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Abstract

The usa of reqisters 'instead of mcmorgl operands is
cut r,ffectiur: pc:rforntance uthanc:cntertt as utell o,s a
powe.r' sauin,q mechanism,, but com,p'iLers sttll atnnot
allocatc many of thc me,rnory re,fere.nces of a. prograrn.
into rtgi.sters, for two fun.damr,rftal reasons unrelatr:d
to thc size of the reqtster fik:.: (1) dgnamicaLly uury-
tng knrl/store operand addresses, and (2) inhercnt
limitati.ort,s of cotnpile timc. alias urr.alysis. Prcu'iouslu
propostrl architu:tu,ral features such as CReos [l] or
IA-6/t ALAT [10] meclnnisms huue only addressed
thc ol'iasrng porl.ion of th.c two fundam,erfial znryedi-
nta.rt,ts.

In thts paper-, ue h.aue des'iqned an ideal "li,mit reg-
iste.r ollocation rnachine,' as a th,e.oretical tool to
qa,in insiqht in.to the esseTlce of the req'ister alkx:u-
tiort, Tnoblr'-m, arLd to address both of the furtdame.rftal
impedirn,e.nts. The. h,rnzt machine uses onLy register
oyterations in tts ISA (perfornr,s rnenlorll operation,s
onhl for o,utomatic registcr spiLls ard filLs) and has a
unique capabilttu to modify the regtster f,elds of in-
sttttt:tions at run tine. Based on th,e etperience uith
this ltnnt ntachirte, we. haue also proposed:

(1) A software em,ulation. method for the lim'it ma-
chine. which, aJter perfortnr,ng optrmtzations such
as par-tial redundancy elimination, can result irt
efficien,t register allocat'ion oJ m.emory references

for loads/stores wtth dgnamicallg uarying addresses,
which couLd not be reg'ister-allocated with ang of the
preutous techniques.

(2) A hardware implententat'ion of concepts from the
lzntr.t rnachtne, bg adding a d.gnamically changing
operand. locati,on, prediction field ( "Predicted Reqister
Nuntbcr" ) to each load/store instru.ctiort, uhich can
improue the perforrnance of data'Ll caches by spec-
ulat'iuc,ly accessing the predicted operand location in
the D-L1 cache array directly (as if it were a "reg-
ister' file"), as soon as the instruction is aaa'ilable,
without first going through the base register read, ad-
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dres s arithmet'ic, addrcs s translation, arr.d as s ociatiu e
search phases.

1 Introduction

R.cgistcr alkrcation rlnablcs us to piacc thc contcnts of
a mcrnory addrcss X ilrto a rcgistcr r and allows us to
rcfcr to thc <:ontcnts of X (pcrhaps a 32 or 64 bit ad-
drcss, obtaincd by acccssing a ba^sc rcgistcr, possibly
pcrformirrg addrcss a,rithmctic, pcribrming virtual to
rcal translation and thcn acccssirrg an associativc
cachc) by its currctrt ptrysical location r (a short, pcr-
haps 5-8 bit, rcgistcr numbcr, dircctiy cncodcd insidc
ttrc instruction) . By placirrg frcqucntly rcfcrcnccd
mcrrrory variablcs into rcgistcrs, and in cffcct corn-
prcssing thc addrcss tracc of a prograrn by rcplacing
full-width addrcsscs of load/storc opcrarrds with rcf-
crcrlccs to registcr rrumbcrs. a compilcr can achicvc
significant performarrcc bcncfits, as wcll as powcr rc-
duction, comparcd to using a standard mcmory hi_
crarchy acccssed through loatls and stores.

But prcciscly how docs a compiler dccidc whcrr thc
contents of a mcmory location X can be allocatcd
in a register r? Space limitations prcvent us from
enumcrating the many alternative rcgistcr allocation
rescarch approachcs of thc past, c.8., 12,3, 11]. In-
stcad, we will prcsent here what wc believe to bc a
useful canordcal abstraction of the register allocation
problcrn. To separatc the basic feasibility of register
allocation lrom the restrictions coming solely from
the size of the rcgister filc, we will a^ssume that we
havc an unbounded number of registers in this ab-
straction. Later, irr Scction 2.2, we wil l prcscnt re-
suits that show thc impact of bounding the nurnber
of rcgisters.

As a concrcte example, consider the C source code
in Figurc 1, which we will use as a running exampie
throughout the paper, and the corresponding origi-
nal assembly codc in Figure 2. The L 112=(16) and
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ST r12, (16) load/storc instructions in Figurc 2 cor-
rcspond rcspcctivcly to the rcad and write of *X in
Figurc l. wherc registcr 16 is assumed to contain the
address X. Thcse instructions are markcd as "candi-
datc" bccausc ttrey are candidatcs for rcgister allo-
cation. Let us first assume that X and Y will nevcr
be ah,ased i.e., ncvcr refer to thc samc location. In
this casc, it is dcsirabie to allocatc thc contents of
memorv location X in a registcr across all iterations
of thc do while loop. Thc assembly code in Figurc 3
achicves this goal by introducing a nc',1' rcgistcr, rX,
throughout thc codc fragmcnt. This transformatiorr
is csscntially cquivalcnt lo scalar repLar:ement ll. 711.
Starting frorn thc vcrsion of thc codc in Figurc l), thc
compilcr can thcn pcrform copy propagation (or just
convcrt thc program to SSA form and back) to clim-
inatc all or rnost of thc LR statcmcnts. Hcnr:c, vcry
cfficicnt thrcc-rcgistcr opcrations can bc obtailcd.

voj-d sub( int  *X, int  *Y) {
do{

i f  ( . . . )  {  Y++;1
*X= (*X) + (rY);

]  whi le( . . . ) ;

]

Loop:

BC
A

L1 :  L

Figure 1. Original  C code

/ /  ot  eolrY:

/  /  ro=j-nLt ia l  X,r3=ini t ia l

L1

r3=r3,4 11,3=y=V+7
.12=(16) / /  r72=(+X) refers to X

//  - -  cardidate

t4=(r3) , ,  t4=(*Y) refers to ?

r1"2=rL2,r4 /  /  r t2=(+X)+(*y)

r12,(16) / /  (+X)=r72 refers to X

// -- catdi,date

/ /  L tx=(r6);  LR 16'=16
Loop:

BC L1
A r3=r3,4

L1: LR r l2=rX
L r4=(r3)
A r I2=t l2, t4
LR rX=rL2 // cat be optinized as

// A rX=rX'r{

; ;  roop
ST rX,X / /  SI  tx,(r6 ' )

Figure 3. After allocating contents of mem-
ory location x in register rX

addrcss X throughout thc cxccution of thc loop, not
thc contents of urultipic rncmory addrcsscs at thc
samc timc.

