PARALLEL PROCESSING

M. Cosnard, M.H. Barton and M. Vanneschi (Editors)

Elsevier Science Publishers B.V. (North-Holland) 3
© IFIP, 1988

SOME DESIGN IDEAS FOR A VLIW ARCHITECTURE
FOR SEQUENTIAL-NATURED SOFTWARE

Kemal! Ebciofflu

IBM, Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, New York 10598

Abstract

In this paper, we describe a Very Long Instruction Word architecture, now being designed at the IBM T.J.
Watson Research Center, which is intended to achieve good performance not only in scientific code. but also
in sequential. non-numerical code. Communication delays between processing elements are minimized via a
single shared register file with a large number of ports. To perform well on programs with unpredictable
branches, the architecture features decision-tree shaped instructions that allow multiway branching, and that
allow operations to be executed conditionally depending on where the instruction branches to. To add to the
parallelism achievable via existing compilation techniques for VLIW architectures, we have developed a com-
pilation technique called pipeline scheduling, which is an extension of the *“doacross™ and “‘dopipe™ techniques
proposed for multiprocessors by D. Kuck's group. This technique can initiate a new iteration of an inner loop
(possibly containing arbitrary if-then-else statements and conditional exits) on every clock period whenever
dependences and resources permit.

Background

It appears that a certain amount of the inherent parallelism in ordinary programs is fine-grain; in fact, fine-grain
parallelism often appears to be the only type of parallelism available in a large body of non-scientific programs.
Unfortunately, the major trends in parallel architecture are not geared toward exploiting such irregular fine-
grain parallelism, except for the data flow paradigm [Dennis 74,80, Arvind and lanucci 83}, which in turn is not
oo useful for existing software because it requires algorithms to be rewritten in a special functional language,
and incurs some overhead in inherently sequential code [Gajski et al. 82]. SIMD machines like the GF-11,
[Beetem, Denneau and Weingarten 85], systolic arrays like the Warp machine [Arnould et al. 85], and the more
general-purpose vector supercomputers like the Cray [Russell 78] tend to work well on an important but limited
class of scientific problems, but fail to achieve speedup on problems that do not belong to their domain; for
example, a typical scientific supercomputer reduces to a uniprocessor on program segments where vectorization
is not possible. The problem of transforming ordinary programs to run on MIMD multiprocessor architectures
has also received much attention [Kuck 78, Allen and Kennedy 84], and while a speedup by a factor of thou-
sands appears to be possible for certain scientific problems with a large degree of inherent parallelism
[Veidenbaum 85], the speedup results with non-numerical algorithms have not been very promising: for ex-
ample, [Lee, Kruskal,and Kuck 85] report a typical speedup of 1.3-1.5 on simple nonnumerical algorithms such
as binary search and merging, using their Parafrase compiler for an MIMD architecture (assuming that the al-
gorithms are not rewritten in a parallel way). It should be noted that program restructuring techniques as in the
University of Illinois Parafrase compiler, are best capable of exploiting the coarse grain parallelism in scientific
code, which does not seem to be common in non-numerical code. While there is a modest amount of fine-grain
parallelism in non-numerical programs, practical MIMD architectures cannot exploit it well, because even a few
cycles of communication overhead can cause the speedup to be much less than ideal.

The VLIW architecture

Following the advances in microcode compaction techniques in the recent years after the introduction of the
trace scheduling technique [Fisher 79],! an architecture called the Very Long Instruction Word (VLIW) archi-
tecture has been proposed by J. Fisher [Fisher 82], which is specifically intended for exploiting the modest
fine-grain parallelism inherent in ordinary high level language programs. VLIW machines, as the name implies,
have an unusually long instruction word, on the order of 500-1000 bits or more, and can perform many simul-
taneous operations in a single instruction. VLIW architectures are roughly based on the idea of compiling high
level languages directly into horizontal microcode. Although a VLIW architecture has a single control mech-
anism as in a uniprocessor, it is distinct from a uniprocessor, because it can execute the equivalent of many
uniprocessor instructions in a single cycle, thus surpassing the so-called Fiymn limir for uniprocessors [Flynn

! Trace and trace scheduling are trademarks of Multiflow Computer, Inc..

Las

. Y =

4 K. Ebcioglu

66].2 It is also different from the typical SIMD architecture, because it can simultaneously execute different
operations in each of its processing elements.?

