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Runtime Register Allocation
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Abstract

The use of registers instead of memory operands is
an cffective performance enhancement as well as a
power saving mechanism, but compilers still cannot
allocate many of the memory references of a program
into registers, for two fundamental reasons unrelated
to the size of the register file: (1) dynamically vary-
ing load/store operand addresses, and (2) inherent
limitations of compile time alias analysis. Previously
proposed architectural features such as CRegs [4] or
TA-64 ALAT [10] mechanisms have only addressed
the aliasing portion of the two fundamental impedi-
ments.

In this paper, we have designed an ideal “limit reg-
ister allocation machine,” as a theoretical tool to
gain insight into the essence of the register alloca-
tion problem, and to address both of the fundamental
impediments. The limit machine uses only register
operations in its ISA (performs memory operations
only for automatic register spills and fills) and has a
unique capability to modify the register fields of in-
structions at run time. Based on the experience with
this limit machine, we have also proposed:

(1) A software emulation method for the limit ma-
chine. which, after performing optimizations such
as partial redundancy elimination, can result in
efficient register allocation of memory references
for loads/stores with dynamically varying addresses,
which could not be register-allocated with any of the
previous techniques.

(2) A hardware implementation of concepts from the
limit machine, by adding a dynamically changing
operand location prediction field ( “Predicted Register
Number”) to each load/store instruction, which can
improve the performance of data L1 caches by spec-
ulatively accessing the predicted operand location in
the D-L1 cache array directly (as if it were a “reg-
ister file”), as soon as the instruction is available,
without first going through the base register read, ad-
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dress arithmetic, address translation, and associative
search phases.

1 Introduction

Register allocation cuables us to place the contents of
a memory address X into a register r and allows us to
refer to the contents of X (perhaps a 32 or 64 bit ad-
dress, obtained by accessing a basc register, possibly
performing address arithmetic, performing virtual to
rcal translation and then accessing an associative
cache) by its current physical location r (a short, per-
haps 5-8 bit, register number, directly encoded inside
the instruction). By placing frequently referenced
memory variables into registers, and in cffect com-
pressing the address trace of a program by replacing
full-width addresses of load/storc operands with ref-
erences to register numbers, a compiler can achieve
significant performance bencfits, as well as power re-
duction, compared to using a standard memory hi-
crarchy accessed through loads and stores.

But precisely how doces a compiler decide when the
contents of a memory location X can be allocated
in a register r? Space limitations prevent us from
enumecrating the many alternative register allocation
rescarch approaches of the past, e.g., [2, 3, 11]. In-
stead, we will present here what we believe to be a
useful canonical abstraction of the register allocation
problem. To separatc the basic feasibility of register
allocation from the restrictions coming solely from
the size of the register file, we will assume that we
have an unbounded number of registers in this ab-
straction. Later, in Secction 2.2, we will present re-
sults that show the impact of bounding the number
of registers.

As a concrete example, consider the C source code
in Figure 1, which we will use as a running example
throughout the paper, and the corresponding origi-
nal assembly code in Figure 2. The L r12=(r6) and



ST ri2, (r6) load/store instructions in Figurc 2 cor-
respond respectively to the read and write of *X in
Figure 1, wherc register r6 is assumed to contain the
address X. These instructions are marked as “candi-
date” because they are candidates for register allo-
cation. Let us first assume that X and Y will never
be aliased i.e., never refer to the same location. In
this case, it is desirable to allocate the contents of
memory location X in a registcr across all iterations
of the do while loop. The assembly code in Figure 3
achicves this goal by introducing a new register, rX,
throughout the code fragment. This transformation
is essentially equivalent to scalar replacement [1. 7).
Starting from the version of the code in Figure 3, the
compiler can then perform copy propagation (or just
convert the program to SSA form and back) to clim-
inate all or most of the LR statements. Hence, very
cfficient three-register operations can be obtained.

void sub{(int *X, int *Y) {
do {
if (L.0) { Y++5)
*X= (*X) + (*Y);

} while(...);
}
Figure 1. Original C code
Loop: ce. // on entry:
// r6=initial X,r3=initial Y
BC L1
A r3=r3,4 // r3=Y=Y+1
L1: L r12=(r6) // r12=(*X) refers to X
// -- candidate
L r4=(r3) // r4=(*Y) refers to ?
A ri12=ri12,rd // ri2=(*X)+(*Y)
ST r12, (r6) // (*X)=r12 refers to X
// -- candidate
BC loop

Figure 2. Initial assembly code. L=load,
ST=store, A=add, BC=branch conditionally

Now consider the case when Y and X may point to
the same location during some iteration of the while
loop. In this case, the transformation is illegal be-
cause the load of (*Y) in the loop will not sec the
updates to address X in memory and will only load
the incorrect, old contents of Y (the updates arc done
only to the register rX in the transformed loop).
Also, if there is an instruction in the loop that alters
the base register r6 of the instructions L r12=(r6)
and ST r12,(r6), making ré point to an address
different than the initial value of ré (X) during some
loop iterations, the transformation is again incorrect:
this is because a given register such as rX can rep-
resent (i.e., cache) the contents of only one memory

L rX=X // L rX=(r6); LR r6’=r6
Loop: .

BC L1

A r3=r3,4
L1: LR ri12=rX

L r4=(r3)

A ri2=r12,r4

LR rX=r12 // can be optimized as

// A rX=rX,r4
BC loop
ST rX,X // ST rX, (r6?)

Figure 3. After allocating contents of mem-
ory location X in register rX

address X throughout the execution of the loop, not
the contents of multiple memory addresses at the
same time.