Thc lcgaiity corrditiorrs for canortical reqistc.r alloca-
tion cant bc statcd rnorc gcncrally as follows:

Conditions for canonical register allocation.
Ciuen u sirqle-erttru code fraqmcnt (region), a mem-
ory o,ddrcss X, and n carrdidatt: sct o/ load/store tn-
structions that access fiLe,rnory uddress X, the canott-
ical rcgistcr allocation codc transformatiorr defined
Ix:low wtlL bc legal if on. euery exct'ution thc foLlowing
tuo conditions an: satisfied.:

1. All members of thc r:andidate set oJ loads and
stores must re.t'er onL11 to X. and

2. Any loads/stores outside the candzdate set (but
znside the code fragment) rnust neuer refer to X.

In order to iink thcsc conditions to thc tcrminology
of fundamcntal impcdimcnts described in thc at>
stract, wc can sav that violations of condition (1)
corrcspond to thc "<iynarnically varying ioad/storc
opcrand addresscs" ar)d that thc violations of con-
dition (2) correspond to thc "inherent limitations of
the compilc timc alias analysis" (the Iatter because
compilers oftcn cannot prove that pointer rcferences
outside thc candidatc set will nevcr refer to X).

The canonical register allocation code trans-
formation. The canonical register allocation code
transformation carl be deJined as follows for a giuen
single-entrg code fragment, memory address X, and
candidatc seti

o Pick a currentlE unused reg'ister rX. Change
the reJerences to memoT'A in the candt,date
set of load/store instructions (L rt=. . . , ST
rt, . . . ) i,nto references to the register rX (the

L rX=X

L
A
DI

BC loop

Figure 2. Initial assembly code. L-load,
ST : store, A : add, BC : branch cortdttionally

Now consider thc casc wtrcn Y an<l X may point to
thc samc iocation during somc itcration of the whilc
Ioop. In this casc, thc transformation is illegal be-
cause thc load of (*Y) in the loop will not sec the
updatcs to address X in memory and will only load
thc incorrect, old contents of Y (the updates arc done
only to thc register rX in the transformcd loop).
Also, if thcre is an instructiorr in ttre loop that aiters
thc base register 16 of the instructions L r12=(16)
and ST r12,(16), making 16 point to an address
different than the initial value of 16 (X) during some
loop itcrations, the transformation is again incorrect:
this is because a given registcr such as rX can rep-
resent (i.e., cache) the contents of only one memory
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loads and stores in the candidate set thus becom,-

ingLH rt=rX, LR rX=rt,  respectiaely.)\

. Load the contents of X into rX just beforr: en-

tering the transformed code fragment, and store

it back to address X just after etiting the trarts-

formd codc fragment.z

The initial load and final store mcntioned abovc havc

intcrcsting irnplications otr cxccption sematics, bc-

causc thcsc instructions can lcad to cxccptiorrs that

wcrc not occurrirrg the thc original codc. Analysis
tcchniqucs to idcntify cascs whcre thcrc r,r'ill trc ncr

cxtra cxccptions dcspitc thc spcculativc codc nro-
t ion, havc bccn describcd in [6],  in th<. r 'ontcxt of
spcculativc codc motion out of loops. Wc u'ill pro-

1losc spccuLatiue Loads and stores for accornplishlng

thc initial load and final storc of thc r:anonical rcg-
istcr al location trarrsforrnation, which prr:st 'rv<. t l ro

cxccptiott bchavior of thc origirrai J)rogr;un. Spc<'-

ulativc loads fronr a non-cxistcnt acltlrcss vi<:l<l tlrc
spccial L valuc without r:zrttsing an cxr:cpti<>n (sirrr i-

lar to thc I valuc (33rd bit) in [1'1] or NaT vi i l rr t .  i rr

IA-64 [10]).  and spcculat ivc storcs t<t a rrorr-cxistr.rrt

addrcss arc trcatcd a^s I lo-ops. Whcn t, lrr '  ln(.rn()r l
addrcss is val id, thc spcculat ivc lcla<ls :rrr<l stor<.s lrr,-

havc as rrorrnal oncs. AIso LR rt=rX or LR rX=rt

opcratiuls for a spcculat ivcly loaticr l  rX. rrrrrst ir lso

f irst clxrck i f  rX ls I ,  and rtr, isc :rtr  cx(:( ' l ) t iorr i l  s,r.

On cxist ing rnachines such a^s thc IA-( i '1. syrr. t ' rr l i r t ivc
loads and storcs and trapping LR's carr  l r t , r . r r r r r l i r t t ' r l

t ry macro-cxpansion, an<l t trcn optinriz<'t l  i r> l ls l l i r l .

all irr softwarc. For sirrrplicity, rr"'c -*'ill iussrrnrl irrr
cxccption-frec cnvironmcnt in thc rcst ol l  l t r  pirpcr .

' Ihc two condit ions l istcd abovc arc <:crt ir inlr '  .sr/ fr

cientto cnsurc that thc canonoical rcgistcr ;r l iocirt  rorr

transformatiorr is lcgal. In thc appcn<lix. rvt provir l l

a proof that thc condit ions arc both n( '( ' ( ' :sirr l  i rrr( l

suf l icicnt. Howcvcr, to provc thc ncccssit .r '  r 'orrr l i l  iorr.

i t  is neccssary to assumc that no slrcrcial tr irrrsf irrrrrrr

t ions arc pcrformcd that rely orr spccial prrrpt.rt i t ,s

of a codc fragrncnt, such a,s (1) lctting a kra<l orrt-

sidc of the candidatc sct rcfer to X durirre t lrc cr><lt

fragmcnt, when X is read-only throughout thc co<l<,

fragment, or (2) aliowing a mcmber of thc candidatc

sct to refer to two distinct addresses X and Z whcrr

addresses X and Z have equal contents.

Scalar variables of a proccdure allocatcd orr thc stack
(automatic variables), whose addrcss is not takcrr.

tr iviai ly satisfy condit ions (1) and (2), and this

mcthod could be used for traditional'register allo-
cation as done by compilers (which can of coursc be

done by many other, morc direct methods). Also,

'Herc, LR x=y means: copy register y into rcgistcr x.
zNote that optimizations can later remove these initial

loads and final storcs, when they arc not needed.

whcn thc conrpiler can prove tlicsc two conditions
for a set of loads/stores by sophisticated interproce-
durai alias analysis. e.g. as in [8], many other kinds
of variables (c.g., ori thc heap or in thc static cxtcr-
nal variabics arca), can bc allocatcd in registcrs as
weil. Notc that thc scopc of thc codc fragnrcnt will
in gcneral be changed whiic rnaking rcgistcr alloca-
tion dccisions for a procedurc body. For cxamplc,
registcr allocation of an array clcment A [i] in an
inncr loop for( i=1. .N){ .  .  .At i l  .  .  .A[ i ] .  .  .At i l ]
can bc achicved by considering only thc for loop body
a^s thc codc fragmcnt [13], whilc t]rc cntirc proccdurc
body can bc usccl as thc codc fragmcnt for rcgistcr
allocation of an autornatic scalar variablc. whosc ad-
drcss is not takcrr.

Whcn condition (l) is guarantccd, sincc, c.g., cach
mcmbcr of thc carxlidatc set uscs thc samc basc rcg-
istcr that is unchangcd throughout thc codc frag-
rrrent, condition (2) can bc rclaxcd by using I'rardwarc
tcchniqucs such as CRcgs[4] or thc 14-64 ALAT [10]
nrccharrisrrr. Thcsc tcchniqucs tolcratc rcfcrcnccs to
X from outsidc thc carrdidatc sct of lcrads anri storcs.
if thcsc rcl-crcnccs arc irrfrcqucnt, and can tircrcforc
yrr:rform spcculativrr rcgistcr promotion of thc can-
clidatc sct. in thc prcscncc o[ pointcrs which causc
static alias analysis to fail.

