximum of an
array).

We note here that unrolling feature (unrolling innermost loops) can be incorporated
into our compiler to get a further performance improvement. For the 'details of the
unrolling feature, other new techniques such as combining, and further performance en-
hancement using these techniques, readers should refer to [10].

9. Conclusions

We have presented the enhanced pipeline-percolation scheduling technique that can effec-
tively extract fine-grain parallelism from general nested loops with unpredictable branches.

227

We have also described a VLIW architecture that has the architectural features to extract
parallelism from highly sequential-natured code, and that supports the code generated
by the enhanced pipeline-percolation scheduling technique. The approach seems to be
robust, and thus it seems to be a significant step toward building compilers and hardware
for parallelizing arbitrary sequential applications.

10. Acknowledgements

We would like to thank the other members of the VLIW group in IBM Thomas J.
Watson Research Center, in particular Franco Gasperoni, and Uwe Schwiegelshohn, for
helpful discussions on the compilation techniques and architecture described here. We
also appreciate Tsutomu Kamimura and Susan Yeh of IBM Tokyo Research Laboratory
for reading a preliminary draft of this paper. Parts of the parallelizing compiler currently
being used were initially coded by Mauricio Breternitz.

References

[1] Aho, A., Sethi R., and Ullman, J. [1986]. Compilers Principles, Techniques, and
Tools, Addison-Wesley.

[2] Aiken, A. and Nicolau, A. [1988]. Perfect Pipelining: A New Loop Parallelization
Technique. In Furopean Symposium on Programming, pp. 221-235, Springer-Verlag,
Lecture Notes in Computer Science No. 300.

[3] Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., and
Markstein, P.W. [1981]. Register Allocation via Coloring. Computer Languages 6,
pp. 47-57.

[4] Ebcioglu, K. [1987]. A Compilation Technique for Software Pipelining of Loops with
Conditional Jumps. In Proceedings of the 20th Annual Workshop on Microprogram-
ming, pp. 69-79, ACM Press.

[5] Ebcioglu, K. [1988]. Some Design Ideas for a VLIW Architecture for Sequential
Natured Software. In Parallel Processing (Proceedings of IFIP WG 10.3 Working
Conference on Parallel Processing), M. Cosnard et al. (eds.), pp. 1-21, North Hol-
land. '

Ebcioglu, K. and Nicolau, A. [1989]. A Global Resource Constrained Parallelization
Technique. To appear in Proceedings of 1989 International Conference on Supercom-
puting, Crete, Greece.

6

—_—

[7] Fisher, J.A. [1983]. Very Long Instruction Word Architectures and the ELI-512.
Proceedings of the 10tk Annual Symposium on Compuier Architecture, pp. 140-150.

[8] Fisher, J.A. [1984]. The VLIW Machine: A Multiprocessor for Compiling Scientific
Code. IEEE Computer 17(7), pp. 45-53.

228

e PR A T 5 R o

[9] Lam, M. 1
Machines. 1

guage Desig

[10] Nakatani, 1
VLIW Ard
Microprogr

[11] Nicolau, A.
85-678, Dey

[12] Riseman, E
Conditiona

[13] Schwiegels}
allelization.
gramming

[14] Uht, A. K
Proceeding:
pp. 230-23°

[15] Warren, S.
MacKay, A
11974, IBM

[9] Lam, M. [1988]. Software Pipelining: An Effective Scheduling Technique for VLIW
Machines. In Proceedings of the SIGPLAN 1988 Conference of Programming Lan-
guage Design and Implementation, pp. 318-328, ACM Press.

[10] Nakatani, T. and Ebcioglu K. [1989]. “Combining” as a Compilation Technique for
VLIW Architectures. To appear in Proceedings of the 22nd Annual Workskop on
Microprogramming and Microarchitecture, ACM Press.

[11] Nicolau, A. [1985]. Percolation Scheduling: A Parallel Compilation Technique. TR
85-678, Department of Computer Science, Cornell University.

[12] Riseman, E.M. and Foster, C.C. (1972]. The Inhibition of Potential Parallelism by
Conditional Jumps. IEEE Transactions on Computers, C-21(12), pp. 1405-1411.

[13] Schwiegelshohn, U., Gasperoni, F., and Ebcioglu, K. [1989]. On Optimal Loop Par-
allelization. To appear in Proceedings of the 29nd Annual Workshop on Micropro-
gramming and Microarchitecture, ACM Press.

[14] Uht, A. K. [1988]. Requirements for Optimal Execution of Loops with Tests. In
Proceedings of 1988 International Conference on Supercomputing, St. Malo, France,
pp- 230-237, ACM Press.

[15] Warren, S.H., Auslander, M.A., Chaitin, G.J., Chibib, A.C,, Hopkins, M.E., and
MacKay, A.L. [1986]. Final Code Generation in the PL.8 Compiler. Report No. RC
11974, IBM T. J. Watson Research Center.

229

