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Abctnct

In this paper, we describe a Very [.ong Instruction Word architecture. now being designed at the IBM T.J.
Watson Research Center. which is intended to achieve good performance not only in scientific code. but also

in sequential.  non-numerical code. Communication delays between processing elements are minimized via a

single shared register file with a large number of ports. To perform well on programs with unpredictable

branches, the architecture features decision-tree shaped instruct ions that al low mult iway branching. and that
al low operations to be executed condit ional ly depending on where rhe instruct ion branches to. To add to the
paral lel ism achievable via exist ing compilat ion techniques for VLIW architectures, we have developed a com-
pilation technique czlled pipeline scheduling, which is an extension of the "doacross" and "dopipe" techniques
proposed for mult iprocessors by D. Kuck's group. This technique can init iate a new iterat ion of an inner loop
(possibly containing arbitrary if-then-else statements and conditional exits) on every clock period *'henever

dependences and resources permit.

Erckground

It appears that a cenain.amount of the inherent parallelism in ordinary programs is fine-grain: in fact. fine-grain
parallelism often appears to be the only type of parallelism available in a large body of non-scientific programs.

Unfonunately, the major trends in parallel architecture are not geared tou'ard exploiting such irregular fine-
grain parallelism, except for the data flow paradigm lDennis 74,80, Arvind and lanucci 83]. which in turn is not
too useful for existing software because it requires algorithms to be rewritten in a special functional language.
and incurs some overhead in inherently sequential code lGajski et al.  E2]. SIMD machines l ike the GF-l l ,

[Beetem, Denneau and Weingarten 85], systolic arrays like the Warp machine [Arnould et al. 85]. and the more
general-purpose vector supercomputers like the Cray lRussell 78] tend to work well on an important but limited
class of scientific problems, but fail to achieve speedup on problems that do not b€long to their domain; for
example, a typical scientific supercomputer reduces to a uniprocessor on pro3ram s€Ements where vectorization

is not possible. The problem of transforsring ordinary programs to run on MIMD multiprocessor architectures
has also rec€ived mucb attention [Kuck 7E, Allen aDd Kennedy 84], and while a speedup by a factor of thou-
sands appears to be possible for certain scientific problems with a large degree of inherent parallelism

fVeidenbaum 85], the speedup results with non-numerical algorithms have not been very promising: for ex-
ample, [L-ee, Kruskal.and Kuck 85J repon a typical speedup of l.3-1.5 on simple nonnumerical algorithms such
as binary search and merging. using their Parafrase compiler for an MIMD architecture (assuming that the al-
gorithms are not rewritten in a parallel way). It should be noted that program restructuring techniques as in the
University of lllinois Parafrase compilcr, are best capable of exploiting the coarse groin parallelism in scientific
code, which does not seem to be common in non-numerical code. While there is a modest amount of fine-grain
parallelism in non-numerical programs, practical MIMD architectures cannot erploit it well, because even a few
cycles of communication overhead can cause the speedup to b€ much less than ideal.

The VLIVY rchitecnre

Following the advanccs in microcode compastion tcchniques in the recent years after the introduction of the
tracc scheduling technique [Fisher 79],r an architecture called the Very [-ong Instruction Word (VLIW) archi-
tecture has been propos€d by J. Fisher [Fisher E2], which is specifically intended for exploiting the modest
fine-grain parallelism inherent in ordinary high level language pro€rams. VLIW machines, as the name implies,
have an unusually long instruction word, on the order of 50O-IOO0 bits or more, and can perform many simul-
taneous operations in a single instruction. VLIW architectures are roughly based on the idea of compiling high
level languages directly into horizontal microcode. Although a VLIW architecture has a single control mech-
anism as in a uniprocessor, it is distincl from a uniproccssor, because it can execute the eguivalent of many
uniprocesrcr instructions in a single cycle, thus surpassing thc rc-called Flynn limit for uniproccsson [Flynn
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66J.2 tt  is atso dif ferent from the typical SIMD architecture, because i t  can simultaneously execute dif ferent
operations in each of its processing elements.l

Sure of dre rrt h VLIW compiletion technhues

We wil l  now brief ly go over the status of the compilat ion and optimization technigues thal were developed for
horizontal microarchitectures and VLIW architectures. Many problems that arise in program optimization. such
as minimizing execution t ime. or minimizing program size. are known to be computation intensive. or to be
unsolvable. depending on how the problem is posed IMachtey and Young 7tt.  Rogers 67]. The earl l 'approaches
to microprogram optimization nevertheless did atuck the problem of minimizing program size andlor exe-

-cution time IAgerwala 76]. The early algorithms were confined to the optimization of basic blocks. and those
that did achieve optimali ty had to rely on t ime-consuming enumerative methods, for example, IYau, Schowe and
Tsuchiya 741 describe a branch and bound technigue for f inding an opl imal schedule for a given straight l ine
microcode segment. Moreover, the studies on real programs, for example lFoster and Riseman 72], showed that
a parallelism of only about 1.7 could be achieved, if the optimizations were limited to individual basic blocks.
Although enumerative optimization methods such as this branch and bound technique may have become prac-
tical now. considering the smallness of basic blocks and the raw computing power now available, the early ap-
proaches to microcode compaction nevertheless did not have much promise of achieving tangible parallelism,
because of the limited nature of the parallelism within basic blocks.

For obtaining higher parallelism than that which was available within basic blocks, J. Fisher IFisher 79] took the
approach of aggressively overlapping the op€rations from different basic blocks, for example, executing oper-
ations from the most probable clause of a fonhcoming if-then-else statement concurrently with the execution
of the operations of the current basic block. Fisher's technique. called tace scheduling, first chooses, with the
aid of some heuristic, a particular execution path or troce within an acyclic flow-graph. It then compacts the
operations in the trace into microinstructions, as if the whole trace were a single basic block (taking care not
to prematurely schedule assignments to variables that are live off the trace. so that the program does not give
wrong results even i f  the trace is not fol lowed during execution after al l) ,  and f inal l l '  makes the necessary ad-
justments in the other parts of the propram affected by the trace compaction. for example it provides copies of
ponions of the original code for those paths that were joining and leaving the original trace. Once the first trace
is done with. another trace which is disjoint from the original trace is picked and compacted, etc..  unti l  no un-
compacted code remains. Nested loops are handled by applying trace scheduling on the inner loop body and
then treating the inner loop as a single node within the enclosing loop. which can be done in reducible flow
graphs. The implement the trace compaction, a list scheduling algorithm can be used lAdam, Chandy. and
Dickson 741 which has a worst case running time which is only quadratic in the number of micro-operations in
the lrace. This scheduling technique does not guarantee optimality, but gives good results in practice. A problem
that limits the practical applicability of trace scheduling for non-numerical code. is that the probabilities of the
conditional branches must b€ specified by the programmer, or must be determined by actually running an un-
compacted version of the program; moreover, conditional branches musl have a high probability of branching
in one direction rather than the other. When progam execution does not follow the trace picked first by the
scheduler (say path A), and follows a different path B. then the compacted program may perform poorly.
compared to ho*' it would perform if path B were picked fint by the scheduler (this is true even for a machine
with unlimited resources, if the operations outside a trace are nol allowed to move into the trace after the trace
has been compacted into machine code). When combined with the additional technique of unrolling inner loops
prior to trace scheduling, the trace scheduling technique was reported to achieve about an order of magnitude
of parallelism in scientific code [Fisher E2, Fisher and O'Donnell 84]. When not aided by loop unrolling. and
when we lift the assumption that only scientific code will be executed. we have found in our (very preliminary)
experiments thal the trace scheduling family of compaction techniques can achieve a practically implementable
pardlelism of about 3, which we still feel is a good base speedup to improve upon.

Fisher's approach was somewhat complex, especially when correction werc applied to the paths joining and
baving the original trace. A. Nicolau [Nicolau 85] Sreatly simplified the ideas behind the tracs scheduling

It might b€ ergucd thet thc rnuhipb optretion clcrncnts evdlable in a VLIW rrchii..cturc rrc similrr to multiplc functronal units such
rs in rhe CDC 66{n lThornton 6{l or IBM 360,/91 lloating point unit lTomasulo 671. Bul rhe instrucrion issuc ntc.vailable in VLIW
machirrs lcnds lo bc grcarcr then multiplc functional unit. pipclincd architeclures. For cramplc. if wc drsrelard the charning epa-
til ity of thc Cray-l for rr"ctot opcnrbns, rc toc th.l rlr CDC 66fr and Cray-l lRussll ?t).rchirecturs crn stil l isur a marimum
of on itxrnrclbn pcr cyclc, cwn thor4h thcy heve meny funcrbnel unirs which crn opcr.lc in paralkl. (But e CDC/Cray-inspired
rtchitccturc thal can simulbncously issuc rro instructbns in e singk cyclc has rec"ntly bc.n devcbped lGoodmrn rt al. t5l.)
Assuming en ktcal VLIW machinc which hes en unlimited rmount of ALU rcsources end mcrnory pons, rnd which en pcrfornr
complcr conditionel bnnclrs to rrtitnrily nrny tsrtcts rt cach caclc, VLIW rnachines can lhcor"t;crlly havc the s.me power ar a

lnchrotrous MIMD.tchitcriurc: rn idcrl rynchrorrcus MIMD configuretion containing A rdcntictl RISC procrssors cech capable of
crccuting an imtructbn every cyclc, rnd running t differcnt progrrms with a,,....4 inslruclbns e.ch. c.n bc rnnslared to a VLI\I
configuralion with a progtrrn that conhins ll mo3t rr x ... r ,r| instnrlbns. 1.c.. cach inslnrctbn of d|. VLIW mrchane repcscnts
th. entirc sr.k of rll thc pressorr in th MIMD onputer.
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technigue and placed them on a more formal basis, by defining a set of primitive core transformatrons on the
programs of a microprogramming language for an abstract VLIW machine with inf ini te resources. He cal led this

technigue percolotion scheduling. By applying the core transfonnations. one can repetitively move
("percolate") operations from one microinstruct ion to a preceding one, and achieve the effect of overlapping

operarions from dif ferent basic blocks. and in part icular of trace scheduling. However, percolat ion scheduling

is not l imited to compacting. op€rations on a single trace, and so ma)' result in higher performance regardless of

whether a part icular trace is fol lowed during execution or not. The main advantage of percolat ion scheduling

I's. trace scheduling is the following: Given a machine with sufficient resources and proper architeclural sup-

port; percolation .scheduling. together with renaming optimizations, can be used to parallelize programs \A'ith

unpredictable conditional branches. by executing operations on o// forthcoming basic blocks past conditional
jumps, as soon as their operands are ready; so a program can perform at a rate close to the optimal data flo*'

speed, regardless of which branch is taken. On the other hand. trace scheduling u' i l l  tend to perform poorly i f

the trace that is picked first by the scheduler is not taken during the actual execution of the program.

We will now discuss some core transfornations of percolation scheduling as applied to the VLIW machine *'e

wil l  be discussing in this paper. But f i rst,  let us brief ly explain the form of the instruct ions of our machine, and
their semantics. The instruct ions of our machine have the form of a direcled binary tree as sho\\ 'n belou (A

formal descriprion of this computation mechanism was given in IEbciol lu 87]l  in this paper. we u' i l l  str icr l l
stress the clari ty of the exposit ion rather than formalism).