?> tlatc, wc arc not awarc of any rcgistcr allocatiorr
rncthod that is ablc to ovcrcomc both of thc condi-
tions (1) and (2) simultancously. Thc prescnt papcr
aims to proposc novcl hardwarc and softwarc tcch-
rriqucs to ovcrcomc both of thc corrdit ions (1) and
(2).

In scction 2, u'c introducc a ncw dynamic vicw of thcr
rcgister allocation problcrn by delining a "limit rcgis-
tcr ailocation" urachinc, as a new theorctical tool for
gaining insight into rcgistcr allocation. This machinc
is abic to rcwrite rcgistcr ficlds of thc binary program
:rt run-timc, and forcc both of thc conditions (1) and
(2) to bccome truc as a rcsult of thc binary rcwriting,
it^s soon as thcy ccase to bc truc as a rcsult of dynam-
ically changing operand addresses in loads/stores, or
inherent limitations of static alias analysis. For cx-
ample, whcn a load instruction that was rcferring to
Y suddcnly starts rcferring to X, the corresponding
LR rt=rY instructiorr in the transformcd program
(wherc all loads and stores havc been convertcd to LR
opcrations) suddeniy starts using rcgister rX (con-
taining thc memory operand at address X) instead
of rcgister rY (containing thc mcmory operand at
addrcss Y), by binary rewriting. Inspired from this
ideal machine, we then proposc a new software em-
ulation technique and a new hardware technique for
aggressive register allocation: Scction 3 describes the
software emulation technique and scction 4 describes
thc hardware technique. Section 5 discusscs the re-
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Iatcd work, and section 6 concludes the paper. The
appendix provides a proofthat conditions (1) and (2)
arc both nccessary and sufficient for corrcct canoni-
cal rcgister ailocation, with thc given assumptions.

2 The limit register allocation ma-
chine

Having dcfinctl thc two ncccssary and sufficicnt con-
ditions for rcgistcr allocation. wc rrow dcfinc a iimit
rcgistcr allocation machinc that continuailv tracks
thc prograrn and cxploits all rcgistcr allocation op-
portunitics.

Wc first changc cach original load (L) and storc (ST)
in thc prograrn to ncw instructions l*, gf*, that
also contairr a ncw rcgistcr numbcr ficlcl callcd ncr (a
Named Cachc. Regisler), indicating arr cntry in a ncw
Named Cache Register (NCR) fi lc we arc introducing
to thc architccturc, as shown in Figurc 4.

0r i .g lna1 load/stores :
/ / I : instruct iou,  R:registers,  M: nemory
L r t=(rb) , / /R[I  . r t ] -MlRlI  . rb l l
ST rt , (rb) / /ttl[lr. rbl I =R [I . rt]

New instruct ioDs:
I  i  ?f  r . rh)  h^?

ST. r t ,  ( rb) ,ncr

Figure 4. Transformation of L, ST instruc-
t ions to L*,  sTr. .

The prccisc scmantics of L*, ST* arc shown in thc
pscudo-codc in Figurc 5.

Hcre wc arc adding to thc architccturc a r)ew rcg-
istcr filc structurc NCR - or Namcd Cachc Rcg-
istcr filc - cach of whosc cntrics havc thc thrcc
fi.elds: data, addrcss, and dirty bit. For now, as-
sumc that all that rnemory acccsscs arc. of word
sizc3. Thc NCR is a collection of singlc-cntry direct-
rnappcd cachcs, that onc can rcfcr to by namc (ncr
field) in arr instruction (hcnce thc namc Named
Cache Register). When thc access to thc singlc-
cntry direct-mappcd cache namcd by the ncr field
causes a "cache miss," then cntries in NCR need to
searchcd by address, similar to an associative cache
(the associativity is an implcrnentation issue which
also depends on the rcplacemcnt policy). Onc ob-
scrvation we could makc is that, when there is a

rPartword memory accesses, overlapping operands, and
different virtual addresses aliasing to thc samc nrcmory loca-
tion, are implementation issues that can bc added to the basic
NCR mechanism. We will not clutter thc current oresentation
with them.

Lini t  nachine iDstruct j .on execut j .on foop:
switch(I)  {  / / I  ts tbe D.ext  instruct ion to execute
. rso I  {  r t  I rh)  nar

i f  (R[I .1! ]  !=NCR[I .ncr]  .  addr)
{ I .  ncr=accessNCR(f alse,R E. rbl  )  ;  }

/  /  bere R[I . rb]==NCR[I .ncr]  .addr
R[I . r t ]=NCRlI .ncr l .data; ' . .  ;  break;

case ST+ r t , ( rb) ,ncr :
i f  (Rl I  . rb l  l=NCRlI .ncr l  .ad&)

{I  .  ncr=qccessNCR (true ,  R I I .  rb]  )  ]
/ / Dere K Ll . rDJ ==NUK LI . ncrl . aodr
NCRILncr l  .data = R[I . r t ]  ;
NCR[I .ncr]  .d i r ty=;11" '  . . .  ;  break;

defaul t :  <execute lnstruct ion as usual . ) ;  )

regist€rNunber acc€ssNcR(boot€ar is l l l r i te,  address y)  {
//rettJtrn am ncr representing the contents of
// tbe nenory address y
i f  (  (Exists registerNurb€r ry)  (NCR [ryJ .  

"UUr==y) 
)

{return ry;}
/ /  f ind e Dcr to evict
regj.sterNulber ry=chooseEvictable(NCR) ;
/ /  cr i te back i f  d i r ty
if (NCR [ry] . dj-rty) M INCR [ryJ . addrJ =HCX J.t] . o"t" '

/ / i l  a load, read in j : t ia l  value
i f  ( l isWri te)  NCRlryJ .Aata=M[y]  ;
NCRlryJ .addr=yi  NCR [ryJ .d i r ty=f31"" '
return ry;  )

In i t  ia l izat  ion:
for( I  :  a l l  L*,STi)  I .ncr=rNlJLL;/ /TNULL=0
for( i :1. .NCR'Iast)

{NCRli l  .addr=INVALID; NCR[iJ .d i . r ty=131"" '  1
//NCRlrNUfLl .addr is pema.DentLy INVALID
//-- does not Datcb my load/store address

hlrap-up:
for( i :1. .NCR' last)

{ i f  (NCRli l  .d i r ty)  MINCR[i ]  .addr l=NCRIi ]  .data; ]

Figure 5. Semantics of the limit register al-
location machine with L* , ST*

hit in thc singlc-cntry dircct mappcd cachc named
by the ncr f ic ld,  i .c .  NCR[I .ncr]  .addr==R[f . rb] ,
thc instruction L* rt, (rb) ,ncr pcrforms a rcg-
ister copy R [I . rt] =NgR [I . ncr] . data, which we
can abbrcviatc as LR rt=ncr, and the instruc-
tion ST* rt , (rb) , ncr performs a registcr copy
NCR[I  .ncr]  .data=R[I  . r t ] ,  which we can abbrevi-
atc a^s LR ncr=rt.