The legality conditions for canonical register alloca-
tion can be stated more generally as follows:

Conditions for canonical register allocation.
Given a single-entry code fragment (region), a mem-
ory address X, and a candidate sct of load/store in-
structions that access memory address X, the canon-
ical register allocation code transformation defined
below will be legal if on every execution the following
two conditions are satisfied:

1. All members of the candidate set of loads and
stores must refer only to X, and

2. Any loads/stores outside the candidate set (but
inside the code fragment) must never refer to X.

In order to link these conditions to the terminology
of fundamental impediments described in the ab-
stract, we can say that violations of condition (1)
correspond to the “dynamically varying load/storc
opcrand addresses” and that the violations of con-
dition (2) correspond to the “inherent limitations of
the compile time alias analysis” (the latter because
compilers often cannot prove that pointer references
outside the candidate set will never refer to X).

The canonical register allocation code trans-
formation. The canonical register allocation code
transformation can be defined as follows for a given
single-entry code fragment, memory address X, and
candidate set:

e Pick a currently unused register rX. Change
the references to memory in the candidate
set of load/store instructions (L rt=..., ST
Tt,...) into references to the register xX (the



loads and stores in the candidate set thus becom-
ing LR rt=rX, LR rX=rt, respectively. !

e Load the contents of X into rX just before en-
tering the transformed code fragment, and store
it back to address X just after exiting the trans-
formed code fragment.?

The initial load and final store mentioned above have
interesting implications on exception sematics, be-
causc these instructions can lcad to exceptions that
were not occurring the the original code. Analysis
techniques to identify cases where there will be no
cxtra cxceptions despite the speculative code mo-
tion, have been described in [6], in the context of
speculative code motion out of loops. We will pro-
posc speculative loads and stores for accomplishing
the initial load and final store of the canonical reg-
ister allocation transformation, which preserve the
exception behavior of the original program. Spec-
ulative loads from a non-cxistent address vield the
special L value without causing an exception (simi-
lar to the 1 value (33rd bit) in [14] or NaT value in
IA-64 [10]), and speculative stores to a non-existent
address are trcated as no-ops. When the memory
address is valid, the speculative loads and stores be-
have as normal ones. Also LR rt=rX or LR rX=rt
operations for a speculatively loaded rX. must also
first check if X is 1, and raise an exception if so.
On existing machines such as the IA-64. speculative
loads and stores and trapping LR’s can be emulated
by macro-cxpansion, and then optimized as usual,
all in softwarc. For simplicity, we will assume an
exception-free environment in the rest of the paper.

The two conditions listed above are certainly suffi-
ctent to ensure that the canonoical register allocation
transformation is legal. In the appendix. we provide
a proof that the conditions are both necessary and
sufficient. However, to prove the necessity condition.
it is necessary to assume that no special transforma-
tions arc performed that rely on special propertices
of a code fragment, such as (1) letting a load out-
side of the candidate sct refer to X during the code
fragment, when X is read-only throughout the code
fragment, or (2) allowing a member of the candidate
sct to refer to two distinct addresses X and Z when
addresses X and Z have equal contents.

Scalar variables of a procedure allocated on the stack
(automatic variables), whose address is not taken.
trivially satisfy conditions (1) and (2), and this
method could be used for traditional register allo-
cation as done by compilers (which can of coursc be
done by many other, more direct methods). Also,

1Here, LR x=y means: copy register y into register x.
2Note that optimizations can later remove these initial
loads and final stores, when they are not needed.
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when the compiler can prove these two conditions
for a set of loads/stores by sophisticated interproce-
dural alias analysis, e.g. as in [8], many other kinds
of variables (c.g., on the heap or in the static exter-
nal variables arca), can be allocated in registers as
well. Note that the scope of the code fragment will
in general be changed while making register alloca-
tion decisions for a procedure body. For example,
register allocation of an array element A[i] in an
inner loop for(i=1..N){...A[i]...A[i])...a[il}
can be achieved by considering only the for loop body
as the code fragment [13], while the entire procedure
body can he¢ used as the code fragment for register
allocation of an automatic scalar variable, whosc ad-
dress is not taken.

When condition (1) is guarantced, since, c.g., cach
member of the candidate set uses the same base reg-
ister that is unchanged throughout the code frag-
ment, condition (2) can be relaxed by using hardware
techniques such as CRegs[4] or the IA-64 ALAT [10]
mechanism. These techniques tolerate references to
X from outside the candidate sct of loads and stores,
if these references are infrequent, and can therefore
perform speculative register promotion of the can-
didate sct, in the presence of pointers which cause
static alias analysis to fail.

To date, we are not awarce of any register allocation
mcthod that is able to overcome both of the condi-
tions (1) and (2) simultaneously. The present paper
alms to proposc novel hardware and softwarc tech-
niques to overcome both of the conditions (1) and

(2).

In section 2, we introduce a new dynamic view of the
register allocation problem by defining a “limit regis-
ter allocation” machine, as a new theoretical tool for
gaining insight into register allocation. This machine
is able to rewrite register fields of the binary program
at run-time, and force both of the conditions (1) and
(2) to become true as a result of the binary rewriting,
as soon as they cease to be true as a result of dynam-
ically changing operand addresses in loads/stores, or
inherent limitations of static alias analysis. For ex-
ample, when a load instruction that was referring to
Y suddenly starts referring to X, the corresponding
LR rt=rY instruction in the transformed program
(where all loads and stores have been converted to LR
operations) suddenly starts using register rX (con-
taining the memory operand at address X) instead
of register rY (containing thc memory operand at
address Y), by binary rewriting. Inspired from this
idecal machine, we then proposc a new software em-
ulation technique and a new hardware technique for
aggressive register allocation: Section 3 describes the
software emulation technique and section 4 describes
the hardware technique. Section 5 discusses the re-



lated work, and section 6 concludes the paper. The
appendix provides a proof that conditions (1) and (2)
arc both nccessary and sufficient for corrcct canoni-
cal register allocation, with the given assumptions.