+ t<l

AtRl l  .  R8

L2 l2
LI:

((ADD R2 2 R2)
( IF (NOT CCI )

((LT R2 s CC3)
0F cc3 ((suBR7 I  R2) (GOTOL2))

ELSE ((COTO L2))))
ELSE ((LOAD A RI R8) (ADD RI 4 RI )  (GOTO L3))))

The root node of the tree is marked with the label of the instruction. On each node other than the root and the
terminal nodes, there is a mark indicating a test on a condit ion code register (the machine has mult iple condit ion
code registers). The tip nodes of the tree are m:uked with the labels of other instructions in the program. that
this instruction can branch to. On each directed edge in the tree, there may be zero or more tfuee-register
arithmetic or comparison operations, and memory loads and stores. An instruction is erecuted in a single clock
cycle, as follows: First, the current (i.e. old) values of the condition code registers are examined and a unique
path through the tree is sclected, starting from the root node and ending at a tip node, as follows (a path from
the root to a tip node is catled an i-branch of the instruction): when a node with a test on a condition code
register is reached (called aEst nd€), the path continues with the edge that goes to the lefr. if the test is true
for the current value of rhe condition code register; otherwise, if the test is false. the path continues *'ith the
edge rhat Soes to the right, and so on, until a tip node is encountered. After the path is selected, only the op-
eretions and memory loads tnd memory stores on the sclected path are cxecuted (in parallel), using the old
values of the registers as operands or addresses, and the processor branches to the instruction whose label is
indicated at the tip node of the selecred path through the tree. The operations and memory loads,/stores that

R2<5 '  CC3



k'c

K. EbcioEh,t

are not on the selected path are not performed. When there is more than one three-register operation or load
operation that sets the same destination register on the selected path. the result of the operation that is closer
to the tip node ukes precedence and actually goes to the destination register at the end of the cycle. A Lisp-list
notation for the same tree is given after the example instruction tree. We will later discuss how this mechanism
is efficiently implemented in hardware with a short cycle, and answer the questions that may to come the read-
er's mind abut operations that take longer than a single cycle, etc..

In figure l, we give an informal list of the percolation scheduling core transfornations, re-formulated by us to
fit the conditional execution mechanism of our machine. (Nicolau's original abstract microprogramming lan-
guage for percolation scheduling [Nicolau 85] has ess€ntially the same if-then-else branching mechanism, but
docs not have any conditional erecution mechanism; all operations are unconditionally executed in Nicolau's
language, i.e., they are all located in the stub edge of the tree. The ability of our machine lo execute operarions
conditionally depending on where the instruction is branching to. is a very important architectural feature from
the performance viewpoint; since it allows an instruction to gain headway from the target stream before actually
branching to the target. This technique reduces critical paths and loop iteration issue delays in software pipe-
lining, described later).

INITIAL PROGRAM:
( l ) :

(( lF cc4 ((GOTO (2))) ELSE ((GOTO (4)))))
(2):

(( lF (NOT ccS) ((ADD r I  x) (GOTO (6)))
ELSE ((ADD x y z) (GOTO (7)))))

MOVE-OP TRANSFORMATION :
( l ) :

( ( lF cc4 ((ADD-U r y z)  (GOTO (2')))  ELSE ((GOTO (4)))))
(2',):

( ( lF (NOT ccS) ((ADD x I  x)  (GOTO (6)))
ELSE ((COTO (7)))))

: old (2) is reuined if it still has prcdecessors

MOVE-CJ TRANSFORMATION :
0):

(( lF cc4 ((ADD-U x y z)
( lF (NOT ccs) ((GOTO (2")))  EI-SE ((GOTO (2" ' ) ) ) ) )

Et-sE ((coro (4)))))
(2") :

( (ADD x I  x)  (GOTO (6))
(2" ' ) :

( (GOTO (?))

: old (2') would be retained if it still had other predecesson

DELETE TRANSFORMATION:
(  |  ) :

( ( lF cc4 ((ADD-U r y z)
( lF (NOT ccS) ((GOTO (2"))) ELSE ((GOTO (7)))))

ELsE ((coTo (4)))))
(2") :

((ADD x I x) (GOTO (6))
:(2" ') :  (delcted)

UN I FICATION TRANSFORMATION :
(6):

(( lF cc2 ((ADD y I y) (GOTO (8)))
EI-SE ((ADD y I y) (GOTo (9)))))

becomes
(6):

((ADD y I  y)
( lF e2 ((GOTO (t)))

EtsE ((GOTO (e)))))

Fgrc l: Htha tctEdu[C corc rrucfonrtirs (rall-rc{ by rs)

The move-op transformation moves a simple operation, such as (ADD r y z) (meaning x*y+2) in the example,
from one instruction (2), to the cdge leading to a tip node of a prcdeccssor instrucrion ( | ). lf the predecersor
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i -branch of the previous instruct ion ( l)  wri tes into x or y. or i f  the old value of z is l ive at the beginning of in-
struct ion (2) on a path not passing through this part icular (ADD x y zl in (2), or i f  z is used on a palh passing
rhrough this (ADD x y z) in (2) by sorne operation in (2) other than (ADD x y z), or i f  there is an assignmcnt
to z between this (ADD x y z) and the root of (2). then rhe move of this operation (ADD x y z) cannot be made;
otherwise the move can be made, to obtain the result shown in the figure.' Note that in the process of moving
a condit ional ly executed operation such as (ADD x y z) to a preceding instruct ion, where i t  wi l l  be execured
uncondit ional ly. the operation has to be made unintemrptible ( indicated by -U here), in order to prevenr an
overf'low exception that would not have occurred in the original version of the program.5 The move-cj trans-
formation moves a test node such as " lF (NOT cc5) . . ." ,  from an instruct ion (2') to a preceding one ( l) .  by
creatinS two modif ied copies of (2'):  one, labeled (2"), that acts as i f  the test (NOT cc5) $'ere true; and an-
other. labeled (2" ') .  that acts as i f  the test (NOT cc5) were false. After the move-cj,  the predecessor i-branch
in ( l) ,  instead of branching to (2'),  branches to (2") i f  (NOT cc5) is !rue, and to (2" ')  i f  (NOT cr5) is false.
lf the cc5 register used by the test node is set in the predecessor i-branch of the previous instruction (l), the
move of the test no'de. of course, cannot be done. In both the move-op and move-cj transformations, if the in-
struction which originally contained the operation or test node had another predecessor i-branch. the original
copy of the inslruction has to be retained in order to preserve program semantics. Then. rhe operations in the
original copy can also be percolated upward through the other predecessors. The delete transformation simply
deletes an empty instruct ion, that has become empty as a result of moving i ts contents upward. l t  is the delete
transformation that actually reduces the path lengths and causes speedup. There is another transformation
cal led the unif icat ion transformation. which acts on a single instruct ion, and which serves to unite several copies
of the same operation after i t  and i ts copies have been pushed up along the dif ferent branches of. e.9.. an i f-
then-else statement. The unif icat ion transformation can be done i f  an operation is present on both of a t* ' in
pair of edges emanating from the same node n in the instruct ion tree (or i f  the operation is present on onl l '  one
of a twin pair of edges. but an imaginary copy of the operation can be inserted in the edge that does nor have
it.  without harming program semantics). The operation and i ts (possibly imaginary) copy are united and are
moved up zrs a single operation to an edge higher in the tree, namely, the edge coming in to the node n. On-
the-f ly incremental appl icat ions of classical optimizations, such as dead code el imination, cop) propagation. or
common expression el imination, can be combined with percolat ion scheduling. Assuming that rhe targel archi-
tecture suppons condit ional operations and i f- then-else trees. and that suff icient machine resources are avai l-
able, a greedy application of percolat ion scheduling that takes each operation or condit ional jump in the order
it  appears in the sequential version of a loop free program, and moves up each operation or condit ional jump
as high up as i t  wi l l  go on al l  parhs (atrempting unif icat ions before each move-op). u' i l l  already yield a good
schedule, and is suff icient to demonstrate the conoept.6 But scheduling with f ini te resources. variable length
operations, etc.,  and the related correctness, optimali ty and complexity issues, are less easy, and we are contin-
uing to do research on these topics.

A further technique for achieving parallelism in compiled code for VLIW machines is unrolling inner loops a feu'
t imes, and applying the scheduling techniques to the unrol led loop body' IFisher 82]. There have also been other
improvements to trac€ scheduling that have been published in the microprogramming workshops since Fisher's
thesis. such as tae compoctroa, [l-ah and Atkins 83], which prevents the proliferation of rhe ne*', copied nodes

Senerated by the trace scheduling process. But we feel that the impending avai labi l i ty o[ denser main memory
chips, and the use of code explosion control techniques, may at rhis stage al leviate the code size problem of the
trace scheduling family of compaction technigues.

Actually. cven if ttr€ old valuc of z is hve on a prlh through (2). the move can stil l bc made b1- changrng thrs dcfrnrrron of ? to (ADD
r y z'l lf thrs defrnition (ADD r y z) of z covers.ll of its uscs. i.e.. cach of its uscs us€ only this panrcular definirron of z, then all
of its uscs cen be rcnamcd as z': oahcrwise, a (COPY z'z) operatr,on. that copies z'bacl to z. can bc pleced in the old locatron of
(ADDryz) in(2) loptes.rvcprotramscmant ics.  Also. i f  thcoldvalueof zat thebeginningof instruct ion(?)corenal l  of  i tsuses.
tllcn thc motc can rgain bc m.dc by rdding e tnnsfcr (COPY z z'f tlonjside (ADD x y z) in instrucrion ( I ). rh.( crpres the old ralue
of z to z'. rnd renaming ell uscs of tltc oH velue of z to z'.
lf en overflos<eusng eddition ectually occun during (ADDU r y z). t vill bc scr ro rhc spccial bir parrern J' (bonom). but no er-
c.plion eill reke placc Thcn. if thc p.lh through thc oH loqtion of (ADD r y z) In (2) is rrualll l.\cn b) thc program. and z (or
tlrc rcsuh of rny unintcmrptiblc opcretion that depcnds on z) is letcr u*d as rn opcrand to an intcrruptible opcration. .n cxcep(ron
uill ocaur: so ronr .rilhrn€tic error trepping is provrded by our erchirecturc. The eltcrnrrivc solution of defemng the crceptron until
tlk I Yaltr b storcd into rncmory, b not r good onc, since thc crcaption couH bc detected too Ltc in c.sa mrny veriables rre allocated
an rcgtstcni. Wc will dcscritr thc herdwerc suppon for erithmetic treps hrer in the pepe r.
Xotic. [h.t thc codc produccd by such e grccdy epphcetion of pcrcolerion rhcdultng. doEs not arecuta d// thc opcr.txrns in thc orr-
3inal codc. rcaerdless of whcther th.y arc uraful or rrct (do16g le woold be unecccptebly incfficrnt. c.g. in e dccrsion tree type code
grucaurc). As soon rs it is lmwn rh.t a path i5 nol torng to bc taken. the codc prodrred by grccdy percolarron rhcduhng stops
ctccutinS opcrations on thrt p.th, so rrsourcas rrc wegcd preciscly on tlr opcrttions who* operrnds bccomc rcedy. bcfore or at the
srm€ lirrc.s th. conditbn codc(s) tha( detcrminc thc non-ncccssity of rhcs. opcrrrions bccorne rcady. lf rhe pca\ F.rallchsm of the
pmblcm is rc bw ($ in sFlem or cornmcrciel code) thal scwrrl m:chinc Fesourrrcs rre rlrcedy pracric.lty infinirc for rhc problem.
aestrnt rcs(xrrc?s in this oolrol|cd frshinn will probedy nor hun.
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Stete of dre ert in VLItil erc-hitectures

Now ler us review the state of the arr in VLIW architectures. A VLIW architecture would best be implemented

from scratch, since none of the existing micro-architectures apryar to offer the degree of parallelism and flexi-

biliry demanded by the task of compiling higfr level languages. Traditional wide-word microarchitectures like

the internal microarchitectures of tradirional mainframes, or even general purPose user microprogrammable

compurers t ike the Nanodata QM-l lNanodata ?9], or the Kyoto University QA-l and QA-2 [Hagiwara et al.