Optionally, for thc purpose of having a single uni-
form register filc (morc suitable for additional op-
timizations such as copy propagation) one could
map thc nortnal general registcrs R into a por-
tion of thc NCR rcgisier f i le structurc, such that
R[ i ]==NCR[1J .data,  i=0.  .31,  arrd wherc L* and
STr. instructions usc ncr numbcrs greatcr than or
equal to 32 (assuming there are 32 general purpose
registers).

The semantics givcn in Figurc 5 is perhaps best ex-
piained by an example, namely our running example
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in Figurc J. The limit registcr allocation rnachinc
will first initializc all L*, ST* ncr fields to TNULL.
Lct X0, Y0 be thc initial valucs of pointcr variables
X, Y, respectivcly, bcforc the whilc loop is cntered.
Supposc initially thc mernory address Y0 points to
thc word just bcforc X0. I.e., assurne X0==Y0+1 in
ternrs of C address arithrnctic. Assumc that dur-
ing thc first two iterations of thc while loop. Y stays
the samc (equal to Y0), but in thc third iteration, Y
gcts incrcmentcd in thc instruction A r3=r3,4, thus
bcconring cqual to X0.

l)uring iteration 1, assurnc that ncr nurnbcr rX is
choscn to reprcscnt thc mcmorl' location X0 by thc
accessNCR routinc, rvhcn thc first L* instruction (I1)
is cxccutcd. Also assurnc that rY is thc ncr rrumbcr
that is choscn to rcprcscnt rrcnrory addrcss Y0, dur-
ing thc cxccution of thc sccorrd f* (I2). Thc storc
instruction (I3) (which also rcfcrs to X0) wil l dis-
covt:r that ncr numbcr rX aircady rcprcscrrts addrcss
X0 ancl will start using rX as its ncr. Thc statc of thc
binary prograrn and thc contcnts of thc NCR rcgistcr
filc cntry nurnbcrs rX arrd rY :rrc sliowrr itr Figurc 6,
aftcr itcration 1.

Loop:

BC Ll

A r3=r3,4

L1: ( I1)  L* r12, (16) , r \  /  /LR r I2=rX

( I2)  L*

(13) ST*

//NCR [rx] . data= (+x0)

/ /NCR[rx] .addr=(X0)
r4,  ( r3) , rY / /LR t4=rY

,//NCR [rY] . data= (*Y0)

,//NCR try] . addr= (Y0)
r l2=r!2,r4 / /opt imize as A rX=rX,rY
r12, (16) , rX /  /LE rr=r l2

//NcR [rx] . 6"sa=x [r 12J

BC loop

Figure 6. Dynamic snapshot of code after
iteration 1

Iteration 2 gets executed uncvcntfully, whcre thc
ncr entries rX and rY are re-used by thc L*,
ST* instructions I1,I2.I3, without going to mem-
ory. (NCR[rX] .data is updatcd by thc ST* instruc-
tion I3). But in iteration 3, a change occurs as
shown in Figurc 7. Sincc the basc register r3 of
original second ioad instruction (I2) has bccn incrc-
mented (becoming X0 instcad of Y0), and since the
instructions I1, 13 have already started referencing
X0 and (*[Q) is already in an NCR register rX, i.e.,
(NCR[rX] .data==(*X0)) ,  thc L* instruct ion 12 is
rewritten to refcr to rX instead of rY. As long ers base
register of the second load 12 does not change again,
the itcrations can keep accessing rcgisters only, with-
out nceding to go to memory.

loop:
BC L1
A r3=r3,4

Ll :  ( I1)  L* 112,(16),rX / /LR r72=rX
(I2) L* r4,  ( r3)  , rX /  /LR r [=rX

(I3) STr

,/,/NCR trxl . data= (*X0)

,//NCR [rX] . addr= (x0)

r l2=rI2,r4 / /opt imlze as A rX=rX,rX
r12, (16) , rY'  / /LR rX=r l2

//NcR [rx] . data=R [r12]

bU .LOOD

Figure 7. Dynamic snapshot of code after
iteration 3

Whcn thc program (whilc loop in this casc) finishes,
NCR[rX] .data is writtcn into thc corrcsponding ad-
drcss NCRIrX].addr sincc it has becn ovcrwrittcrr
(dirty) . Noticc that thc limit rnachinc ha.s succcss-
fully donc rcgistcr allocation in our difficult codc cx-
amplc (t'hich is not rcgistcr allocatatrlc via cxistirrg
tcchrriqucs), using binarv rcwrit ing.

2,1 How the limit register allocator always
meets the two conditions

It is intcrcsting to discuss thc rclationship bctwccn
tlrc lirnit rcgistcr allocator machinc, and the two con-
ditions dcscribcd in thc introduction. At a givcn
point in thc cxccutiorr tracc, for a mcmory addrcss
X, lct C(X) bc thc sct of static load and storc instruc-
t ions dcf incd as i I  INCR[I .ncr]  .addr==X].  Thesc
instructions arc thc static loads and stores in thc
prollrarn whosc last oxccutions in the exccution tracc
rcferrcd to thc addrcss X. For a given rnernory address
X, lct  {10.  t r , . . . , tk l  be thc set  of  points (dynamic in-
struction scqucncc numbers) in thc execution trace,
whcre a charrgc occurs to C(X). Note that during any
tracc liagrnent starting at instruction sequence num-
ber t; in thc trace and ending just bcforc instruction
sequcncc number l;1;, wherc C(X) does not change,
(1) all loads storcs in thc program that rcfcr to X (the
mcmbers of C(X)), refcr only to X. and (2) no loads
stores outside of C(X) refer to X. Wherr these condi-
tions are virilated by thc instruction with sequcncc
numbcr lr+r (e.9. an instruction that was rcferring
to X starts rcferring to Y, or an instruction that was
referring to Y starts refcrring to X), the limit machine
rcwrites the binary program (e.g., by changing the
ncr rX to rY, or rY to rX in thc offending instruc-
tion), to makc the conditions (1) and (2) true agairr,
for thc next trace fragment, tial to fi12. Hence for
any given address X, the "limit register allocation"
machine in fact continuously forces the conditions
(1) and (2) (mentioned in the introduction) to be
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truc, bv dynamic binary rewriting. Thus, thc limit
rnachinc exploits ail rcgistcr allocation opportunitics
for X in the cxccution trace.

2.2 The opportunity for register allocation

Register allocation opportutrify
flnfinitc NCR)

Figure 8.

Register allocation opportu nity
(Finitc NOR Size.)

ReplacenEnt - SaE

lJLlru r : r r

r.]LRU iXXA

ff ioPt 1ta
l()Pt ,{xa

Figure g.