2 The limit register allocation ma-
chine

Having defined the two necessary and sufficient con-
ditions for register allocation, we now define a limit
register allocation machine that continually tracks
the program and exploits all register allocation op-
portunities.

We first change cach original load (L) and store (ST)
in the program to new instructions L*, ST*, that
also contain a new register number ficld called ner (a
Named Cache Register), indicating an entry in a new
Named Cache Register (NCR) filc we arc introducing
to the architecture, as shown in Figure 4.

Original load/stores:
//I:instruction, R:registers, M: memory
L rt=(rb) //R{I.rt]=M[R[I.rb]l]
ST rt, (rb) //M[R[I.rbl]l=R[I.rt]
==>
New instructions:
L* rt,(rb),ncr
ST+ rt, (rb),ncr

Figure 4. Transformation of L, ST instruc-
tions toLx, STx*.

The precise semantics of L, ST* arc shown in the
pscudo-code in Figure 5.

Here we are adding to the architecture a new reg-
ister file structure NCR - or Named Cache Reg-
ister file - each of whose ecntrics have the three
fields: data, address, and dirty bit. For now, as-
sume that all that memory accesses arc of word
size3. The NCR is a collection of single-entry direct-
mapped caches, that one can refer to by name (ncr
field) in an instruction (hence the name Named
Cache Register). When the access to the single-
cntry direct-mapped cache named by the ncr field
causes a “cache miss,” then cntries in NCR need to
searched by address, similar to an associative cache
(the associativity is an implementation issue which
also depends on the replacement policy). Onec ob-
servation we could make is that, when there is a

3Partword memory accesses, overlapping operands, and
different virtual addresses aliasing to the same memory loca-
tion, are implementation issues that can be added to the basic
NCR mechanism. We will not clutter the current presentation
with them.
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Limit machine instruction execution loop:
switch(I) { //I is the next instruction to execute
case L* rt,(rb),ncr :
if (R[I.rb]!=NCR[I.ncr] .addr)
{I.ncr=accessNCR(false,R[I.rbl);}
// here R[I.rb]==NCR[I.ncr].addr
RII.rt]=NCR[I.ncr].data; .; break;
case ST* rt,(rb),ncr :
if (R[I.rb])!=NCR[I.ncr].addr)
{I.ncr=accessNCR(true,R[I.rb])}
// here R[I.rb]J==NCR{I.ncr] .addr
NCR[I.ncr].data = R[I.rt];
NCR[I.ncr] .dirty=true; .; break;
default: <execute instruction as usual>; }

registerNumber accessNCR(boolean isWrite, address y) {
//return an ncr representing the contents of
// the memory address y
if ((Exists registerNumber ry) (NCR[ryl.addr==y))
{return ry;}
// find an mncr to evict
registerNumber ry=chooseEvictable(NCR);
// write back if dirty
if (NCR[ry].dirty) MINCR([ryl].addr]=NCR[ry] .data;
//if a load, read initial value
if (lisWrite) NCR[ry].data=M[y];
NCR[ry] .addr=y; NCR[ry] .dirty=false;
return ry; }

Initialization:
for(I: all Lx,ST*) I.ncr=rNULL;//rNULL=0
for(i:1..NCR’last)

{NCR[i].addr=INVALID; NCR[i].dirty=false;}
//NCR[rNULL] .addr is permanently INVALID
//-- does not match any load/store address

Wrap-up:
for(i:1..NCR’last)
{if (NCR[i].dirty) M[NCR[i].addr]=NCR(i] .data;}

Figure 5. Semantics of the limit register al-
location machine with Lx,ST*

hit in the single-entry direct mapped cache named
by the ncr field, i.e. NCR[I.ncr].addr==R[I.rb],
the instruction L* rt,(rb),ncr performs a reg-
ister copy R[I.rt]=NCR[I.ncr].data, which we
can abbreviate as LR rt=ncr, and the instruc-
tion ST* rt, (rb),ncr performs a register copy
NCR[I.ncr].data=R[I.rt], which we can abbrevi-
atc as LR ncr=rt.

Optionally, for the purpose of having a single uni-
form register file (more suitable for additional op-
timizations such as copy propagation) one could
map the normal general registers R into a por-
tion of the NCR register file structure, such that
R[i]==NCR[i] .data, 1=0..31, and wherc L* and
ST* instructions use ncr numbers greater than or
equal to 32 (assuming there are 32 general purpose
registers).

The semantics given in Figurc 5 is perhaps best ex-
plained by an example, namely our running example



in Figurc 1. The limit register allocation machine
will first initialize all L*, ST#* ncr fields to rNULL.
Let X0, YO be the initial values of pointer variables
X, Y, respectively, before the while loop is entered.
Suppose initially the memory address YO points to
the word just before X0. Ie., assume X0==Y0+1 in
terms of C address arithmetic. Assume that dur-
ing the first two iterations of the while loop, Y stays
the same (equal to Y0), but in the third iteration, Y
gets incremented in the instruction A r3=r3,4, thus
becoming equal to X0.

During iteration 1, assumc that ner number rX is
chosen to represent the memory location X0 by the
accessNCR routine, when the first L* instruction (I1)
is executed. Also assume that rY is the ncr number
that is choscn to represent memory address YO, dur-
ing the exccution of the sccond L*x (I2). The storc
instruction (I3) (which also refers to X0) will dis-
cover that ner number rX alrcady represents address
X0 and will start using rX as its ncr. The state of the
binary program and the contents of the NCR register
file entry numbers rX and rY are shown in Figure 6,
after iteration 1.