80. Tomita et al.  861, or the Floating Point Systems FPS- 164 [Charlesworth 8 |  ]  are in our opinion not too usef ul

as VLIW's because these machines seem to have been designed more for hand-coding than for specificalll'

compiling high-level languages. Perbaps with the erception of the QA-l and QA-2, such machine tend to have

irregular and non-uniforrn resources which do not lend themselves well to compiling high level languages.

Moreover. none of these machines have the capability of implementing multiway branching in the form of if-

then-else trees, which is the natural mechanism for executing several ordinary conditional branch instructions

in a single cycle. Nevertheless, untiJ about a year ago, VLIW architectures intended for compiling high level

tanguages were stitl in the planning stages. But presently, a comPany called Multiflow already has a machine:

and there seems to have been a sudden increase in interest in designing VLIW architectures. J. Fisher. when

he was back at Yale. has considered a VLIW architecture called ELI-5 12, with 8 fixed point and 8 floating point

"clusters" each of which has separate banks of registers, ALUs, multiplien, etc.l and a 512 bit instruction word

[Fisher 82J. The ELI archirecture has essentiaUy a crossbar interconnection wirhin a cluster, bur timid inter-

connections between clusters, and extra cycles are required to move data between clusters. The multiway

branching capabiliry of the ELI is of the form: if ferlr then Eoro tartett, else if lasr2 then goto torgetz.... else goto

nrget,, which is good for compaction of conditional jump op€rations on a single trace through the code (but

conditional jumps outside the single trace cannol be executed in parallel with the ones in the trace. with this

mechanism.) Fisher is now with Mult i f low, whose Trace 28/2O0 computer IColwell  el al.  87J is an ELI- inspired

machine, in the sense that it features l-boards for integer operations and F-boards for floating point operations'

each of which have s€parare register banks and ALUs. The Trace 28/2OO has an instruction cache, multiple

memory banks, a pipelined data memory- access technique where a data memory access completes in several

cycles, and pipelined ALUs that complete a floating point operation is several cycles Memory bank

disambiguation is done primarily through software. We feel that this is an effective configuration especially for

scientific code. A. Nicolau and Kevin Karptus have considered a VLIW architecture called ROPE IKarplus and

Nicolau 85]. thar capitalizes on highly interleaved, slow, but low-cost dynamic memory as the instruction

memory. The ROPE architecture does support a multiway branching capability similar to that of percolation

scheduling. but i t  has a very sequential implementation of this branching mechanism; i t  issues the prefetches

(one per cycle) ro the separate targel instruction streams of a multiu'ay branch. several cycles ahead of the cycle

where the actual multiway branch decision is made for choosing a particular target stream for execution. This

machine's throughput would consequently not be high on code whose originat sequential version is conditional

branch intensive, moreover the ROPE prefetching scheme seems to have considerable engineering complexity

compared to the alternative of sending the correct target address to an instruction cache. Another related ar-

chirecture is the polycycl ic architecture designed by B. R. Rau. [Rau and Glaeser 81. Rau, Glaeser and Picard

821. which is not a conventionat microarchitecture, in the sense that it does not have any registen. Instead there

are FIFO-like buffers between the output of every functional unit and the input of every functional unit. Tbe

functional uni6 are pipelined. The FIFO-like buffen are useful for. e.g., allowing an operation of iteration n+ I

of a software-pipelined loop to proceed and producc a result, even though the result of the same operation in

iteration n has not yet |3en consumed by all destinations of that operation.? B.R. Rau is now with a company

called Cydrome, whose Cydra 5 (nt) machine is an architecture inspired from the polycyclic architeclure

[Cydrome E8]. The Cydra 5 has highly pipelined floating point adder and multiplier units, and a high latency

but pipelined data memory system. The branching capabilities (i.e., conditional branch throuS.hput rate) of this

machine are not clear, but a different compilation technique is used instead lo remove conditional branches from

the code: lf-then-clse statements within loops are eliminated by computing the values calculated at bor, the

then and else parts and selecting the correct value via a machine operation similar in semantics to the C ex-

pression (tesr?operandl:operand2). This technique converts the loop body to an lFless basic block. Stores to

memory in the untaken path of an if-then-clsc are conditionally disabled. Good software pipelined performance

is possible especially in vectorizable inner loops. But due to the basic block model for the inner loop, a single

iteration initiation interual (i.e., delay between tbe initiations of two consecutive iterations) is chosen for a given

inner loop during software pipelining (even if the original loop allows different iteration initiation inten'als de-

pending on rhe different paths that may bc raken through the toop body). CHoPP [Burke 8?] is another sci-

entific supercomputer, which consists of scveral VLIW processors which share a codrrnon rnemory, where each

Ir is inrertsting to oonrr.sl Reu's tcchniguc with thc sutk dzu fbs pandigm [Dennis t0l. Ttrc &ra flo* pamdiEn can also achicve

eofrwarc pipclining by erccuting opcrrtions frcm itcntion n+t bcfoF finishing all rhe opcr.lions of itcration n. but in static data

fbw (c.3.. implcmcnred wirh thc "rcknowledgc" rnclhod) .n oper.tion of iler.rion n+ | writs unlil .ll thc rcsult to\ens of thc seme

operatbn in itrratbn n rre consumcd. Taggcd tolcn d.t fbw schitrcturcs do nor run into rhb fipeline stelling probl€m (8t thc cosl

of sornc ott bced).
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A VLII| Architecture for Sequential-Natured Sofrware

VLIW processor features a mult iport register f i le with ful l  connectivi ty to 4 integer ALUs. and another. sepa-
rate, mult iport register f i le with ful l  connectivi ty to 4 f loating point ALUs. apparently two-way condit ional
branching. instruct ion cache. and a single pon to the shared memory. So there is crrtainly a rapidl l '  gro*' ing
interest in VLIW architectures, but the targeted software almost always s€ems to be scienti f ic code, rarher than
inherently sequential code, which is the subject of our architecture research.

The pipeline schedulirg technhue

We will now describe a new VLIW compilation technigue that we believe could aupmenr lhe repertoire of
compilation techniques for VLIW architectures.

It  is an obvious fact that the speed at which inner loops are executed have a cri t ical effect on the runtime of an
algori thm. When each of the inner loop i terat ions can be independently executed, then vector instruct ions can
often be used in a supercomputer, or the iterations can be allocared ro different processors on a MIMD archi-
tecture. For loops where some iteration depends on some previous iteration. which appears to be a common
case in real programs, executing the i terat ions in pipel ined fashion. e.g., start ing a new iterat ion every cycle. is
an attractive way to achieve speedup. In the context of microprogrammable architectures, this speedup tech-
nique is called sofr*ore pipelining. Methods of implemenring this technique by hand-codiDg were discussed in
IKogge ?7] in the context of pipelined aray processors; and a technique for pipelining inner loops wirhour anv
condit ional statements was actual ly implemented in the FORTRAN compiler for the FPS-164 array processor
[Touzeau 84]. David Kuck's goup at the University of I l l inois have suggesred a compilarion rechnique cal led
dopipe [Padta 79, Davies 8 t ]  to achieve this sort of pipel ining on MIMD compurers. This technique divides up
the loop body to pipel ine segments (which are taken ro be the maximal strongly connected componenrs or pi-
blocks of the data dependence graph of the loop body), and al locates each segment ro a dif ferenr processor.
Another technique. dmcross has been proposed by [Cytron 84, Padua ?9]. which allocates differenr ir.eratrons
of the loop to dif ferent processors. where the processor containing irerat ion i  stans executing the loop body afrer
a delay proPort ional to i .  Cytron also proved that the problem of deciding whether there exists a semantics-
preserving rearangement of a given loop body so that a given iteration issue delay can be achiet,ed for rhe loop
is NP-complete. which sugSests that achieving optimal code with f inire resources for this sort of pipel ined loops
musl be computation intensive, although some heurist ics have been found, both b1' [Cyrron 84] and also by'
IMunshi and Simons 8?]. But even i f  we assume thar the processors run with the same clock so that rhe normal
synchronization requirem'ents of MIMD machines are at leviared, these irerarion pipel ining techniques require
synchronization at least in (he case where a loop i terarion can take a variable amount of r ime to produce a Ialue
needed by the next i terat ion because of condit ional statements. and when we do not want to be consenative
by taking the worsl case time in computing the iteration issue delay. We will suggest a compilation rechnique
for inner loops on VLIW machines, that can perform this sorr of iteration pipelining and rhat avoids rhe syn-
chronization problem. Our technique works on inner lcops that do not contain subroutine calls. bur which ma1'
contain i f- then-else and condit ional exit  statements. With this technique, cal led pipel ine scheduling. a new irer-
ation of an inner loop can be started on every cycle if dependences and resources permit. Given an1, inner loop
body. our algorithm generates the flow graph (actually a multigraph) rhar repres€nrs the possible srates of the
pipeline in breadth-first fashion, and ensures that the states start repeating wirhout having to generale roo many
of them.t Unlike some previous approaches [e.g. Touzeau 84]. which do nor al low pauses berrleen the in-
struct ions of an i terat ion ( i .e.,  a "r igid" pipel ine) our technique stans a new iterat ion as early as ir  can without
regard to whether the iteration can finish without pausing. and allows arbitrary pauses between the instructions
of an i terat ion ( i .e.,  a "f lexible" pipel ine). Also. i terat ions may complere our of sequence in our rechnique. e.g..
if iteration n - 2 takes a long path, and iteration n takes a short parh.e Alrhough the programming derails of our