Based on a sirnulation of thc limit registcr alloca-
tor machinc on samplcd PowerPC traces coming
from 11 SPECInI2000 benchmarksa, thc opportu-
nity for promoting loads/stores to register acccsscs
(precisely, the pcrcentagc of dynamic L*,/ST* whcre
NCR[I .ncr].addr==R[I .rb] was immediatcly truc
at the beginning of instruction cxecution, i.c., where
the load/store opcrand was found immediately in the
ncr entry named in the instruction) is between 15%

and 90To, as shown in Figure 8. Figure 9 shows re-
sults with a finite number of NCR cntries. Again,
the samc metric is reported (pcrccntagc of dynamic
L*/ST* whcre thcre was an immcdiatc hit in the ncr
cntry namcd in thc instruction). But thc perccnt-
ages arc lower than the infinitc NCR case, since cven
if a Ioad or store uses the same address that it used
during its last execution, its ncr entry may have been
evictcd from thc NCR since thc last execution of this
Ioad/store, because of the small sizr-. of thc NCR. Thc
rcsults show that 2048 rcgistcrs with LRU rcplacc-
urcnt arc alnrost as good as an infinitc numbcr of rcg-
istcrs, for this particular metric. Thc Bclady OPT
rcplaccmcnt approach intcrcstingly docs vcry wcll,
cvcn with 128 rcgistcrs. Thc actual impact of thc
runtinrc rcgistcr allocation approach on pcrformancc
rvili dcpcnd on thc undcrlying proccssor architccturc,
lrut it is sai'c to assuurc that thc rclativc pcrformancc
bcncfits wiil bc largcr in thc futurc duc to thc in-
crca^sing irnpact of "mcmory wali" r:ffccts.

3 Software emulation of the limit ma-
chine

Ilcrc wc will dcscribc a cornpilation tcchniquc that
u'i l l . irr prirrciplc, sirnply cmulatc thc l imit rcgis-
It'r a.llocation rrrachinc algorithm by rcplacing cach
lorrrl/storc by thc macro cxpansion 6f l*,gf* dcfincd
I rr- t hc algorithm of Figurc 5, and tlxrn optimizing thc
rcsrrlting codc using first principlcs.

Irr Jrracticc, it is difficult for traditional compilcrd
< o<lt' to dynamically rcwritc itself, likc thc lirnit ma-
<'lr irr<' docs. On thc ottrcr hand, it is possiblc to
kr'<'p around multiplc variants of a codc fragmcnt and

.jrttnir frorri onc variant to the othcr, at thc instant
u'hcrc thc ncr ficld would rewritten with a diffcr-
crrt t:ntry rrumbcr in thc l imit machinc. Not sur-
prisirrgly, cvcn though wc start conservativcly with
ir sirrglc variant of the code, obtained by a one by
orrt' rcplaccmcnt of each load/storc in thc program
l)\' its L*/ST* cmulation macro expansion, we will
scc that many of thc subsequent optimizations which
yicld good results are of thc code-duplicating type,
which gcnerate multiple variants of thc same code
fragrncnt, each using different simulated NCR entries.
Notc that a compiler has some advantagcs cornpared
to thc limit machine, which will literally do an ad,
dress comparison before exccuting cach Lx, ST*, in
the scnse that (a) thc compilcr can recognize loop in-
variant or redundant address comparisons and eiim-
inate them or move them out of loops (b) when it
is necessary to search the NCR by address, the com-
pilcr can avoid the unnecessary comparisons to the
NCR cntries that will provably not match thc current
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4The "parser" trace was not available to us at this time
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addrcss. \Ve describc our compilcr approach trelow.

Thc data and address ficlds of each NCR entry can

bc rcprcscnted as discrctc syrnbolic rcgistcrs to thc

compilcr. Firstly, therc is rto advanta,ge in simulating

thc actual rvr i t ing of thc ncr f icld of an instrur:t ion,

and pcrforming an addrcss cornparison first to thc in-

struct ion's ncr f icld. Instcad, in thc rnacro cxparrsion

of a load or storc opcra,tiotr, thc mcm<lry addrcss is

comparcd with thc aclclrcss ficld of all applicablc NCR

cntries, start ing frorn the ctrtr ics that arc nrorc l ikcly

to match (pcrhaps bascd orr profiling fccdback). If

thcrc is a match, thc data f ickl of thc nratchirrg NCR

cntry (anothcr syrnbolic rcgistcr) can tr<r r<'arl  or writ-

tcn. Whcn no addrcss rrratt:h is foulrd iuli()Irg thc :rp-

pl icablc NCR cntr ics. t i r t '  l rracro cxparrsion cockr rrcr:ds

to acccss rrrcrnory an<l sirrnriatc thc cvi<:t irxr o[ a, l  t :x-

ist ing NCR cntry. I t  is lurtt<'r to c:hoosc :rIr  NCR <:ntrv

to cvict,  which is kr iorr, ,rr tr t  <:orrrpi lc t i rn<r. iLrrr i  avoicl

rcplaccmcrrt 1>ol icics t lr i r t  f i rr<l suclt  t : tr tr i t :s <ly-ttatrr i-

cal ly: This a.pproa<:lr q' i l l  crrt ,  <lowrr orr t l rc rnrrnlrcr

of NCR cntr ics to corrryrar<r iLgainst,.  A cl ir tv lr i t  is rrot

nccdcd anrons thc f i<rl<ls o[ thc NCR crrtr i t 's. sirrc<r t lrc

cornpi lcrn' i l l  knorv q. lr i<: lr  NCR crttr i<:s rrrav lr :rv<' l r<r<.n

rnodif icd at a givcrr poirrt .  Also. i t  trrakcs scrrsc t<r

cio t trc optinrization irr rrxr<lcst sizc<l r:orkr f iagrrrcrrts

whcrc thc appl icatr lc NCR <rntr ics arc init i :r l izc<l at th<:

trcginning of thc coik'  l iagurcnt, arr<l arc t lr<rn f lushccl

back to [ lcrnor] '  at t tu'  rrrr<1. i(  ov<rrwrit t ,<rt.

' fo makc thc r;r>rrrpi lat iorr rr:srr l t  1>rar:t ica. l ,  thc r lun-

bcr of addrcss cotrrparisorrs shoulr l  bc rnit t i rnizcd.

\Ak: assign a uniquc "horrrc rtcr" t t> cat ' l r  groulr of

loads/storcs. whcrc t.hc olrcrarrr l  a,cklrcss is cr lrral

within thc groul>. lrut rrrav t l i f [<'r  anrong t.)rc groups

(the dist inct svul l)ol i( '  arkircss cxprossiotts trorrnal ly

dcrivcd by al ILP conrpilcr Ibr cach load/storc for

alias analysis cau lrc usc<i lbr rel>rcscrrtittli car:h dis-

t inct group). Whcn al l  appl ical i lc ncr (:olrr l)arisons

fail and thc L*, ST* crnul;ltiorr ha^s to go out to ntcnt-

ory, thc homc ncr will lxr choscn ibr cvictiorr. A l>asc

register of a givcn loarl/storc should bc conrpared

only with thc homc ncr's of loads/storcs u'hich (1)

may havc prcccdcd tiris onc on solrr(' cxccution path

(2) may bc al iascd with this onc. I f  thcrc is arr ad-

dress expression which is dcfinitcly cqual to thc cur-

rent load/storc addrcss. arrd its home ncr is known

to bc assigned by now. rro turthcr addrcss compar-

ison is needed; thc data is alrcady availablc in that

DCr.

Wc obscrve that Array SSA Form [9] providcs a

convenient framework for lbrmalizing addrcss com-

parion operators as dp opcrators. Our gcncral ap-

proach to compilation is to insert thc ncccssary ad-

dress comparison (d$) operators into the intcrmcdi-

atc/assembly code, and to usc classical optimization

tcchniques to optimizc thcm away a"s much as possi-

ble.