Loop:
BC L1
A r3=r3,4
L1:(I1) Lx* r12,(r6),rX //LR ri2=rX
//NCR[rX] .data=(*X0)
//NCR[rX].addr=(X0)
(I2) L=* rd, (r3),rY //LR rd4=ry
//NCR[rY] .data=(*Y0)
//NCR[ry] . addr=(Y0)
A ri2=r12,r4 //optimize as A rX=rX,rY
(I3) 8T=* r12,(r6),rX //LR rX=r12
//NCRI[rX] .data=R(r12]
BC loop

Figure 6. Dynamic snapshot of code after
iteration 1

Iteration 2 gets executed uneventfully, where the
ncr entries rX and rY are re-used by the Lx,
ST* instructions 11,12,13, without going to mem-
ory. (NCR[rX].data is updated by the ST* instruc-
tion 13). But in iteration 3, a change occurs as
shown in Figure 7. Since the base register r3 of
original second load instruction (I2) has been incre-
mented (becoming X0 instcad of Y0), and since the
instructions 11, I3 have already started referencing
X0 and (*X0) is already in an NCR register rX, i.e.,
(NCR{rX].data==(*X0)), the Lx instruction I2 is
rewritten to refer to rX instead of rY. As long as base
register of the second load 12 does not change again,
the iterations can keep accessing registers only, with-
out nceding to go to memory.
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loop:

BC L1
A r3=r3,4
L1:(I1) L= r12,(r6),rX //LR r12=rX
(I2) L= r4,(r3),rX //LR ré=rX
//NCR[rX].data=(*X0)
//NCR[rX] .addr=(X0)
A ri12=ri12,r4 //optimize as A rX=rX,rX
(13) ST+ r12, (r6),rX //LR rX=ri2
//NCR[rX] .data=R[r12]
BC loop

Figure 7. Dynamic snapshot of code after
iteration 3

When the program (while loop in this case) finishes,
NCR[rX] .data is written into the corresponding ad-
dress NCR[rX] .addr since it has been overwritten
(dirty). Noticc that the limit machine has success-
fully done register allocation in our difficult code ex-
ample (which is not register allocatable via existing
techniques), using binary rewriting.

2.1 How the limit register allocator always
meets the two conditions

It is interesting to discuss the relationship between
the limit register allocator machine, and the two con-
ditions dcescribed in the introduction. At a given
point in the execution trace, for a memory address
X, let C(X) be the sct of static load and store instruc-
tions defined as {IINCR[I.ncr].addr==X}. Thesc
instructions arc the static loads and stores in the
program whosc last cxecutions in the exccution trace
referred to the address X. For a given memory address
X, let {¢o,t1,...,tx} be the set of points (dynamic in-
struction scquence numbers) in the execution trace,
where a change occurs to C(X) . Note that during any
trace fragment starting at instruction sequence num-
ber ¢; in the trace and ending just before instruction
sequence number ¢, ;, where C(X) does not change,
(1) all loads stores in the program that refer to X (the
members of C(X)), refer only to X, and (2) no loads
stores outside of C(X) refer to X. When these condi-
tions are violated by the instruction with sequence
number ¢,;; (e.g. an instruction that was referring
to X starts referring to Y, or an instruction that was
referring to Y starts referring to X), the limit machine
rewrites the binary program (e.g., by changing the
ner rX to rY, or rY to rX in the offending instruc-
tion), to make the conditions (1) and (2) true again,
for the next trace fragment, ¢; 1 to t;,2. Hence for
any given address X, the “limit register allocation”
machine in fact continuously forces the conditions
(1) and (2) (mentioned in the introduction) to be



true, by dynamic binary rewriting. Thus, the limit
machine exploits all register allocation opportunities
for X in the cxccution trace.

2.2 The opportunity for register allocation

Register allocation opportunity
(Infinite NCR)

NCRIl.ncr].addreaR]{).rb]

% of dynamic L*/8T*
that caused a hit, [s.

Figure 8.

Register allocation opportunity
(Finite NCR Size)

-

03388283885
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I EBOP1
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% of dynamic L*/8T* with
NCR[l.ncrl.addr==R{l.rh]

2

FEEE fgf@ff 4&

Figure 9.

Based on a simulation of the limit register alloca-
tor machine on sampled PowerPC traces coming
from 11 SPECInt2000 benchmarks®, the opportu-
nity for promoting loads/stores to register acccsscs
(precisely, the percentage of dynamic L*/ ST* where
NCR[I.ncr].addr==R[I.rb] was immediately truc
at the beginning of instruction execution, i.c., where
the load /store operand was found immediately in the
ncr entry named in the instruction) is between 15%

4The “parser” trace was not available to us at this time
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and 90%, as shown in Figure 8. Figure 9 shows rc-
sults with a finite number of NCR entries. Again,
the same metric is reported (percentage of dynamic
L*/ST* where there was an immediate hit in the ner
entry named in the instruction). But the percent-
ages arc Jower than the infinite NCR case, since cven
if a load or store uses the same address that it used
during its last execution, its ncr entry may have been
evicted from the NCR since the last execution of this
load /store, because of the small size of the NCR. The
results show that 2048 registers with LRU replace-
ment arc almost as good as an infinite number of reg-
isters, for this particular metric. The Belady OPT
replacement approach intercstingly does very well,
cven with 128 registers. The actual impact of the
runtime register allocation approach on performance
will depend on the underlying processor architecture,
but it is safc to assume that the relative performance
benefits will be larger in the future due to the in-
creasing impact of “memory wall” cffects.

3 Software emulation of the limit ma-
chine

Here we will describe a compilation technique that
will. in principle, simply cmulate the limit regis-
ter allocation machine algorithm by replacing each
load/store by the macro expansion of L*, ST* defined
by the algorithm of Figure 5, and then optimizing the
resulting code using first principles.