Supposc we call lhe s€t consisting of the entry instruction of the gcncrated sofrware-pipelined code. levcl l: end we call the successrs
of the cntry instruction that arc not in ler'el l. lcvel 2. rnd $'e call the succcssoE of insrructions in level 2 that are nor in le|el ? or
l . le vel 3' elc. Then' tbe mlrimum number of lcvels in the Senerated software-pipclned code is guaranteed not ro ercred the hngrh
of the longest cycle frec path stanin8 at thc enrry instruciion of thc original loop. A succ?ssor of an).instruction at lhe marimum level
is guaranleed lo b€lont to thc previous levels or to th€ s.m€ lcvcl ( unless it is en cxit ). Note rhat therc is no guannlee thar such re-
p€atin8 pipcline $ates can be obtained within so fcw levcls by unrolling an inner bop I numbcr of (imcs rnd naivell, .pprylnt rrace
or list schcduling ro thc unrollod bop.
Thcre havc rccentty bcen orhcr tcchnhucs rhet hiw bccn indepcndently discovcred for rcfr*are pipctining of loops wirh resrs. The
no6l inlcrcs(in8 elternltivc tcchniquc (inlerestinS in terms of competcnca of lhe rcsulting code es vicwcd by a micmprogrammer)
tctms to trc A Ai\en lnd A. Nicolau's Perfect PipelininS rrcthod lAiken end Nicolau t7l. which is appliebh ro unc-ompacred loop
bodics. Thc nmpb rub rcchniqm that thcy proposc for implehcntinS Perfecr Pipclining involves unrolling the loop a numbtr of rimes.
tDovin8 up thc differcnl itcntions in tbe unrolled codc onc by one ee high up rs thcy cen to on .ll paths. wilhout rnrroducing an_r
pauses betwecn the instructpns of ln itention, rnd then finding rrdundant microwords (reperting states) in each prth stantng at tne
heeder of thc tlsultin8 unrolled'compaclcd code. end rcmoving thes rcdundant microwords end having the cdgei thar went to (hcse
rttnoved microwords to to thcit copies inslcad. The simple rule docs not lllos pruses bctwcen thc instrudions of en irerarion, i.e
il ptoduccs e rigid pipclinc: which may rcducc rhc itention issuc rate (e.g.. itererion n+ I cannot stan until itcration n has progressco
lo r suSe vhcte ileralion n+l crn ian ?rGcution lnd continue wirhout peusing on a// possible palhs thal irlration n+ | cen rake
lf peuscs wert rllo*cd. itcration n+l couH have bcen ablc lo stzn carlier rnd pausc on en es-needed basis, end could have allowcd
thc pipelirrcd codc to rusttin a higher itcfrtion isstrc ratc). Howcvcr, zcracyctc dclays bcrwccn lha issuintl of con-cuaire rtcra(tons
nay bc rchievcd with thc Pcrfcct Pipclinint mcthod (until rcsourccs rr! crhrustcd) whcn sotnc parhs of thc bop have no inler-
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schedul ing algor i thm are themselves easy to understand, the code generated by the algor i thm is very paral le l  and

formidably difficult to understafrd or imitate by hand-coding even for modest sized loops; so we will just try our

best to explain rhe method clear ly.  The inpur of  the algor i thm is an already compacted inner loop bodl '  v. ' i th a

dist inguished entry insrruct ion labeled ( l ) ,  and some other instruct ions internal  to the loop with orher numerical

labels. The branch target labels that are referred to by instructions in the loop that are not the labels of other

instruct ionswithintheloop,are cal ledtheexi t lobelsof  theloop.andareof theform(El) , (E2), . . . (EK).  The

list of live variables at each exit is also specified with the input. The outpul of the algorithm is another program

which is a software pipelined version of the given loop body.

The algorithm uses a queue of labels which is initialty empty. The instructions of the soft*'are-pipelined version of the loop

are placed in a data slructure called schedule, which is elso initially an empty list. The entry instruction of the pipeline

schedule is a copy of the cntry instruction of the toop body. and is also labeled ( I ). however for each branch urget (r)

marking the t ip nodes of  the f i rst  instruct ion of  the schedule,  where (r)  is  nci ther (  |  )  nor an exi t ,  we change (r)  to ( /  (  I  ) ) ,
rnd enqueue the label (r ( I )) at the end of the label queue. if it is not already in the queue. Then while the label queue is

nor empty. we repe titively pick a label from the front of the labe I queue, generate a ne$' instruction of the schedule wilh that

label, and pocsibly add more labels to the cnd of the queue during the creation of this new instruction of the schedule.

Consider a label (p 9) picked up from the front of the queue. Here (p) is always the labe I of an instruction in the loop bod5 .
and 4 is of  the form (q,k2. . . (q, l  . . .1) , :  > l .  where (9,) .  . . . ,  (4-r)  are labels of  instruct ions s ' i th in the loop bod1. and
(g,) is cither the label of an instruction within the loop body, or an exit label. Intuitively. (p) is the label of an instruction
that belonSs to the "current" iteration, and g is cither an exit label or the label of a cluster of loop instructions already in

the schedule. which belone. to "future" iterations.

To construc( the instruction labeled (p 4). we first make a copy of the instruction labe led (p) in the loop bod1 . Then. to each

t ip node in th is cop1 .  we try to append a cop,v of  the instruct ion labeled 9,  (which is al*avs already in the schedulc.  unless
g is an exit label), depending on the 5 possible cases:

Let (r) be the rarger label that marks this rip node of this copy of (p)

i f  ( r )  is  an exi t  label

then leave this tip node inract r
e lse i f  ( r )  is  (  |  ) .  :

i f  g is not an exi t  and g is OK to execute concurrent ly wi th th is i -branch of  (p) 'u.  and resource constraintsr 'heur ist ics

are satisfied

append a copy of g lo this tip (by deleting the tip node. and the root node of the copy of g, and connectrng io-
gether the edge that comes in to the tip node and the edge that goes out of the root node of the copl'of 4).

else

chanBe rhe target label (r) to q in this rip node
end

else / '  ( r l  is  nei ther (  I  )  nor an exi t  label  ' /
if q is not an exit and g is OK to execute concurently with this i-branch of (p), and resource constraints/heuristics are

satisfied,

append a copy of q to this tip. Change each target label s of this copy of 9 appended to the rip, to (rs), and add
(rs) to the end of the queue, if ir is not alrcady in the queue or schedule.

else

change the targel  labcl  ( r )  to (r  g)  in th is t ip node. Add (r  4)  to the end of  the queue. i f  i t  not  a l readl  in the queue

or schedule.

cnd

end

Once all tip nodes in the the copy of the instruction (p) have been modified this *'ay. the modified instruction (p) is added

to the schedule,  af ter  changing ia label  to (p q\ .  And then, anorher label  is  p icked from the front of  the queue. and another
schedule instruction which has (har lab€l is generaled. etc., and the whole pr(xess is rcpeated until the queue is cmpty.

Pipeline scheduling is formally described in detail. end irs termination, and the s€mantic cquivalencr of its output to rhe input

bop, arr proved in [EbcioElu 871.

Often. the only re:rson that the cluster of instructions 4 in the schedule belonging to future iterations cannot be

cxccuted concun"ntly with thc particular i-branch of the loop body instruction (p) is because q is writing into

some register t whose old value will stil l bc used during the current iteration. In this case , if an extra register /

ileratbn dcpcndcnccs (ln our rechniqrr, ryhcrc the ilcrrtion isre dclay cannot b€ l€ss then one cych. such zcro.cycle dela;s may
be achievcd rrct dircctly, but by unrcllinS thc bop r number of umes, compacting thc unrollcd code, and then appl.ving pipeline
rchcduling).
For thc casc of registcr dcpendcnces only. 9 is OX to crccute concurrcntly wirh a panrcular i-branch of Qa). iff 9 des not write a
tcgisrer rhat is rced oi wriltcn on . cyclc fr€c palh in lhc loop body tening at th€ brgcr (/) of this ibrench end cndrng ar ( | ) or an
crit: end g docs not rc.d | rcgistcr th.l b writtcn on this i-bnnch or on a cycle frec path in thc loop body sr.ning .t th€ rarget (r)

of this i-br.nch tnd cnding rl ( | ) or tn Grit.
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is avaifable. and i f  this i-branch of (p) has no definit ions of r.  and i f  an imaginary definit ion (COPY t r) of r at
this t ip edge of (p) would cover al l  of i ts uses, i .e. no other definit ions of l  would reach these uses. then these

uses of I in the loop body or exits can be renamed as t'. and a transfer (COPY r l') (meaning t 
- 

r') can be added

ro this tip edge of (p). After these changes, the copy oI g czn be added harmlessl-"" to this branch of (.p). even

though 4 clobbers r. This renaming transformation can be crucial in obtaining a short iteration issue rate: and

can be done on-the-f ly during the pipel ine scheduling algori thm. whenever a pipel ine stal l  is noticed b1' the al-
gori thm which appears to be f ixable by renaming. In the worst case. with inf ini te resources. the pipel ine

scheduling technique may generate O((n - | )!) schedule instructions for a given loop of n instructions. Bul

code explosion is prevented to a good extent because of the resource limitations on the size of the microwords.

The appendix gives an example of pipel ine scheduling. on a loop that f inds the maximum and minimum elements

of an array. This loop. taken from lJensen and Wirth 74] eramines two elements of an array in each i terat ion,

and updates the running maximum and running minimum of the array, if they need to be updated. First n'e give

rhe sequential intermediate code for the inner loop, followed by the same code compacted using greedl'

percolat ion scheduling. Final ly lhe compacled loop body is scheduled using pipel ine scheduling technique. but
assuming infinite resources. in order to demonstrate the available parallelism. As the reader can see, in the
sready state pan of the loop, the software-pipelined loop throughputs one iteration per cycle except when the
minimum or maximum is updated. in which case the pipel ine stal ls for one cycle. l t  should be noted that this
degree of paral lel ism is rather good for this sequential-natured algori thm. The technique described above is
l ikely to extract paral lel ism that is l imited only by the number of operation elements. I t  is superior to loop un-
rol l ing lFisher 82] in serial loops where i terat ion n + I has some dependency on i terat ion n. because i f  such a
loop is unrol led t t imes and then scheduled with an exist ing technique l ike trace scheduling, then the I i terat ions
contained within the loop may indeed be pipel ined but the init ial  pipel ine f i l l ing delays wil l  be incurred on every
A i tcrat ions. Such delays are incurred only once in the pipel ine scheduling technique. Moreover. large numbers
of loop unrol l ing can Senerate more code than the code generated by our tecbnique.

hoposed mechinc rrchitecrure

The architecture of the proposed machine has been purposeful ly designed to be streamlined. in the tradit ion of
the 801 and RISC IPatterson 81. Radin 82, Hennessy et  a l .  82] .  However.  unl ike the s ingle-chip RISC ap-
proach. we have decided to make ample use of VLSI for implementing a very high degree of connectivi t l '  and
easy-to-schedule resources in our machine. We wil l  give a prel iminary descript ion of our design ideas belou'.
For architectural features such as the number or registers or ALUs, we u' i l l  not specif l '  a specif ic number, but
a symbolic constant, since a synchronous computer design is essential ly a hard-u' ired paral lel program for in-
terpretinS instruct ions: and we feel that i t  is not a good idea to use specif ic numbers in programs, or to proclaim
a fixed number for the available amounl for an architectural resource and have the soft*'are become dependent
on this fixed number. We will give after each symbolic constant. in parentheses, what its value will be in the first

Protolype.

The proposed architecture (which currently does not have a name) consists df 1,. .s (8) identical ALUs. each
capable of executing a usual repertoire of integer, logical,  shif t ing. f ield extract ion. and f loating point operal ions,
as well  as conversion operations between integer and f loating point. The f loating point format is IEEE single
precision, and the integer format is 32 bit  two's complement and 32 bit  unsigned. However, gver) operation
yields a result:  There is a special bit  pattern l ,  cal led "bottom" (obtained via an addit ional exception tag bit  -
a 33rd bit) analogous to the bottom element in latt ice theory or in Backus's FP language, that is the result of
operations that would normally cause an exc€ption. I f  an operation would normally cause an exception (such
as integer overflow), or if one of the operands of the operation is J'. the result is l. There are interruptible
(exception-raising) and uninterruptible versions of each operation. The intemrptible version causes an excep-
t ion when the result is l ,  the unintemrptible version never causes an exception even when the result is L. This
type of architecture is required in order to aggressively execute operations ahead of t ime. without fear of in-
curring e.9,., an overflow or division by zero exception which would not have happened in the sequential version
of the program.