In this section wc will apply the compilation procc-

dure suggcstcd hcrc to the same running example,
dcscribed in Figure 1. Noticc that whilc cxisting
compiler techniques cannot register allocate this cx-
ampie, our tcchniquc can, with thc resulting code be-
having just likc the limit rcgistcr aliocator ma,chinc.

3.1 Initial code

Figurc 10 describes thc initial a-ssembly vcrsion of
thc program, with just thc abovc-mentioncd opti-
rrrizations involving "hontc ncrs" to cut down on thc
nunrLlcr of addrcss comparisolrs, and asscrtioll prop-

agation/copy climination/PRE.

/ / i t t1"aLize the NCR entr ies to be used
rY . addr=INVALID ; rX . addr=INVALID;
Loop: . . .
BC L1
A r3=r3,4
Ll :  / /  L r f2=(r6) hone ncr=rx
I f  ( r6==rX.addr)  { }  e lse {rX.data=L0AD(16);  rX.addr=r6;}

// (rX.addr==r6) is true here but not at the looP entry

// --peeling ui.ll help
// L r4=(r3) hone ncr=rY
If  ( r3==rY.addr)  { r4=rY.data;}
else i f  ( r3==rX.addr)  { r4=rX.data;}
else {  r4=rY.data=L0AD(r3) ;  rY.addr=r3;}

/ /copy prop of  LR r12=rX.data;A r72=r72,r4;  LR rX.data=r12

A rX.data=rX.data,14

//  ST r I2,  (16) hone ncr=rX (code el in inated through copy el j -n.)

BC LooD

// at :ube end of a procedme sinufate flushlng

// aII tbe dirty NCR entries

STDRE(rX. addr,rX. data)

Figure 10. In i t iatCode

3.2 Applyingoptimizations

Figurc 11 describes thc cffccts of loop pecling. which
makcs (r6==rX. addr) truc throughout thc loop, artd
hencc clinrinatcs thc (r6==rX. addr) comparison.

Figure l2 isolates the frequently executcd cyclc ofthe
inncr loop whcre thc conditional (r3==rX.addr) is
loop invariant. Figure 13 shows the result of moving
the invariant condition out of the loop.

In Loopy the load may be executed only on the first
iteration, and subscquently thc data in rY. data will
be used (sincc (r3==rY.addr) wil l be true). To ex-
pose this rcdundancy, loop peeling is appropriate as
in Figurc 14. Also, additional copy propagation has
been done in Figure 14.
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/ / rX, addr=INVALID dead
rY. addr=INVALID ; /*rX . addr=INVALfD ; +/ . . .
BC L1a / /  pee\ed part i .a l  body of  loop
A r3=r3,4
//r6==rX.addr fal-se before this statetreDt
//and true aJt€r it
L1a: /* i f  ( r6==rX. addr){}  e l_se*/
{rX. data=LOAD(16) ;  rX.  addr=r6 ;  }
B peelentryo

Loop: . . .
BC L1
A r3=r3,4
/ /16==r[ . .addr t rue here,  rX def in i te ly assigned
L!2 /+i . f ( r6==rX.addr){}  e lse{.  . . }* /
peelentry0:
i f  (1!==1Y..ddr)  { r4=rY.data;}
el-se i f  ( r3==rX.addr)  { r4=rX.data;}
else {1{=1y.4ata=LOAD(r3) ;  rY.addr=r3;}

/  /copy prop. of  r12=rX.data1'A r l2=rI2,14;rX.d.ata=r12;
A rX.data=rx.data,14

nC' foop
Exi t :
ST0RE (rX . addr , rX . data)

Figure 11. Loop peel ing makes
(r6==rX. addr)  t rue inside loop -  e l imi-
nates address comparison.

Aftcr ttris point, co(k) would l)c copic.l fronr lrranch
targcts, to reducc thc nurnbcr of trranchcs bcins cx-
ccutcd.

Thc aggrcssivc softwarc cn)ulation techniquc dr:-
scribcd hcrc, will rcly on a cost-pcrformancc anal-
ysis (trasr:cl on profiling fecdback), and will focus orr
optimizing thc most frcquently executed parts of thc
codc, until various budgcts arc cxcccded. Addrcss
comparisons creatcd by this techniquc can l)c imple-
mented through Huffman-encoded trecs that check
thc most frequently matching addrcsses first, or with
prcdicatcd execution fcaturcs on ILP machines.

4 Runtime register allocation using
hardware

This section outlines a proposal to do register al-
location in hardware at runtime. We obscrvc that
the operation of the limit machine from Section 2, is
very similar to an associativc cache structurc, when
thc data is not found immediately in thc entry di-
rectly givcn by the ncr fi.eld. This leads us to prcF
pose a levcl-l data cache structure that can also be
accessed as a register file. The advantages of this ap-
proach are as follows: (1) The register replacement
policy and cache replacemcnt policy are unified into
one piecc of hardwarc (thus benefitting from state-

Loop: . . .
DUNOI LZ

LI:
I f  ( r . ! -=1Y."6dr)  { r4=3Y.4"a. '1
else i f  ( r !==rX.addr)  { r4=rx.data;}
else {r4=rY.data=L0AD(r3) ;  rY.addr=rf ,  ; }

A rX.data=rx.data,14

BC Loop
B exi t

L2t
A r3=r3,4
peel .entryo:
8Ll

Figure 12. lsolating the part of the loop
where (r3==rX. addr) is invariant

of-thc-art cachc orgarrizations), and (2) Whcn sornc
loads/storcs do usc ncr's whilc somc othcrs usc a
plain Ll data cachc, cohcrcncc bctwccn thc two con-
ccptually scparatc nrcmory hicrarchics is autonrati-
callv achicvcd. Ordin:rry loads/storcs carr thus bc
rnixcd with loads/storcs that try to rnakc usc of an

In our ncw hardwarc approach, which attcmpts to
mirnic thc l inrit machinc dcscribcd in thc introduc-
tion, wtrich dyrrarnically rcwritcs its own rcgi$ter
fields, a,l l L/ST instructions arc cxtendcd with a Prc-
dictcd Rcgister Numbcr (PRN) ficld

ThcPRNfic ldhasthrccsubf ic lds:  <set number,  way
number within set, offset within l ine> which
supply the inforrnation nccdcd to dircctlv locat<;
a load/storc operand insidc a traditional set-
associativc cachc.

First, thc PRN is sent to thc D-Ll cachc. Thc acccss is
speculativcly completcd quicklv, ers if thc D-L1 werc
a registcr fi.Ie, and subscqucnt operations that may
dcpcnd on tlie Ioad data arc also started spccula-
tivcly, as soon as possiblc.

Then the norrrral address is also scnt to the cachc.
aftcr the normal registcr access and TLB delays have
elapsed, and thc speculative access is checkcd for cor-
rectness.