In practice, it is difficult for traditional compiled
code to dynamically rewrite itself, like the limit ma-
chine docs. On the other hand, it is possible to
keep around multiple variants of a code fragment and
jump from one variant to the other, at the instant
where the ncr field would rewritten with a differ-
ent entry number in the limit machine. Not sur-
prisingly, even though we start conservatively with
a single variant of the code, obtained by a one by
one replacement of each load/store in the program
by its L*/ST* emulation macro expansion, we will
sce that many of the subsequent optimizations which
vield good results are of the code-duplicating type,
which generate multiple variants of the same code
fragment, each using different simulated NCR entries.
Note that a compiler has some advantages compared
to the limit machine, which will literally do an ad-
dress comparison before executing each Lx, ST, in
the scnse that (a) the compiler can recognize loop in-
variant or redundant address comparisons and elim-
inate them or move them out of loops (b) when it
is necessary to search the NCR by address, the com-
piler can avoid the unnecessary comparisons to the
NCR entries that will provably not match the current



address. We describe our compiler approach below.

The data and address fields of each NCR entry can
be represented as discrete symbolic registers to the
compiler. Firstly, there is no advantage in simulating
the actual writing of the ner field of an instruction,
and performing an address comparison first to the in-
struction’s ncr ficld. Instead, in the macro expansion
of a load or storc operation, the memory address is
compared with the address ficld of all applicable NCR
cntries, starting from the entries that arc more likely
to match (perhaps based on profiling feedback). If
there is a match, the data field of the matching NCR
entry (another symbolic register) can be read or writ-
ten. When no address match is found among the ap-
plicable NCR entrics, the macro expansion code needs
to access memory and simulate the eviction of an ex-
isting NCR entry. It is better to choose an NCR entry
to cvict, which is knowu at compile titne. and avoid
replacement policies that find such entries dynani-
cally: This approach will cut down on the number
of NCR cntrics to comparc against. A dirty bit is not
nceded among the ficlds of the NCR entries, since the
compiler will know whichi NCR cntrics may have been
modified at a given point. Also, it makes scnse to
do the optimization in modest sized code fragments
where the applicable NCR entries arc initialized at the
beginning of the code fragment, and are then flushed
back to mcmory at the cnd. if overwritten.

To make the compilation result practical. the num-
ber of address comparisons should be minimized.
We assign a unique “home ner” to cach group of
loads/stores. where the operand address is equal
within the group, but may differ among the groups
(the distinct symbolic address expressions normally
derived by an ILP compiler for cach load/store for
alias analysis can be used for representing cach dis-
tinct group). When all applicable ner comparisons
fail and the L*,ST* emulation has to go out to mem-
ory, the home ncr will be chosen for eviction. A basc
register of a given load/store should be compared
only with thc home ner's of loads/stores which (1)
may have preceded this one on some execution path
(2) may be aliased with this one. If there is an ad-
dress expression which is definitely equal to the cur-
rent load/store address, and its home ncr is known
to be assigned by now. no further address compar-
ison is needed; the data is alrcady available in that
ncer.

We observe that Array SSA Form [9] provides a
convenient framework for formalizing address com-
parion operators as d¢ operators. Our gencral ap-
proach to compilation is to insert the necessary ad-
dress comparison (d¢) operators into the intermedi-
ate/assembly code, and to use classical optimization
techniques o optimize them away as much as possi-
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ble.

In this section we will apply the compilation proce-
dure suggested here to the same running example,
described in Figure 1. Notice that while existing
compiler techniques cannot register allocate this ex-
ample, our technique can, with the resulting code be-
having just like the limit register allocator machine.

3.1 Initial code

Figurc 10 describes the initial assembly version of
the program, with just the above-mentioned opti-
mizations involving “home ncrs” to cut down on the
number of address comparisons, and assertion prop-
agation/copy elimination/PRE.

//initalize the NCR entries to be used

rY.addr=INVALID; rX.addr=INVALID;

Loop: ...

BC L1

A r3=r3,4

Li: // L r12=(r6) home ncr=rX

If (ré6==r¥.addr) {} else {rX.data=LOAD(r6); rX.addr=r6;}
// (rX.addr==r6) is true here but not at the loop entry
// --peeling will help

// L r4=(r3) home ncr=rY

If (r3==rY.addr) {r4=rY.data;}

else if (r3==rX.addr) {r4=rX.data;}

else { r4=rY.data=LOAD(r3); rY.addr=r3;}

//copy prop of LR ri12=rX.data;A ri12=ri2,r4; LR rX.data=rl2

A rX.data=rX.data,r4

// ST r12,(r6) home ncr=rX (code eliminated through copy elim.)

BC Loop

// at the end of a procedure simulate flushing
// all the dirty NCR entries
STDRE(rX.addr,rX.data)

Figure 10. Initial Code

3.2 Applying optimizations

Figurc 11 describes the effects of loop peeling, which
makes (r6==rX.addr) truc throughout the loop, and
hence climinates the (r6==rX.addr) comparison.

Figure 12 isolates the frequently executed cycle of the
inner loop where the conditional (r3==rX.addr) is
loop invariant. Figure 13 shows the result of moving
the invariant condition out of the loop.

In Loopy the load may be executed only on the first
iteration, and subsequently the data in rY.data will
be used (since (r3==rY.addr) will be true). To ex-
pose this redundancy, loop peeling is appropriate as
in Figure 14. Also, additional copy propagation has
been done in Figure 14.



//rX.addr=INVALID dead

rY.addr=INVALID; /*rX.addr=INVALID;=*/...

BC Lia // peeled partial body of loop
A r3=r3,4

//r6==rX.addr false before this statement
//and true after it

Lia: /#if(r6==rX.addr){} elsex/
{rX.data=L0AD(r6); rX.addr=r6;}

B peelentry0

Loop: ...

BC L1

A r3=r3,4

//r6==rX.addr true here, rX definitely assigned
L1: /#if(r6==rX.addr){} else{...}*/

peelentry0:

if (r3==rY.addr) {rd=rY.data;}

else if (r3==rX.addr) {r4=rX.data;}

else {r4=rY.data=LOAD(r3); rY.addr=r3;}

//copy prop. of ril2=rX.data;A r12=ri12,r4;rX.data=r12;
A rX.data=rX.data,r4

BC Loop
Exit:
STORE(rX.addr,rX.data)

Figure 11. Loop peeling makes
(r6==rX.addr) true inside loop - elimi-
nates address comparison.