The main communication scheme between the ALUs is a 3rVr.1 5 (24) pon register file consisting of N^ro, (64)

33-bit registers (counting the exception tag bit). At the beginning of every clock period a given ALU can read
any two registers as input and can transfer its result to any register (conceptually) at thc end of the same clock
period. lf more than one ALU result is simultaneously written into a register. the written value is architecturall)'
undefined (however, the values are or'ed together in the prexnt implementation proposal). RtSC-like pipelin-
ing techniques with bypass paths (similar to those described in [Agerwata and Cocke 8?J) are used to reduce
cycle time.tr Non-pipelined versions of multipon reS,ister files with this organization (but with a small number
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of ports) were previously used in the Nanodata QM-l INanodata 791 and the Kyoto university QA- l  and QA-2
machines IHagiwara et al.  80, Tomita et al.  86J.

The ALUs are combinatorial:  integer addit ion. subtraction. logical ope rat ion and shif t ing can be done in a single
cycle. For operations that cannot be done in a single cycle, the inputs must be held constant and the result will
be valid after a predetermined number of cycles. A multiple-cycle ALU operation can be spread out over se-
veral consecutive instructions as long as the inputs of the ALU are kept constant, the other ALUs can perform

many single-cycle operations during this t ime. Sequential operations such as division also appear combinatorial
(e .9..  as implemented in the BIT ALU), and their inputs must also be held constant throughout the enrire op-
eration. The reason we chose combinatorial. rather than pipelined floating point operations is because they
simplify the design, they are more amenable to precise interrupts. and they tend to provide faster execution in
inherently sequential code. e.g. pipelined loops where iteration n+ I depends on a result from iteration n.

The data memory address is 32 bits long and indicates a byte address. A store operation can write 32-bit
ful lwords. al igned l6-bit  halfwords, or 8-bit  bytes. A read operation can onl l ' read a ful lword. u'hich can be
broken apart by a subseguent operation. Fullword memory operations can also be done uninterruptibly. in
which case a read of a non-existent or protected location will return the special I value, and a store operation
wiff  storel in memory without causing an exception. Memory access is achieved by N^rrr/2 (4) ahernating
address and data ports lo memory. The left input of ALU 0 and rhe output of ALU ! constitute the address and
data paths of memory pon 0. Memory ports I ,2,3,.. . .  (N.u s/2) - I  are similarly defined for the remaining pairs
of ALUs. There are N"..",  (8) independent banks in the prototype memory, such that consecutive words are
in consecutive banks. Memory operations take a single cycle in the absence of bank confl icts. When there is
a request from more than one port for a given bank. the requests are satisfied in increasing pon order, and the
instruct ion clock is held unti l  al l  requests are satisf ied. We felt  that such hardu'are assist had to be provided
since memory bank disambiguation at compile time is less successful for non-numerical code than it is is lor
paral lel scienti f ic code. Note that the data to be stored is taken from the output of an ALU, so there is no t ime
to real ly store i t  in the same cycle. A buffering technique is used instead. which nevertheless al lon's the new
value of the memory location to be read on the cycle immediately following the "store." via a bypass path from
the buffer register.

The instruction word is 537 bits wide. For each ALU an operation. two sources and a destination is specified.
Eachinputof  anALUcanbetakenfromeitheraregisterorfromoneof the N,ru (6) 32-bi t immediaref ie lds
in the microword (some of the same immediate f ields can also be read as sign extended l6-bit  f ields). The
destination is specif ied as a register number. and a Nrr^orrs (4) bit  transfer enable mask. (The machine can dg
a mult in'ay branch to Nr^^or^ targer instruct ions). Suppose that at the beginning of an ins(ruction, the current
values of the condit ion code registers are such that the instruct ion branches to target t ,0 S r S Nrrrcrrs - |
Then, the transfer to the destination register of this ALU takes plact only if i 'th bir of the transfer enable mask
for this ALU is l. The purpose of this mechanism is to allow the conditional execution mechanism of the deci-
sion tree shaped instructions described above. For example, assume that an ALU operation occurs (in a non-
overridden posit ion) on the f irst two i-branches of the instruct ion-tree; but not in the remaining i-branches.
The compiler wi l l  then set bits 0 and I of the operation's transfer enable mask to l ,  and u' i l l  set the remaining
bits of i ts transfer enable mask to 0. ln addit ion to the ALU parcels and immediate f ields in the microword,
there also are memory pon parcels for each memory pon, and branch control masks for conditional branching.

The conditional branch mechanism was designed to support the if-then-else tree multiway branching mech-
anism, and to allow Donsense comparisons (such as comparing the result of a division by zero to an integer) to
be executed ahead of time, as long as they do not affect a subsequent branching decision. There are N..,,2-bit
condition code registers, one for each ALU. Comparison operations (such as GT, LT, EQ for two's comple-
ment comparisons, and their unsigned and floating point variants) set the condition code register for the par-
ticular ALU. The possible values for a condidon code register are true (01), false (0O), and error (lX).

Comparisons that involve the special I value as an operand set the error condition code, and also cause an ex-
c€ption if done intem.rptibly. Three valued logic (true, false. error) is used for next address selection.12 For each
branch target i, 0 < i < Nrr^crr, -1, there is a pair of /9r.,5-bit masks in the microword, A, . and 8,, which
specify two arbitrary subses of the condition code (cc) registers. At the beginning of the instruction. for each
branch tarBet i,0 S t < Nr^^"rr, -1, a three-valued logic signal called target,is computed as follows: If ,{, and
8, are disjoint, and each cr in .1, is true and each cc in 8, is false, then target, is true, otherwise il .1, and B, are
not disjoint, or at least one cc in ,{, is false or at least one cc in 8, is true, then target, is false, otherwise, rcryet,
is crror. After computing these signals, the machine finds the first i such that target, is not false (it better be true,
otherwise a branching error exception occurs); and then selects the absolute address of the next instruction from
immediate field Si. But if all target signals are false, then the next instruction address is taken to be the address

with the relevent t ruth tablc cntr ies bcing (F and E)-F.  (T lnd E)rE. (E and E)-E. (T or E)-T.  (F or E)-E. (E or E)-E. (not

E)-E. lr ls intcrcslinf 10 notc thrt [Klccne 521 h:s uscd r thrc -vdued ]ogic wilh rhe semc trurh l.bbs u thc ones uscd hcrc. for
rcpresentinB thc valucs of compureblc pradicatc. *ith rhe third truth veluc recerved for lh€ c.se whcrc thc program implemcntrng
ahc prcdicarc docs not iarminrl..
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of thenexts€quent ia l  instruct ion.whichisconsideredtobetargetnumber l { r r^orr ,  -1.  Al l  of  th is istoenable
the paral lel execution of Boolean expressions such as (yl=0 && x/y>3) in C, where x/y>3 can be compured
wirhout having to wait for y!=Q to complete. and where the condit ion codes result ing from y!=0 and x,/y>3 can
be tested simultaneously without incurr ing a branching error exception. even i f  y is indeed 0.rr Uncondit ional
branch is obtained by placing an always true patlern (nul l  sets) in the f irst pair of masks. no-branch is achiered

by placing an always false pattern ( intersecting sets) in alt  the pairs of masks. In addit ion to the.N7 lR(,rrs pos-

sible targets. an additional escape pattern in the masks forces the next address to be taken from the output of
ALU l. This is necessary for performing computed goto, returning from subroutines, and calling functions
passed as parameters.

Protection is provided through supervisor and user modes. When an interrupt is detected. control branches to
location O+some offset determined by the typ€ of interrupt. Interrupts are disabled and processor is forced to
supervisor mode. l f  an intem.rpt logical ly occurs during instruct ion n, i t  is detected at the beginning of instruc-
t ion n+1, and the updating of the register f i le by instruct ion n is inhibited (remember thal the register f i le is
updated late. due to pipel ining), and the privi leged "oldpsu'" register is loaded t l i th the address of instruct ion
n. plus the condit ion codes and other process state registers as they existed in the beginning of instruct ion n.ra
Alf f  /O is memory mapped. andl/O accesses are possible only in supen' isor mode. A return from an interrupr
( load PSw) is accomplished in the supervisor mode by a special variant of rhe branch-to-AlU-l instruct ion that
also loads the condit ion code registers and other process state registers from the output of ALU-3 (and of
ALU-5. ALU-7,.-.  as determined by the PSw length implied by the architecture parameters). and stretches the
cloch during the next instruct ion i f  necessary, so that any interupted long combinatorial operations are started
from scratch and are given ample t ime to complete.

Note that the architecture described so far does not define any virtual memory mechanism, cache. or |  /O s) 's-
tem. but clearl l  al lows precise intemrpts. and provides the primit ives so that some memorl hierarchy can be
designed. To make the project real izable. we * ' ish to decouple the design of the caches, virtual memorl '  mech-
anism. and l , /O system from the CPU design. At this point we only'* 'ant to study the behaviorof the CPU u' i th
inf inite cache performance. So we wil l  only bui ld a version with a small  amount of fast memor) '( l6K words
(- lMbytes)of  instruct ionmemoryand l28Kwords(5l2Kb1' tes)of  datamemory).whichu' i l l  beattachedto
an IBM PC/AT through an interface card. This interface card wil l  be able to start.  stop. and single-step the
clock of the VLIW machine, read and write al l  of i ts internal registers through a scan r ing. read and r* 'r i re irs
memories, and exchange interrupts with i t .  This way we n' i l l  be abte to dorlnload and run some small
benchmarks in the VLIW machine. As for the software side. we plan to develop a compactor thar takes the
intermediate code output from the C version of the PL.8 compiler IWanen et. al 86]. and the assembll  language
output from the FORTVS2 Fonran compiler, re-performs certain tradit ional optimizations to compensate for
archi lectural dif ferences between the IBM 370 and the VLIW machine, and then applies percolat ion and pipe-
l ine scheduling to obtain compacted VLIW machine code.

For the prototype, we are planning to use LSI Logic CMOS compacted anal 's u, i th high l , /O pin count. com-
mercial l l 'avai lable ALUs from Bipolar Integrated Technology. and lTns l6K'4 CMOS stat ic RAMs. The
24-port reSister f i le wi l l  be implemented as two-bit  sl ices of the entire register f i le per chip ( I  ? copies * ' i l l  be
used),andu' i l l  a lsoincludetheimmediatef ie ldmult ip lexersfortheALUinputs.  Anotherchip. thenextaddress
mult iplexer (4 copies). wi l l  incorporate the irregular logic of the CPU involving interrupu and the PSt*' ,  as well
as the next instruct ion address mult iplexer. A third chip, the memory crossbar su' i tch (8 copies). wi l l  handle thc
traff ic between memory pons and banks and arbitrat ion. Presenrly. for the path: register f i le access - ALU
oPeration r dedicated register setup: and the path: compute and drive next address * instruct ion memor)
RAM access time + instruction register s€tup; designing for a 50ns cycle time looks possible. The path: register
file access + m€mofy crossbar switch - RAM access time - crossbar switch - dedicated register setup is
slower, because of two extra chip crossings; and we are considering alternative organizations (such as making
true multiport RAMs that can larer be used as a building block in a direcr mapped cache) to remedl' rhis. Thus,
assuming we counl the actions of each of the 8 ALUs, each of the 4 memory accesses. and each of the 3 con-
dit ional branches (4 branch targets 

- 
3 test nodes in the i f- then-else tree) as the equivalent ofa RISC insrruc-

tion, the architecture will be able to execute a maximum of l5 RISC instructions pcr cycle. However, we fecl
that it is not very wise to proclaim peak MIPS ratings, especially for noneristent machines.