If the L/ST operand is alrcady in thc cache array
Iocation denotcd by PRN, (Le. the cache linc indi-
catcd by the set number and way number within set
subfields of thc PRN has a valid tag, which equals the
upper bits of the reai operand address of the L/ST,
and the offset within linc subfield of the PRN wa^s
equal to the offset within linc subfield of thc L/ST
address), then thcre is nothing to be done, the access
was correct.
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// tbas loop behaves as if (r3==rx.addr) sere true
Loopx: .  .  .
Bcnot L2
Llx:
/ / ( r3==rY.addr)  is  fa lse s ince r3==rx.add,r  is  t rue
/ /ana lcr 's have dist i .nct  add,resses
r4=rx.  data;
A rX.data=rX.data,14

BC Loopx
B exi t

/ /  th is loop behaves as i f  ( r3==rX.addr)  l rere fa lse
Loopy: . . .
Bcnot L2
L1y:
/ /  ( r3==rY.addr)  t rue inside loop but not on enrry
/ / - -  Ioop peel ing wi l l  help
i f  ( r3==rY. addr)  { r4=rY.data;}
else {r4=rY.data=LOAD(r3) ;  ry.addr=r3;}

A rX.data=rX.data,14

BC Loopy
B exi t

L2:
A r3=r3,4
peelentryo:

/ /seLect correct  loop to enter
i f  ( r3==rX.addr)  {goto L1x;}  e lse {goto Lly;}

Figure 13. Moving the invariant condition
(r3==rX.addr) out of  the loop

Othcrwisc, first, thc sl)cculativcly start()d opcrations
that nrav dcpcrrd on thc L/ST arc squashcd. Thc
sct associiltivc D-L1 cachc is zrcccssc(l as usual, using
thc load/storc rcal addrcss. If thcrc is a cachc miss,
thc iowcr lcvc) cachc(s) arc acccsscd as usual, and
an cxisting linc in D-Ll is cvictcd for rcplaccmcnt
(casting it out to L2 if it was dirty/ovcrwrittcn).

Ttre choice of thc linc to be evicted can varv, accord-
ing to thc replaccment policy.

Thc load/store instruction is thcn complctcd nith
thc correct opcrand in thc l)-Ll cachc. Also, thc
correct current location of the load/store operand is
writtcn into thc PRN field of the Load/Store instruc_
tion that caused thc registcr numbcr misprediction.

Thcre arc two spccial invalid valucs of thc pRN field.
which forcc registcr numbcr rnispredictions

Non-sticky invalid value.' All Joad/stores arc ini-
tializcd to use the non-sticky invalid value whcn
a program is first loadcd in memory. Whcn thc
ioad/storc first executes, it will mispredict. The cur-
rent location of the operand is then written into thc
PRN field of thc load/store.

Sticky invalid value: This pRN value also forces

// tn:-s loop behaves as if (r3==rX.add.r) were .srue

Loopx: .  . ,
EUNOI LZ

L1x:

/ / ( r3==rY,addr)  is  fa lse s ince r3==rX.addr is rrue
/ / al.d ncr's trave distinct ad.d.resses

/  *T =TX,daiLai*/

/  /  copy prop. of  t4=rX.data;A rX.data=rX.d.ata,14
A rX.data=rX. data,rX.data;

BC Looox
B exi t

LLy' :  / /  peeled part ia l  body of  Loopy
i f  ( r3==rY. addr)  { /xr4=ry .datar+/}
else { /*74=+1rY.data=LOAD(r3) ;  ry.addr=r3;}
/ /  bete rY.addr==r3
R naal  ontrrr l  .

/ /  i -h is loop behaves as iJ (r3==rX.addr)  were fa lse
Loopy: . . .
BCnot L2
,/+r4=rY.data: ,* /  /  /  s ince r3==rY.addr
p€elentry l :

/  /copy prop. of  r4=rY.data;A rX.data=rX.d.ata,14
A rX. data=rX. data,rY.data

BC 
'Loopy

B exi t

L2:
A r3=r3,4
peeLeDtryo:

/ /select  correct  ]oop to eDter
i f  ( r3==rX.addr)  {goto L1x;}  e lse {goto L1y,;}

Figure 14. Peeling Loopy to expose redun-
dancy, copy propagation of 14

Irtispredictionsr but cannot bc ovcrwrittcn. So thc
ioad/storc will bchavc likc an ordinary load/storc
that does not usc thc PRN prcdiction mcchanism.
Sofiwarc or hardwarc algorithms could identify suit-
able loads that mispredict oftcn. Such ioads could trc
schcdulccl by a cornpilcr in a in-ordcr issuc machinc
or try thc hardware in an out-of-ordcr issue mccha-
nism, by using a longer load-to-usc latencv.

Thc rnechanisrn abovc requires thc icache to bc
Eritat)le (it alrcady is, bccausc of the cachc reload
logic, but thcrc will be additional icache writc port
contention, bccause of the frcquent updatcs to thc
NCR fields). Changes must bc cast out to lower lev-
els of the hierarchy as lines arc being replaccd.

5 Related Work

The 14-64 ALAT mechanism ll0], whilc originally
dcsigned for scheduling speculative loads for instruc-
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tion icvcl parallclism, can alsc) lrc rrsr:<l for rcgistcr
pronrotiotr of load instru<'t iorrs irr  t l rr '  l t rr :surrr: t '  t>l
pointer storcs. As long rr-s thc prolralr i l i tv o1'ovt:r la1r
is vcry low, load instrur:t iorrs can l)( '  slrccu)ativclv
promotcd to rcgistcrs. CILrgs [,1] is anot]rcr rrrccha-
nism dcsigncd spccifically lor rr:gistcr prorrrotiorr irr
thc prcscrrcc of pointcr acc:csscs. Trarrsrrrcta h:rs also
<lcscritrcd a sirnilar tccluriquc. Ilowrrvr:r. tlrrrsc toch-
tr iques al l  attcmpt to ovcr( '()nr(,  rcqrr ir<:nrcnt (2) ,k.-
scribcd in thc introduction (dif f icultv of al ias analysis
at compilc t imc), and not rcquircrrulrt  ( l)  (Dynarni-
cally varying load/storc ogrcraurl addrcsscs). To our
knowlcdgc this papcr's rncthoci is thc lirst orrc tri pro-
vidc a solut ion for ovcrcorrr irrg both ( l)  an<1 (2). Also
for thc casc of occasiorral lv ovuritrpl l i rrg pcl inturs, our
rncthod is likcly to shov"' littlc pcrforrnanr:c dcgrada-
tion since it is cxplicitlv dt-.signcd ibr violatiotrs of
both thc condit ions (1) and (2). whurcas approachcs
such as thc 14-64 ALAT nrcchanisrrr or lllansrncta
Crusoe can suffer sigrrificant pcrfor[rancc loss sincc
thcy trcat ovcrlap as a rarcl) 'clccurr ing. t :xccptional
casc.

Thc ncr ficlds in thc linrit rcgistcr allocatiorr clginr,
described in Figure 5 is similar to wav-prcdiction in
associative caches. Howevcr, irr our casc, way prc-
diction information is stored a^s part of thc instruc-
t ion (the ncr f ield), not pcr cachc sct. as in thc typ-
ical "MRU" policies for way prcdiction [f 2].s Also,
becausc thc NCR registcr filc is accessccl as soon a^s
an instruction is availablc, a shortcr pipclinc can
trc achicved compared to thc traditional load/storc
pipelinc. For a set associativc cache rvhosc lincs arc

sThe span cache approach [15] is an cxamplc of pcr-
instruction way prediction with one lcvcl of indirection: thc
load/store instruction contains a rcgistcr number referring to
a special purpose rcgister filc, and the rcgistcr itself contains
the prediction for the cachc wav.

greater than a word, to bc abie to start thc operand
access irnmediatcly aftcr fetchitrg thc instruction, a
prediction for not only thc ca.chc way, but also the
offsct within line and set number is stored in a ncw
hcid of the load/storc instruction in our approach.
Thc shorter pipclinc can lcad to smallcr branch mis-
prediction penalties.