After this point, code would be copied from branch
targets, to reduce the number of branches being ex-
ccuted.

The aggressive softwarc emulation technique de-
scribed here, will rely on a cost-performance anal-
ysis (based on profiling feedback), and will focus on
optimizing the most frequently executed parts of the
code, until various budgets are exceceded. Address
comparisons created by this technique can be imple-
mented through Huffman-encoded trees that check
the most frequently matching addresses first, or with
predicated execution features on ILP machines.

4 Runtime register allocation using
hardware

This section outlines a proposal to do register al-
location in hardware at runtime. We observe that
the operation of the limit machine from Section 2, is
very similar to an associative cache structure, when
the data is not found immediately in the entry di-
rectly given by the ncr field. This leads us to pro-
pose a level-1 data cache structure that can also be
accessed as a register file. The advantages of this ap-
proach are as follows: (1) The register replacement
policy and cache replacement policy are unified into
one piece of hardwarc (thus benefitting from state-
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Loop: ...

BCnot L2

L1:

If (r3==rY.addr) {r4=rY.data;}

else if (r3==rX.addr) {r4=rX.data;}
else {r4=rY.data=LOAD(r3); rY.addr=r3;}

A rX.data=rX.data,r4

BC Loop
B exit
L2:

A r3=r3,4

peelentry0:
B L1

Figure 12. Isolating the part of the loop
where (r3==rX.addr) is invariant

of-the-art cache organizations), and (2) When some
loads/stores do usc ncr’s while some others use a
plain L1 data cache, coherence between the two con-
ceptually separatec memory hicrarchies is automati-
cally achicved. Ordinary loads/stores can thus be
mixed with loads/stores that try to make use of an
ncr.

In our new hardwarc approach, which attempts to
mimic the limit machine described in the introduc-
tion, which dynamically rewrites its own register
fields, all L/ST instructions arc extended with a Pre-
dicted Register Number (PRN) ficld

The PRN ficld has three subficlds: <set number, way
number within set, offset within line> which
supply the information nceded to directly locate
a load/storc operand inside a traditional sct-
associative cache.

First, the PRN is sent to the D-L1 cache. The access is
speculatively completed quickly, as if the D-L1 werc
a register file, and subsequent operations that may
depend on the load data arc also started specula-
tively, as soon as possible.

Then the normal address is also sent to the cache,
after the normal register access and TLB delays have
elapsed, and the speculative access is checked for cor-
rectness.

If the L/ST operand is already in the cache array
location denoted by PRN, (Le. the cache line indi-
cated by the set number and way number within set
subfields of the PRN has a valid tag, which equals the
upper bits of the real operand address of the L/ST,
and the offset within line subfield of the PRN was
equal to the offset within linc subfield of the L/ST
address), then there is nothing to be done, the access
was correct.



// this loop behaves as if (r3==rX.addr) were true
Loopx:

BCnot L2

Lix:

//(r3==rY.addr) is false since r3==rX.addr is true
//and ncr’s have distinct addresses

r4=rX.data;

A rX.data=rX.data,r4

BC Loopx
B exit

// this loop behaves as if (r3==rX.addr) wvere false
Loopy: ...

BCnot L2

Lly:

// (r3==rY.addr) true inside loop but not on entry
//-- loop peeling will help

if (r3==rY.addr) {r4=rY.data;}

else {r4=rY.data=LOAD(xr3); rY.addr=r3;}

A rX.data=rX.data,r4

BC Loopy
B exit

L2:

A r3=r3,4

peelentry0:

//select correct loop to enter

if (r3==rX.addr) {goto Lix;} else {goto Lliy;}

Figure 13. Moving the invariant condition
(r3==rX.addr) out of the ioop

Otherwise, first, the speculatively started operations
that may depend on the L/ST are squashed. The
sct associative D-L1 cache is accessed as usual, using
the load/store real address. If therc is a cache miss,
the lower level cache(s) are accessed as usual, and
an existing linc in D-L1 is evicted for replacement
(casting it out to L2 if it was dirty/overwritten).

The choice of the line to be evicted can vary, accord-
ing to the replaccment policy.

The load/store instruction is then completed with
the correct operand in the D-L1 cache. Also, the
correct current location of the load/store operand is
written into the PRN field of the Load/Store instrue-
tion that caused the register number misprediction.

There are two special invalid values of the PRN field,
which force register number mispredictions

Neon-sticky invalid value: All load/stores arc ini-
tialized to use the non-sticky invalid value when
a program is first loaded in memory. When the
load/store first executes, it will mispredict. The cur-
rent location of the operand is then written into the
PRN field of the load/store.

Sticky invalid value: This PRN value also forces
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// this loop behaves as if (r3==rX.addr) were true
Loopx:

BCnot L2

Lix:

//(x3==rY.addr) is false since r3==rX.addr is true
//and ncr’s have distinct addresses

/*r4=rX.data;*/

//copy prop. of rd=rX.data;A rX.data=rX.data,r4
A rX.data=rX.data,rX.data;

BC Loopx
B exit

Liy’: // peeled partial body of Loopy
if(r3==rY.addr) {/*r4=rY.data;*/}

else {/*r4=+/rY.data=LOAD(r3); rY.addr=r3;}
// here rY.addr==r3

B peelentryl;

// this loop behaves as if (r3==rX.addr) were false
Loopy:

BCnot L2

/*rd=rY.data;*/ // since r3==rY.addr

peelentryl:

//copy prop. of rd=rY.data;A rX.data=rX.data,rd

A rX.data=rX.data,rY.data

BC Loopy
B exit

L2:

A r3=r3,4

peelentry0:

//select correct loop to enter

if (r3==rX.addr) {goto Lix;} else {goto Lly’;}

Figure 14. Peeling Loopy to expose redun-
dancy, copy propagation of r4

mispredictions, but cannot be overwritten. So the
load/store will behave like an ordinary load/storc
that does not usc the PRN prediction mechanism.
Software or hardwarc algorithms could identify suit-
able loads that mispredict often. Such loads could be
scheduled by a compiler in a in-order issuc machine
or by the hardware in an out-of-order issue mecha-
nism, by using a longer load-to-usc latency.