Nol. lhat in th€ r.gucntial s.mrntics of C, fir:t y!-0b computcd wilhin (y!-0 n6.,r1>3). and if y!-O i\ t.h... r/)>3 r\ n{rr com-
puted.
This rcchnrqut obviously hclps to rcduce the cyclc time. Also. r multipofl direct m.pped c:che cen usc this mschani\m to *'nd lrh-
sibly wrong dara to the CPU during instruction n wiihout checking thc c.che direcrory conlcnt\. .rid thcn signalin8 a tLllycd-
intcrruptet thebcEnningof instruct ionn+lwhichwi l l  resrocthcmachinestate.s i tcr istcdatthcbcginningof inr t ruct ionn. ' l  hc
tn€mori- tncchanism will havc lo atrangc fhal thr fetching of lhc inrerrupl routinc instruclion (phich will just nuturn frrm lhr. inlcr-
ruPl) docs nol carrgc e crchc miss. Upon rcturn fmm intemrpt. instructbn n wil.t bc rc.crecurcd. lnd thc c.chc misr nreshenism can
lhen supply @rect data for dl trquests fronr the ntemor) pons, holding the clock until thc cechc mn pnrcssing ir urmplstc. if
tlGccssary. This qn allow vcry rhon cachc rcccrs timcs *hcn thcrr is no cechc rni|S. But ro frr wc hrw m imntdielc phnr for
maling a cache.
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Preliminer.v performrnce predictions

To get a rough estimate of the performance of the proposed machine. we hand-compiled the less complex
Lawrence Livermore Loops benchmarks for the proposed machine. using greedy percolarion scheduling rhar
takes operations in the order of app€arance in the program and moves them up on al l  parhs as far as the) can
go. fol lowed by pipel ine scheduling, which we feel we can implement in a VLIW compiler.r5 Since these loops
are short,  i t  is possible to calculate the execution t ime by hand. We have assumed that f loaring point add. sub-
tract and mult iply. and integer mult iply. have been combinatorial ly implemented and take 2 cycles each ( lgons
for a 50ns clock - this is a consen'at ive assumption); and that the slowesl operation in a microword jusr stal ls
the other operations. We have also hand-compiled 4 (embarrassingl l ' )  simple C programs lo esrimate per-
formance on very sequential-natured softn'are: a program to sum the elements of an integer arra) ' .  an insert ion
srort program that sorts ten integers, a merging program that takes two ten elemenl sorted integer arrays and
merSes them into a third 2O-element inteSer array, and a recursive factorial program rhar f inds l0l.  We wil l  f i rsr
present some comparisons of the performance of the machine against a similarly constructed RISC u'hich can
execute only one three-register operation, or one memory load or store, or one condit ional or uncondir ional
branch in a single cycle (but f loating point operations also take 2 cycles on the RISC machine). We u,i l l  com-
pare the number of cycles required to f inish a program segment on this RISC and on the VLIW in order to get
an abstract measure of inherent paral lel ism that can be captured by these compilat ion techniques. In the table
hclou'.  the number of cycles in the inner loop of each program is given, excepr for kernel 2l (marrix mulr iply
for 25r25 matrices). insert ion sort,  and recursive factorial,  where the number of cycles for the enrrre program
is given. As we can see, percolat ion scheduling. as modif ied by us. already gives a speedup of about 3.0. The
addit ion of the pipel ine scheduling on top of percolat ion scheduling gives a paral lel ism of abour 4.9 and up to
6.7 in some sequential-natured programs. Notice that more tradit ional paral lel ism extraction techniques such
as loop unrol l ing or recurrence breaking (e.g. for the inner product computation in Kernel 3) have not [gen used
to obtain these resulrs (such techniques could yield addit ional paral lel ism).

proE RISC

cycles

kcrncl  |  2 l
lcrncl3 |  I
lcrnclS |  3
lcrncl l  |  9
kcrncl l  |  197052
\crncl24 l0
ins. sort 497

mcrgc |  5.5
rcc. factorial 235
arraysum 6

lvcragc

vLlw
cycles

compac.

vLlw
cycles
pipel

4
)
4

3575 2
3

74
3

65
I

9
5
5
3

8262'7
4

173
3

65
)

speedup speedup
compac- pipel.

2.33
2.20
260
300
2.38
2.50
2.87
5.r7
3.62
3.00

2.91

5.2 5
{  ta)  !

3.25
4.50
5.5 r
3.33
o. / i

5.r7
3.62
6.00

4.f .9

In thc apJrcndix. we give an example of one of the programs used here: the merge program. i ts RISC assembll '
c<xic vcrsion. and i ts VLIW machine code version. Pipel ine scheduling does not work for this sequential nrerg-
ing algori thm because the f irst instruct ion of i terat ion n+ I uses a register set by the lasr instruct ion of i terat ion
n: ncvcrthcless. ordinary percolat ion scheduling is able to achieve some speedup. Ir should be noted that al-
lhough thc speedup is about 5 on this program, an averagre of about 7 operations/conditional jumps are being
cxcculcd in cach instruct ion of the program: i t  seems that some extra operations/condit ional jumps that belong
rtt  untoken paths have to be executed ahead of t ime or condit ional ly. to achieve speedup on this kind of non-
numcricul codc.

Now. a wcll dcsigned RISC will have r cycle time that is somewhat shoner in a given rechnology (for example.
thc VLIW cyclc time would be about 30%' longer than the bypass path of a four srage pipelined RISC in
As-TfL). and the RISC could overlap branches with arithmetic operations so that unconditional branches take
z.cro limc lDitzcl and Mcl-ellan 871. So this speedup value must be derated for a reatistic comparison. Bur it
is tlifficult l() makc a comparison to a hypothetical machine. Since future RISC's will undoubtedl.r, approach
xllp('rt'(lmpulcr spccds. we have instead collected some statistics that compare the VLIW architecture to a real

tVc ln' |uv t]r' hanlrrnfilinf sra8t .t Prrscnl. Wc prcscntly heve e wo*ing prcliminery version of rhr compiler bac\<nd (coded
hv llrurl'xr lltl lcmilr) that |^-rfrrms lFtcoLtbn lnd pipclirc schcduling (inctuding rhe renaming optrmizalion). gare level rhe-
aurtir ftr tht' prrrryp'. lrrl e rfc|t'-simulatrr vritlen in C. that lccuratcly modcls every signal. bus end flrp-flop in thc machirr.
*'c $ill th'rt'frn'nlrn ltx)'t aturalc prr{ioions ahout thc parformenc! of our marhinc in futurc papen.
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supercomputer. the 3090.16 Listed below are the execution t imes in ns for each inner loop i terarion (complere
program execution t ime for kernel 21. insert ion son. and recursive factorial) for rhe IBM 3090 and rhe proposed
VLIW machine ( in terms of the VLIW cycle t ime c). On rhe 3090 rhe Forrvs2 Forrran compiler. and rhe C
version of the PL.8 compiler were used, with al l  optimizarions and lectorizarions turned on Borh of rhesc
compilers are probabll '  the best optimizing compilers avai lable on the architecture for rhese languages. Norc
that since the programs access l i t t le data, and were t imed by executing them mil l ions of r imes in a loop and rhen
reading the virtual cpu t ime. we can reasonably assume that we are comparing the inf inite cache performance
of the 3090 a8ainst the inf ini te cache performance of the Vl- lrr \ ' .  There is a wide variarion in the performance
ratio (for example the VLIW requires a cycle t ime of l8ns to catch up u' i th the 3090 on the lectorized marrix
mulr ipl l '  kernel. but 278ns on the merging program), mainly because of some vectorizable loops u.here the 3090
is very fast. The f ini te cache performance of this VLIW machine u, i l l  of course depend crir ical l l ,  on the sizes
of the instruct ion and data caches and the l ine miss mechanism. But large caches are quite possible to imple-
ment, for vinual memor) '  systems designed from scratch, i f  the cache is made visible to the operarin! s\,stem
softu'are.

proe. VLIW

lime
( nsl

kernel  |  4c
kernel3 2c
kernelS 4c
kernel l  |  2c
\ernel2 I  35?52c
kernel24 3c
rns. sort ' l4c

merSe 3c
rec.  factor ia l  65c
arra) sum I c

aYerage

3090
time
( ns)

r  42(V )
82(V)

242
223

65Offn(\,)
260

I 4200
834

t r000
t50

rat lo

36r'c
4l i  c

6t 'c
I  12 c

l l t  c
t r7.  c

1921c

27tl tc

169 c

150. c

I  l4.c?33
1.20
2.60
3.OO
2.3r{
2.50
281
5.t7
3.62
3.OO

2.9'7

speedup
pipel

5.2-5
550
3.25
450
5.51
3.3 3
6.72
5.17
3.62
6.OO

4.89

(V) 
- 

vecrorized loop

Conclusions

We hale described our current progress with a VLIW architecture intended for paral lel execution of sequential.
non-numerical code as well  as scienti f ic code. The degree of success of VLIr ' \ '  archirectures intendr'd for exe-
cutinS paral lel scienti f ic code is more or less known at this stage. The present proposal is a research experiment
to probe the ef lect iveness of VLIW architectures and compilat ion techniques for sequenrial-natured softv*,are.
Much u'orl  st i l l  has to be done to investigate the usefulness of the ideas presenred herein. and ir is tooearl1'  to
,ump to hard conclusions: but VLIW machines seem to be a promising research area to pursue in compurer ar-
chitecture' and seem to offer novel possibi l i t ies for speeding up inherently sequential code. u,hich cannor be
adeguatel l 'speeded up by mutt iprocessors or vector supercompulers. An effort is nou uncler$a.r,at the lBN,l
Thomas J. Watson Research Center tobui ld a prototype of this machine, and we wil l  reporl on our progress in
future papers.

Acknonledgements

I am grateful to Fran AIIen, Mauricio Breternitz, Michael Burke, John Cocke, Ron Cytron. Monr1, Denneau.
Dave George. Manoj Kumar. and George Radin for their helpful comments on the architecture and compilarion
techniques described in rhis paper.

References

Adam, T.L., Chandy. K.M., and Dickson. J.R. (74) . .A Comparison of List Schedules for paral lel processing
Systems" Communications of the ACM 17, 12, December 1974.

Agerwala' T. (76) "Microprogram Optimization: A Survey" IEEE Transacrions on Compurers 25. Ocrobcr
r9'16.

Ager*'ala, T. and Cocke, J. (gz) ..High performance Reduced tnstruction Set Computers,.research report no.
RC 12434, IBM Thomas J. watson Research center, yorkrown Heights, l9l t7.

Tbcr are my own informal mcasurcntnts. rnd thould dcfinirely no{ bc cof$tnrcd ar rny oltbial ardbslion (rf th(.trrt(rmans* .rf rn
IBM producr.