Conclusions

In this papcr, wc havc anaivzcd thc two fundamcn-
tal irnpcdiments a cornpilcr faccs (aliasing, and dy-
namically varying load/storc addrcsses) when rnak-
ittg a rcgistcr allocation dccision. and havc dcsigncd
an idcal "limit rcgistcr allocator rnachinc," as a thc-
orctical tool to gain insight into thc esscncc of thc
r:gistcr allocation protrlcm, and to addrcss both of
thc fundamcntal impcdiments. Wc havc also pro-
poscrl:

(1) A softwarc crnulatiorr mcthod for thc l imit lna-
r.:hinr:. This lcads t,o succcssful rcgistcr allocatiorr of
r:r>dc fragmcnts that could not br: handlcd by othcr
rncans trcforc.

(2) A hardwarc irnplcrncntation of conccpts front thc
linrit rnachinc, try adding a clynarnically changirrg
r>1>crand locatiorr prcciiction fic)tl ( "Prcclictcd Rcgis-
tcr Number") to cach load/storc instruction, which
improvcs thc perforrnancc of data L1 cachcs by spcc-
trlativcly acccssing thc prcdictcd opcrand location in
thc D-L1 cache array dircctly (as if it wcrc a "rcgistcr
fi lc" ).

Ilascd on the otrscrvations in this papcr, wc can scc
an intcresting continuum of "cachc-likc" register filc
structurcs, ranging from ordinary register files, our
proposed tcchniquc, and CRegs/ALAT approaches.

Here are also somc further (speculative) variations
on thc idea^s, sornc of which will bc part of futurc
work rclated to thc prcscnt papcr:

e Furthcr pcrformance results that quantify thc
bcncfit of using NCRs.

o Using more than one ncr Iield per instruction,
to incrcase chances of a match.

o Hiding the details from an existing ISA, by keep-
ing the PRN fiold only in the icache hierarchy arrd
not in memory.

r Using PRN's pcrvasively at all levels of the mem-
ory hierarchy, as general purpose location pre-
diction bits, as a way to speed up any cache or
menrorY access.
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o Anticipating ncr changes ahcad of time (using
both simplc and sophisticatcd prediction mcch-
anisms) and prcfetching the desircd data into
thc ncxt ncr to bc used by an instruction. Do-
ing the ncr ficld binary rcrvriting ahcad of tirnc.

o Nlerging ly' ncr registers that rcprcscnt A dif-
fcrcnt addresscs into ouc physical ncr, whcrr thc
contcnts of thc addresses arc cqual.

r Organizing thc NCR with long lincs. Packing
words fronr noncontiguous but rciatcd opcrands
contiguously, in a singlc long linc of thc NCR.
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Appendix: Necessity arrd sufficiency of
condit ions (1) and (2)

Definition. ,4 statc is o" rnuppirtg from, memoru ad-
rlre,sses and machine reqisters t.o bit-strtng uo"lues.

Definition. A codr: transformatzon i.s corrcct , if for
all starting states: (a) the trurLsJormed rnde terrrn-
nates if artd orr.lg if the ortqirr"al code. ter-mirtates, o,nd
(b) uthen, it ternt'inates, thc transforwrrcd code pro-
duce,s the: satne t'in,al statc as Lhc originaL code (cr-
cept possibly for "dead" TnentoT'It addresses and rcg-
isters itr. the final state, whosc ualues wil l neuer be
referenccd before being ouerwrittert,, and henr:e do not
mattcr).

Theorem. Assume that register aLlocat'ion optimiza-
trons that take aduantage of any special propertu
of a gtuen atde fraqment (that is rr,ot shared by aLl
corle fragnt.ents) are rrot tc,t bt consideref . Thert,
giuen a single-entry cod,e fragment, a candid,ate set of
load/storv instructions in the code fraqment, and a
TnemorA oddress X (an expression, to be eualuated in
the starting state), the canonical register allocation
of memory address X as deJined zn the Introduct,ion
will be a correct code transforntation, i,f and ortly if,

for euery starting state, both of the conditions (1)
and (2) (definedtnthe Introductr,on) hold duri,ng the
erecut'ion of the code fragment.

bThis "rule of the code transformation game" makcs our
approach suboptimal, but it providcs great conceptual econ-
omy by avoiding special cases

Proof. Su{ficicncy: Suppose that for all starting
states, both (1) and (2) hold during cxccution. Then
thc transformcd vcrsion of thc codc after the canon-
ical rcgistcr allocation, clcarly yiclds intcrrncdiatc
states identical to the original codc aiier each in-
struction exccution, except that all references to
mcmory addrcss X are rcplaced by rcferenccs to rcgis-
ter rX, which always has thc sarnc valuc as thc con-
tents of mcmory address X in thc original codc. If
thc original codc fragrrcnt docs not terminatc for
this starting statc. neither docs thc transformcd ver-
sion. Othcrwisc. rX is storcd back into X at thc cnd of
thc codc fragrncnt in thc transforurcd vcrsion, hr:ncc,
thc final statc of thc gcneral rcgistcrs and mcmory
in thc original and transformcd codc arc idcntical.
Thc only potcntially diffcrent rcgistcr in thc trans-
formed codc, rX, is dcad at thc final statc. Hencc,
thc transforrnation is corrcct.

Nccessity: Assunrc thc contrary. Supposc wc havc
pcrfornrccl canonical rcgistcr allocation for a candi-
datc sct and rncrnory addrcss X, and thc corlc trarrs-
fbrmation is corrcct, but thcrc is a starting statc
which lcads to ar cxccution which violatcs cithcr (1)

or (2).

If condition ( 1) docs not hold, a mcmbcr of thc candi-
datc sct is rcfcrrirrg to a diffcrcnt acidrcss Y instcad of
X during cxccution. This will still yicld a corrcct final
rcsult onlv if (a) X and Y havc cqual contcnts, or if (b)
thc incorrcct intr>rmcdiatc statc irr thc transformcd
program, still lcads to thc sarnc final rcsult a-s in thc
original prograrn (or thc samc non-tcrminating br>
havior as in thc original prograrn). But, this mcans
that thc optirnization has reiied on a spccial prop-
crty of thc givcn codc fra6gmcrrt (a propcrty that is
not sharcd by all codc fragrnents). Contradiction.

If condition (2) docs not hold, thcn a load or storc irr-
struction outside of thc candidate sct but insidc thc
codc fragrnent rcfcrs to X during cxccution. Thcn,
cither (a) thc contents of memory addrcss X and thc
valuc of rcgistcr rX arc identical at thc instant af-
ter executing thc offcnding Ioad or store, or (b) thc
incorrect intermediate statc in thc transformed pro-
gram, still leads to thc same final rcsult as in thc
original program (or the samc non-tcrminating bc-
havior as in the original program). But this means
thc optimization has relied on a special propcrty of
the code fragment (a property that is not shared by
all codc fragmcnts). Contradiction. I
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