The mechanism above requires the icache to be
writable (it alrcady is, because of the cache reload
logic, but there will be additional icache write port
contention, because of the frequent updates to the
NCR fields). Changes must be cast out to lower lev-
els of the hierarchy as lines arc being replaced.

5 Related Work

The 1A-64 ALAT mechanism [10], while originally
designed for scheduling speculative loads for instruc-
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tion level parallelism, can also be used for register
promotion of load instructions in the presence of
pointer stores. As long as the probability of overlap
is very low, load instructions can be speeculatively
promoted to registers. CRegs [4] is another mecha-
nism dcesigned specifically for register promotion in
the presence of pointer accesses. Transmeta has also
described a similar technique. However, these tech-
niques all attempt to overcore requircment (2 de-
scribed in the introduction (difficulty of alias analysis
at compile time), and not requirement (1) (Dynami-
cally varying load/storc operand addresses). To our
knowledge this paper’s method is the first one to pro-
vide a solution for overcoming both (1) and (2). Also
for the case of occasionally overlapping pointers, our
method is likely to show little performance degrada-
tion since it is explicitly designed for violations of
both the conditions (1) and (2), whercas approaches
such as the IA-64 ALAT mecchanism or Transmeta
Crusoe can suffer significant performance loss since
they treat overlap as a rarcly occurring, exceptional
case.

The ner ficlds in the limit register allocation engine
described in Figure 5 is similar to way-prediction in
associative caches. Howecver, in our casc, way pre-
diction information is stored as part of the instruc-
tion (the ncr field), not per cache sct, as in the typ-
ical “MRU” policies for way prediction [12].> Also,
because the NCR register file is accessed as soon as
an instruction is available, a shorter pipeline can
be achieved compared to the traditional load/store
pipeline. For a set associative cache whose lines are

5The span cache approach [15] is an cxample of per-
instruction way prediction with one level of indirection: the
load/store instruction contains a register number referring to
a special purpose register file, and the register itself contains
the prediction for the cache way.
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greater than a word, to be able to start the operand
access immediately after fetching the instruction, a
prediction for not only the cache way, but also the
offset within line and set number is stored in a new
ficld of the load/storc instruction in our approach.
The shorter pipeline can lead to smaller branch mis-
prediction penalties.

6 Conclusions

In this paper, we have analyzed the two fundamen-
tal impediments a compiler faccs (aliasing, and dy-
namically varying load/storc addresses) when mak-
ing a register allocation decision, and have designed
an ideal “limit register allocator machine,” as a the-
orctical tool to gain insight into the essence of the
register allocation problem, and to address both of
the fundamental impediments. We have also pro-
posed:

(1) A softwarc cmulation method for the limit ma-
chine. This lecads to successful register allocation of
code fragments that could not be handled by other
mecans before.

{2) A hardwarc implementation of concepts from the
limit machine, by adding a dynamically changing
operand location prediction ficld (“Predicted Regis-
ter Number”) to cach load/store instruction, which
improves the performance of data L1 caches by spec-
ulatively accessing the predicted operand location in
the D-L1 cache array directly (as if it were a “register
file™).

Bascd on the observations in this paper, we can see
an interesting continuum of “cache-like” register file
structures, ranging from ordinary register files, our
proposed technique, and CRegs/ALAT approaches.

Here are also some further (speculative) variations
on the ideas, some of which will be part of future
work related to the present paper:

e Further performance results that quantify the
benefit of using NCRs.

e Using more than one ncr field per instruction,
to increase chances of a match.

Hiding the details from an existing ISA, by keep-
ing the PRN ficld only in the icache hierarchy and
not in memory.

Using PRN’s pervasively at all levels of the mem-
ory hierarchy, as general purpose location pre-
diction bits, as a way to speed up any cache or
memory access.



e Anticipating ner changes ahcad of time (using
both simple and sophisticated prediction mech-
anisms) and prefetching the desired data into
the next ner to be used by an instruction. Do-
ing the ncr field binary rewriting ahead of time.

Merging N ncr registers that represent N dif-
ferent addresses into one physical ner, when the
contents of the addresses are equal.

Organizing the NCR with long lines. Packing
words from noncontiguous but related operands
contiguously, in a single long line of the NCR.
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Appendix: Necessity and sufficiency of
conditions (1) and (2)

Definition. A statc is a mapping from memory ad-
dresses and machine registers to bit-string values.

Definition. A code transformation is correct, if for
all starting states: (a) the transformed code terms-
nates if and only if the original code terminates, and
(b) when it terminates, the transformed code pro-
duces the same final state as the original code (ca-
cept possibly for “dead”™ memory addresses and reg-
isters in the final state, whose values will never be
referenced before being overwritten, and hence do not
matter).

Theorem. Assume that register allocation optimiza-
tions that take advantage of any special property
of a gwen code fragment (that is not shared by all
code fragments) are nmot to be considered®. Then,
gwen a single-entry code fragment, o candidate set of
load/store instructions in the code fragment, and a
memory address X (an expression, to be evaluated in
the starting state), the canonical register allocation
of memory address X as defined in the Introduction
will be a correct code transformation, if and only if,
for every starting state, both of the conditions (1)
and (2) (defined in the Introduction) hold during the
execution of the code fragment.