' uied here: th€ merge program. its RISC assembly
scheduling does not worl for this seguenrial merg-

lses a register set by the last instruct ion of i terat ion
rchieve some speedup. l t  should be noted thar al-
of about 7 operations,/condit ional jumps are being
)rn€ extra operations/condit ional jumps thar belong
,'lir.ionally. to achieve speedup on this kind of non-

nerrhat shoyter in a given technology (for example.
he bypass path of a four stage pipelined RISC in
ocric operations so that unconditional branches take
nrust be derated for a realistic comparison. But it

e. Since future RISC's will undoubtedly approach
rsr.i'cs that compare the VLIW architecture to a real

: e rrcrting Fchnlnar' vcrsion of lhe compiler bacl{nd (coded

ndfing ( including thc rcnaming optrmiziraon). gare level sche-
rcctlralely modch cvcry signal. bus and flip-flop in thc machrne.
rure of orr rr-hanc in furure papers.



t6 K. Ebcioilu

Aiken, A. and Nicolau, A. (87) "Perfect Pipel ining: A New l-oop Paral lel izat ion Technique" TR 87-873. Dept.
of Computer Science, Cornel l  Universiry, October 1987.

Allen. R.A, and Kennedy. K. (84) "Automatic Translarion of Fortran Programs ro Vector Form" Rice Tech-
nical Repon No. TR84-9, Dept. of Computer Science, Rice University, July 1984.

Arnould. E., Kung. H.T.. Menzi lcioglu, O., Sarocky, K., (85) "A Systol ic Array Computer" Proc. of the l9lJ5
International Conference on Acoustics, Speech, and Signal Processing (March 1985).

An' ind, and lanucci.  R.A. ( l i3) "A Crit ique of Mult iprocessing von Neumann Sryle" Proc. lOth Annual Inrer-
national Conference on Computer Architecture, 1983.

Beetem. J.,  Denneau, M., and Weingarten, D. (85) "The GFI I  Supe rcomputer" The l2th Annual International
Symposium on Computer Architecrure, June 1985.

Burke, G.R. (87) "A Mult ipon Register Fi le Chip for the CHoPP Supercomputer" VLSI Sysrems Design. Au-
gusr l9t t7.

Charlesworth. A.E. (81) "An Approach to Scienti f ic Array Processing: The Architectural Design of the
AP-I?OB/FPS-164 Family" ' IEEE Computer. September 198 l .

Colwell ,  R.P.. Nix. R.P., O'Donnell ,  J.J.,  Papworth, D.8., and Rodman. P.K. "A VLlw Archirecture for a
Trace Scheduling Compiler" Proc. ASPLOS 1987.

Cydrome Inc. (88). "Cydra 5 Directed Dataflow Architecture: Summary" Milpitas. Cali fornia, 1988.
Cytron. R.G. (t l4) "Compile-t ime Scheduling and Optimization for Asynchronous Machines" Reporr no.

Uf UCDCS-R-84-1177, Dept. of Computer Science, University of l l l inois at Urbana-Champaign. October
| 9ft4.

Davies. J.R.B.( l t l  )  "Paral lel Loop Constructs For Mult iprocessors" Report no. UIUDCS-R-8 l-1070. Depr. of
Computer Science. University of l l l inois at Urbana-Champaign, May l98l .

Dennis. J.B. (74) "First Version of a Data Flow I-anguage" Proceedings. Colloque sur la Programmation,
Lecture Notes in Computer Science t9, Apri l  1974.

Dennis.  J.B. (80) "Data Flow Supercompurers" Compurer l3( l  l ) ,  November 1980.
Ditzel.  D.R.. and McLellan. H.R. (87) "Branch Folding in the CRISP microprocessor: Reducing Branch Delay

to Zero" Proceedings of the l4th Annual International Symposium on Compurer Archirecture. June 198?.
Ebciol lu. K. (S7) "A Compilat ion Technique for Software Pipel ining of Loops with Condir ional Jumps" Proc.

MICRO-20, ACM Press, December 1987.
Fisher, J A. (79) "The Optimization of Horizontal Microcode within and beyond Basic Blocks: An Application

of Processor Scheduling with Resources" Ph.D. Thesis. Dept. of Computer Science, Neu, York University..
October |  979. i

Fisher, J.A. (t l3) "Very L-ong lnstruct ion Word Architectures and the ELI-5 l2" Proc. tOrh Annual Symposium
on Computer Architecture. June 1983.

Fisher. J.A. and O'Donnell ,  J.J. (84) "VLIW Machines: Mult iprocessors We Can Actual ly Program" Proc.
Compcon 84. February 1984.

Flynn, M.J. (66) "Very High Speed Computer Systems" Proc. of the IEEE, Vol. 54, No. 12. December 1966.
Fostcr. C.C., and Riseman. M.R. (72) "Percolat ion of Code to Enhance Paral lel Dispatching and Execurion"

IEEE Transactions on Computers. December t9?2.
Gajski,  D.D., Padua. D.A.. Kuck. D.J.,  Kuhn, R.H. (85) "A Second Opinion on Dara Flow Machines and

Architeclures" |EEE Computer, Vol. 15, No. 2, February t982.
crndman, J.R.,  Hsieh. J.T. ,  L iou.  K.,  Pleszkun, A.R.,  Schechrer.  P.B.,  Young. H.c.  (85).  "PIpE: A VLSI De-

coupled Architeclure" The l2th Annual International Symposium on Compurer Archirecture, June 1985.
Hagiwaro, H.. Tomita. S.. Oyanagi, S.. Shibayama, K. (80) "A Dynamical ly Microprogrammable Computer

with Low-level Paral lel ism" IEEE Transactions on Computers, Vol C-29. no. 7, July t  980.
Hcnncssy et al.  ( l l2) "The MIPS Machine" Digest of Papers - Compcon Spring 82. February 1982.
Jcnx'n. K. and Wirth. N. (74) "Pascal User Manual and Reporr" Springer-Verlag, 1974.
Karplus. K.. and Nicolau. A. (85). "Eff icient Hardware for Mult i-way Branches and pre-fetches" proc. of rhe

Itt th Annual Workshop on Microprogramming, 1985.
Klccnc. S.C. (52) " lntroduction to Metamathematics" Van Nostrand and Company, 1952.
Koggc. P.M. (77) "The Microprogramming of Pipelined Processors" Fourth Annual Symposium on Computer

Architccture. |  977.
Kuck. D.J. (7lt)  "The Structure of Computers and Computations" Vol. t ,  John Wiley and Sons, I978.
l-ah. J. and Atkins, D.E. (tl3) "Tree compaction of Microproprams" Proc. l6th Annual Microprogramming

Workshop. October | 9tt3.
l-cc. G.. Kruskal. C.P.. and Kuck. D.J. (t5) "The Effect iveness of Auromatic Srructuring on Nonnumerical

Pr.grams" Proc. l9t5 International conference on parallet processing, 19g5.
Mitchtcy. M.. and Young. P. (7t) "An lntroduction to the General Theory of Algorithms" Academic Press.

|  97r.
Munshi. A.A.. ond Simons. B. (87) "Scheduling l-oops on Processon: Algorithms and Complexity" Research

R'lxrn no. R J546. l8M Thomas J. Watson Rescarch Center. Yorkrown Heights, March | 987.
Nunrxlat:r Computer Corporation (79) "QM-l Hardware bvel Uscr's Manual" Buffalo. New york. t979.



rsp Parallelization Technique" TR 8?-873. Dept.

I Fonran Programs to Vector Form" Rice Tech-
'e Universi t l ' .  July 1984.
"A Systol ic Arra-v Computer" Proc. of the 1985
I Processing (March 1985).

rg von Neumann Style" Proc. lOth Annual Inter-

I Supercomputer" The l2th Annual tnternational

oPP Supercomputer" VLSI Systems Design. Au-

; Processing: The Architectural Design of the
t98l  -

nd Rodman. P.K. "A VLIW Architecture for a

- Sunrmarl'' Milpitas. California. l9ft8.
at ion for Asynchronous Machines" Report no.
ersity of llUnois at Urbana-Champaign. October

ssors- Report no. UIUDCS-R-81-1070. Dept. of

mign. May 1981.
" Proceedings. Colloque sur la Programmation.

( l  I  ) . :rr-olember 1980.
CRISP microprocessor: Reducing Branch Delay

nrposium on Computer Architecture. June 1987.
pclining of l-oops with Conditional Jumps" Proc.

: r'ithin and beyond Basic Blocks: An Application
,epr. of Computer Science. Ner,r' York Universitl'.

and $re ELI-512" Proc. lorh Annual Symposium

uhiprocessors We Can Actualll' Program" Proc.

. of rhe IEEE. Vol. 54. No. I  2. December 1966
to Enhance Parallel Dispatching and Execution"

A Second Opinion on Data Flou' Machines and
1982.

ter. P.8., Young. H.C. (85). "PIPE: A VLSI De-
rpoeium on Computer Architecture, June 1985.
"A Dlnamically Microprogrammable Computer
uters. Vol C-29. no. 7. July 1980.
Conpcon Spring 82. February 1982.

rrr" Springer-Verlag. I 974.
.tulri-*ay Branches and Pre-ferches" Proc. of the

osrrand and Company, 1952.
rssors" Fourrh Annual Symposium on Computer

,qr- Vol. t ,  John Wiley and Sons. l9?8.
,rogrzurls" Proc. l6th Annual Microprogramming

:ncss of Automatic Structuring on Nonnumerical
lel Processing, 1985.
Gcrml Theory of Algorithms" Academic Press,

lEcssols: Algorithms and Complexity" Research
ntcr, Yorktown Heights, March 1987.
vet Us'r Manual" Buffalo. New York. t979.

A VLIW Architecrure for Sequential-l,larured Software 17

Nicolau, A. (t l5) "Percolat ion Scheduling: A Paral lel Compilat ion Technique" TR 85-678, Dept. of Computer
Science, Cornel l  Universi ty,  May 1985.

Padua-Haiek. D.A. (79) "Mult iprocessors: Discussion of Some Theoretical and Practical Problems" Report no.

UIUCDCS-R-19-990, University of I l l inois at Urbana-Champaign. November 1979.

Patterson. D.A., et al.  (81) "RISC-I: A Reduced lnstruct ion Set VLSI Computer" Eighth Annual Symposium
in Computer Archi tecture.  May 1981.

Rau. 8.R.. Glaeser. C.D. (81 ) "Some Scheduling Techniques and an Easi ly Schedulable Horizontal Architect.ure
for High-perforrnance Scienti f ic Computing" Proc. l4th Annual Microprogramming Workshop. October
r981.

Rau. 8.R.. Claeser. C.D., and Picard, R.L. (82) "Eff icient Code Generation for Horizontal Architectures:

Compiler Techniques and Architectural Support" Proc. 9th Symposium on Computer Architecture. Apri l
r 982.

Radin, G. (82) "The E0l Minicomputer" Proc. ACM Symposium on Architecture Support for Programming
Languages and Operating Systems. March I982.

Rogers. H. (67) "Theory of Recursive Functions and Effect ive Computabi l i ty" Prentice-Hall .  1967.
Russel l ,R.M. (78)^ 'TheCray- l  ComputerSystem"Communicat ionsof theACM,vol .2 l .no.  l .January l97t l
Thornton, R.E. ( i l )  "Paral lel Operarion in rhe Control Data 6600" AFlPS Proc. FJCC. pt.2, vol.26. 1964.
Tomasulo. R.M. (67) "An Eff icient Algori thm for Exploit ing Mult iple Arithmetic Units" IBM Journal of Re-

search and Development,  vol .  I  l ,  January 1967.
Tomita, S.. Shibayama. K., Toshiyuki,  N., Yuasa, S., and Hagiu'ara. H. (86) "A Computer u' i th Low-Level

Paral lel ism QA-2" Proc. l3th Annual lntemational Symposium on Computer Architecture, 1986.
Veidenbaum. A. (85) "Compiler Optimizations and Architecture Design lssues for Mult iprocessors" Ph.D.

thesis. Dept. of Computer Science. University of l l l inois at Urbana-Champaign, May l9t l5.
Warren. S.H.,  Auslander,  M.A.,  Chai t in,  G.J. ,  Chibib.  A.C.,  Hopkins.  M.E..  and MacKal .  A.L.  (86) "Final

Code Generation in the PL.8 Compiler" research report RCll974, IBM Thomas J. Watson Research
Center.  1986.

Yau. S.S.. Schowe, A.C.. and Tsuchiya, M. (?4) "On Storage Optimization of Horizontal Microprograms"
MICRO-?, Sept.  1974.

I
I

I



l8 K. Ebcioflu

APPENDIX: CODE EXAMPLES

PIPELINE SCHEDULING EXAMPLE

()i"Zr From Jensen and Winh 74. Pascal User Manual and Report. p. 37
tt/itt/i lind the largest and the smallest number in a given list
' t t r t ' r i r t  - - -

r%)r l i '  min.-  a l  l l :  mar:-  min:  i := 2l
(Zr ' ) i , * 'h i le icndo

') i " ) , ,  begin u:-a[ i ] :  \ ' : ra[ i+ |  l '
( ) i , "1,  i f  u>r '  then
' | . " \ ,  begin i f  u>max then max:-u.
' l i t" ,u i f  v<min then mrn:-v
'h, ') , ,  end else

begin i f  \ '>max then max:E v;
'1,,", i ,  i f  u<min rhen min:- u
'Lr ' l i ,  end:

' ) . , ' I '  end

Thrce address code for inner loop

LOOP
(LT AI AILIM CCO)
{rF (NOT CC0) (COTO EXIT))
(LOAD A AI U)
(LOAD A AII  V)
(cTUVCCI)
( lF (NOT CCr )  (GOTO Lr ))
(CT U MAX CC2)
0F (NOT CC2) (GOTO L2))
(COPY U MAX)

L7
(LT V MIN CC3)
(tF (NOT CC3) (GOTO L5))
(coPY v MIN)
(GOTO Ls)

LI
(CT V MAX CC4)
i lF (NOT CC4) (GOTO L3))
(COPY V MAX)

t_3
(LT U MIN CC5)
0F (NOT CC5) (OOTO L5))
(COPY U MIN}

t_5
(ADD AI I  AI)
(ADD Al l  r {  At  l  )
(GOTO LOOP)

Pcrcolation schcduling result :

'l'hc 1^-rcolation scheduling result already reduces the loop to three cycles: ir performs the loads from memory of the two
array clcmcnts and compares the loop index to the loop bound in the first instruction ( I ), then it pe rforms rhe frve
compurivrns involving these two array elements and min and max in the second instruct ion (2). and then ir f inal l l  per-
fornrs lhc conditional update of min or mar in thc third instruction (3).

( |  ) :
(( l .T Al AILIM CCo) (LOAD A At U) (LOAD A An v) (ADD At t  At) (ADD Atl I  An)
(coro (2)))

( l ) :
( (GT U V CCI) (GT U MAX CC2) (LT V MtN CC3) (cT V MAX CC4) (LT U MtN CC5)
0r: (NoT cco) ((coTo (Et ))) ErsE ((copy u u_p) (copy v v_p) (GoTo (3)))))

( .1) :
( ( l l ;

(NOT CCt )
(  ( lF
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' 'cles: il 
performs th€ loads from memory of the two

the f i rst  instruct ion ( l ) ,  then i t  performs the f ive

r the rccond instruction (2). and then it finally per-

3).

,D AI 8 At)  (ADD AII  8 AII  )

MAX CC4) (LT U MIN CCs)
)PY v v_P) (GOTO (3)))))

A VLtW Architecture for Sequentbl-llatured Software

(NOT CC4)
(oF (NOT CCs) ((GOTO ( r ))) EL.SE ((COPY U
ELSE
( (COPY V_P MAX)

(rF (NOT CC5) ((GOTO ( r ))) EI-SE ((COpy U

P MtN) (GOTO ( l  ) ) ) ) )

P MtN) (GOTO i l  ) ) ) )  ) )
)

ELSE
( ( lF

(NOT CC2)
(0F (NOT CC3) ((GOTO ( l  ) ) )  ELSE ((COPY v P MtN) (GOTO ( |  ) ) ) ) )
ELSE
( (COPY U_P MAX)

oF (NOT CC3) ((GOTO ( l ) ) )  ErSE ((COPY V P MrN) (GOTO ( l  ) ) ) )  ) )
) ) )

' : " '
Pipel ine schedul ing resul t  :

The pipel ine schedul ing resul t  execules instruct ion (  I  )  of  lhe f i rsr  i terat ion dur ing i rs f i rst  instruct ion.  and instrucrrons
(2) and (  !  )  of  i terat ions I  and 2,  respect ively,  dur ing i ts second rnstruct ion (2 (  I  ) ) .  The third pipel ine schedule rn-
struct ion (3 (2 (  I  ) )  is  entered in state where i terat ions n,  n+ l .  n+2 are expect ins to execute instruct ions (3).  (2) ,  (  I  )
respect ively ( th is expector ion stare is notated as n:(3).  n+ t : (2) .  n+2:(  I  ) ) .  l f  (3)  of  i terat ion n does not update min or
max. al l  of  t .he expected instructrons are executed and a branch is taken back to (3 (2 (  I  ) ) )  s ' i th the expectat ion srare
n+l : (3) ,  n+2:(2).  n+3:( l ) :othenvis€.  i terat ions n+l  and n+2 r la i t  (s ince. e.9. ,  instructron (2)of  i terar ion n+ I  needs
the neu'values of  min and max to do i ts comparisons).  and i terat ion n execures (3) alone. and a branch is taken to (2
( l ) )  u ' i th lhe expectat ion s late n+l : (2) .  n+2:( l ) .  (2 ( l ) )  wi l l  then branch back to (3 (2 ( l ) ) )  wi th expecrarron srare
n + I  :  (3 ) ,  n+2:(2),  n+ 3:  (  |  ) .  a lways assuming that the loop is nor exi ted.

(  I  ) :
(  (LT AI AILIM CCO) (LOAD A AI U) (LOAD A AII  V) (ADD AI 8 AI)  (ADD AII  I i  AI I  )
(coro (2 ( l ) ) )  )

(2 ( l  ) ) :
(  (GT U v CCI) (GT U MAX CC2) (LT v MIN CC3) (GT v MAX CC4) (LT U MIN CC5)

(IF
(NOT CCO)
((GOTO (Er)))
ELSE
( (COPY U U_P) (COPY V V_P) (LT AI AILIM CCO) (LOAD A AI U) (LOAD A AII V)

(ADD Al8 Ar)  (ADD Alr  8 Alr)  (GOTO (3 (2 ( l ) ) ) )  ) )  )

(3 (2 ( l ) ) ) :
(  ( lF

(NOT CCt )
(  ( IF

(NOT CC4)
( ( lF

(NOT CCs)
'  (  (GT U V CCI) (CTU MAX CC2) (LTV MIN CC3) (cTv MAX CC4)

(LT U MIN CCs)
0F

(NOT CCo)
((GOTO (Er)))
ELSE
( (COPY U U-P) (COPY V V_P) (LT AI AILIM CCO) (LOAD A AI U)

(LOAD A AII V) (ADD AI t  AI) (ADD AII 8 AII)
(GOTO (3 (2 ( l ) ) ) )  ) )  )

ELSE
((coPY u_P MtN) (coro (2 ( t ) ) ) ) )  )

Et.sE
( (coPY v_P MAX)

(IF
(NOT CC5)
((GOTO (2 ( l ) ) ) )
ELSE
((coPY u P MrN) (coTo (2 (|))))) )) )

EI SE
( (IF

l9

F
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(NOT CC2)
( ( lF

(NOT CC3)
( (GT U v CCr )  (GT U MAX CC2) (LT v MIN CC3) (CT v MAX CC4)

(LT U MIN CC5)
( lF

(NOT CCo)
( (ooTo (Er)))
ELSE
( (coPY u u_P) (coPY v v_P) (LT Al AILIM cco) (LoAD A Al u)
(LOAD A AIt  \ I )  (ADD A1 8 AI)  (ADD AI I  8 AI I  )
(coTo (3 (2 ( | ) ) ) )  ) )  )

ELSE
((coPY v_P MrNt (GOTO (2 ( | ) ) ) ) )  )

ELSE
( (COPY U_P MAX)

( lF
(NOT CCI)
( (coro (2 ( | ) ) ) )
ELSE
((coPY v_P MIN)(GOrO (2 ( l ) ) ) ) )  ) )  ) )  )

MERCE: C CODE

mcrgc( a.b.c.n )
int al l .bl  l .ci l .n:
I

int  i . j .k :
i=0: j -0:
for(  k =0:k <2'n:k+ + )
I

i f  ( i ) -n |  |  jqn &e al i l>bl j l )  lc lk l -bU++l: l
e lse lc lk l -a l i1 1l ;  I

I
I

Thrcc address code for inner loop

LOOP
(LT CK LIMK CCI )
(rF (NOT CCr )  (GOTO EXIT))
(LT Ar LtMt CC2)
0F (NOT CC2) (OOTO Ll))
(LT BJ LIMJ CC3)
0F (NOT CC3) (GOTO L2))
( I -OAD A AI T2)
( I .OAD B BJ T3)
(GT T2 T3 CC4)
( lF (NOT CC4) (COTO L2))

l - l
( I-OAD B BJ T.l)
(sToRE C T4 CK C)
(ADD BJ 4 BJ)
(coTo L3)

4.2
( | . ( )AD A At T5)
(sToRE C T5 CK C)
(ADT' AI 4 AI)

l .-1
(ADD CK ' l  CK)

. ((i()To LooP)

Pcrrrilation schtrluling result

(  I  ) :
( ( l .TcK LIMK ccl)
(r .T At l . rMr cc2)
( t . ' t ' l lJ  L|MJ cc3)
(1.()AD A At T2)

i":



GT v MAX CC4)

CO) (LOAD A AI U)
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(LOAD B BJ T3)
(GOTO (2)))

(2t :
( (cT T2 T3 CC4)
( lF

(NOT CCI )
((GOTO (El)))

ELSE
( ( lF

(NOT CC2)
((STORE C T3 CK C) (ADD BJ 4 BJ) (ADD CK 4 CK) (GOTO ( I  ) ) )

ELSE
( ( lF

(NOT CC3)
((sroRE C T2 CK C) (ADD Al 4 Al)  (ADD CK 4 CK) (GOTO ( I  ) ) )
ELSE
((GOTO (3))))  ) )  ) ) )

(3 ) :
( (ADD CK 4 CK)
( lF

(NOT CC4)
((STORE C T2 CK C) (ADD AI 4
ELSE
((STORE C T3 CK C) (ADD BJ 4

(Er) :

2 l

Ar) (Goro ( l ) ) )

BJ) (COTO (|  ) ) ) ) )

t
I

t
t

F