%This “rule of the code transformation game” makes our
approach suboptimal, but it provides great conceptual econ-
omy by avoiding special cases
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Proof. Sufficiency: Suppose that for all starting
states, both (1) and (2) hold during execution. Then
the transformed version of the code after the canon-
ical register allocation, clearly yields intermediate
states identical to the original code after each in-
struction exccution, except that all references to
memory address X are replaced by references to regis-
ter rX, which always has the same value as the con-
tents of memory address X in the original code. If
the original code fragment does not terminate for
this starting state, neither doces the transformed ver-
sion. Otherwise, rX is stored back into X at the end of
the code fragment in the transformed version, hence,
the final state of the general registers and memory
in the original and transformed code arc identical.
The only potentially different register in the trans-
formed code, rX, is dead at the final state. Hence,
the transformation is correct.

Necessity: Assume the contrary. Suppose we have
performed canonical register allocation for a candi-
date set and memory address X, and the code trans-
formation is correct, but therc is a starting statc
which leads to an execution which violates cither (1)

or (2).

If condition (1) does not hold, a member of the candi-
date sct is referring to a different address Y instead of
X during cxccution. This will still yield a correct final
result only if (a) X and Y have equal contents, or if (b)
the incorrect intermediate state in the transformed
program, still lcads to the same final result as in the
original program (or the same non-terminating be-
havior as in the original program). But, this means
that the optimization has relied on a special prop-
crty of the given code fragment (a property that is
not sharcd by all code fragments). Contradiction.

If condition (2) does not hold, then a load or storc in-
struction outside of the candidate sct but inside the
code fragment refers to X during cxecution. Then,
cither (a) the contents of memory address X and the
value of register rX arc identical at the instant af-
ter executing the offending load or store, or (b) the
incorrect intermediate state in the transformed pro-
gram, still leads to the same final result as in the
original program (or the samec non-terminating be-
havior as in the original program). But this means
the optimization has relied on a special property of
the code fragment (a property that is not shared by
all code fragments). Contradiction. O

References

[1] David Callahan, Steve Carr, Ken Kennedy. “Im-
proving Register Allocation for Subscripted Vari-
ables”, in Proccedings of the ACM SIGPLAN



'90 Conference on Programming Language De-
sign and Implementation (PLDI), White Plains,
New York, June, 1990.

G. J. Chaitin ct. al,“Register allocation via col-
oring ", in Computer Languages, 6:47-57, 1981

Fred C. Chow. John L. Hennessy. The priority-
based coloring approach to register allocation,
ACM Transactions on Programming Languages
and Systems (TOPLAS), Volume 12, Issue 4 (Oc-
tober 1990). pp. 501-536.

Pcter Dahl and Matthew O’Keefe. Reducing
memory traffic with CRegs. Proceedings of the
27th IEEE/ACM annual intcrnational sympo-
sium on Microarchitecture. pp. 100-104, 1994 .

Kemal Ebcioglu. Some Design Ideas for a VLIW
Architecture for Sequential Natured Softwarc. in
Proceedings of IFIP WG 10.3 Working Confer-
cnce on Parallel Processing, pp. 3-21, M. Cosnard
ct al. (eds.), North Holland, 1988.

Kemal Ebcioglu, Randy D. Groves, Ki-Chang
Kim, Gabriel M. Silberman, Isaac Ziv. VLIW
compilation techniques in a superscalar environ-
ment, Proccedings of the ACM SIGPLAN 1994
conference on Programming language design and
implementation, Orlando, Florida, pp. 36-48,
1994.

Stephen Fink, Kathleen Knobe, Vivek Sarkar.
“Unified Analysis of Array and Object Refer-
ences in Strongly Typed Languages”, in Proceed-
ings of the 2000 Static Analysis Symposium (SAS
’00), October 2000.

Rakesh Ghiya and Lauric J. Hendren. “Putting
Pointer Analysis to Work,” in Proceedings of the
25th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages,,
San Diego, California, pp. 121-133, January 1998.

Kathleen Knobe and Vivek Sarkar. “Array SSA
form and its use in Parallclization”, in Procecd-
ings of the 256th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages
(POPL), San Diego, California, January 1998.

[10] Jin Lin, Tong Chen, Wei Hsu, Pen-Chung Yew,

Roy Ju. “A Compiler Framework for Specula-
tive Analysis and Optimizations” in Proceed-
ings of the SIGPLAN’03 Conference on Program-
ming Language Design and Implementation, San
Diego, June, 2003.

[11] Massimiliano Poletto, Vivek Sarkar. Linear

Scan Register Allocation (1999). ACM Transac-
tions on Programming Languages and Systems,
Volume 21, Issue 5, pp. 895-913.

126

[12] Michael D. Powell, Amit Agarwal, T. N. Vi-
Jjaykumar, Babak Falsafi, Kaushik Roy. Reducing
set-associative cache encrgy via way-prediction
and selective dircct-mapping. Proceedings of the
34th annual ACM/IEEE intcrnational sympo-
sium on Microarchitecture. pp. 54-65, 2001.

[13] Vivek Sarkar. “Automatic Selection of High Or-
der Transformations in the IBM XL Fortran
Compilers”, in IBM Journal of Resecarch and De-
velopment, 41(3), May 1997.

[14] Kcmal Ebcioglu. Some Design Ideas for a VLIW
Architecture for Sequential Natured Software. in
Proceedings of IFIP WG 10.3 Working Confer-
cnce on Parallel Processing, pp. 3-21, M. Cosnard
ct al. (cds.), North Holland, 1988.

[15) Emmett Witchel and Krste Asanovic. The
Span Cache: Software Controlled Tag Checks
and Cache Line Size. Workshop on Complexity-
Effective Design, 28th ISCA, Gothenburg, Swe-
den, June 2001.