State of the art in VLIW compilation techniques

We will now briefly go over the status of the compilation and optimization technigues that were developed for
horizontal microarchitectures and VLIW architectures. Many problems that arise in program optimization. such
as minimizing execution time, or minimizing program size, are known to be computation intensive. or to be
unsolvable, depending on how the problem is posed [Machtey and Young 78. Rogers 67]. The early approaches
10 microprogram optimization nevertheless did attack the problem of minimizing program size and/or exe-
~cution time [Agerwala 76). The early algorithms were confined to the optimization of basic blocks, and those
that did achieve optimality had to rely on time-consuming enumerative methods, for example, [Yau, Schowe and
Tsuchiya 74] describe a branch and bound technique for finding an optimal schedule for a given straight line
microcode segment. Moreover, the studies on real programs, for example |Foster and Riseman 72}, showed that
a parallelism of only about 1.7 could be achieved, if the optimizations were limited to individual basic blocks.
Although enumerative optimization methods such as this branch and bound technique may have become prac-
tical now, considering the smallness of basic blocks and the raw computing power now available, the early ap-
proaches to microcode compaction nevertheless did not have much promise of achieving tangible parallelism,
because of the limited nature of the parallelism within basic blocks.

For obtaining higher parallelism than that which was available within basic blocks, J. Fisher [Fisher 79} took the
approach of aggressively overlapping the operations from different basic blocks, for example, executing oper-
ations from the most probable clause of a forthcoming if-then-else statement concurrently with the execution
of the operations of the current basic block. Fisher's technique. called trace scheduling, first chooses, with the
aid of some heuristic, a particular execution path or frace within an acyclic flow-graph. It then compacts the
operations in the trace into microinstructions, as if the whole trace were a single basic block (taking care not
to prematurely schedule assignments to variables that are live off the trace. so that the program does not give
wrong results even if the trace is not followed during execution after all), and finally makes the necessary ad-
justments in the other parts of the program affected by the trace compaction. for example it provides copies of
portions of the original code for those paths that were joining and leaving the original trace. Once the first trace
is done with, another trace which is disjoint from the original trace is picked and compacted, etc.. until no un-
compacted code remains. Nested loops are handled by applying trace scheduling on the inner loop body and
then treating the inner loop as a single node within the enclosing loop. which can be done in reducible flow
graphs. The implement the trace compaction, a list scheduling algorithm can be used [Adam, Chandy. and
Dickson 74] which has a worst case running time which is only quadratic in the number of micro-operations in
the trace. This scheduling technique does not guarantee optimality, but gives good results in practice. A problem
that limits the practical applicability of trace scheduling for non-numerical code, is that the probabilities of the
conditional branches must be specified by the programmer, or must be determined by actually running an un-
compacted version of the program; moreover, conditional branches must have a high probability of branching
in one direction rather than the other. When program execution does not follow the trace picked first by the
scheduler (say path A), and follows a different path B, then the compacted program may perform poorly,
compared to how it would perform if path B were picked first by the scheduler (this is true even for a machine
with unlimited resources, if the operations outside a trace are not allowed to move into the trace after the trace
has been compacted into machine code). When combined with the additional technique of unrolling inner loops
prior to trace scheduling, the trace scheduling technique was reported to achieve about an order of magnitude
of paralielism in scientific code [Fisher 82, Fisher and O'Donnell 84]. When not aided by loop unrolling. and
when we lift the assumption that only scientific code will be executed. we have found in our (very preliminary)
experiments that the trace scheduling family of compaction techniques can achieve a practically implementable
parallelism of about 3, which we still feel is a good base speedup to improve upon.

Fisher's approach was somewhat complex, especially when correction were applied to the paths joining and
leaving the original trace. A. Nicolau [Nicolau 85] greatly simplified the ideas behind the trace scheduling

: 1t might be argued that the multipl L ilable in a VLIW architecture are similar to multipie functional units such
as in the CDC 6600 [Thornton 64) or lBM 360/91 floating point unu [Tomasuio 67). Bui the instruction issue rate available in VLIW
machines tends to be greater than multipl i unit, pipelined ar ures. For exampie. if we disregard the chaining capa-

bility of the Cray-1 for vector operations, we sec that the CDC 6600 and Cray-1 [Russell 78] architectures can still issue 2 maximum
of one instruction per cyck even though they have many functional units which can operate in parallel. (But a CDC/Cray-inspired
hi that can si y issuc rwo instructions in a single cyclke has recently been developed [Goodman et al. 85].)

Assuming an ideal VLIW machine which has an unlimited amount of ALU resources and memory ports, and which can perform
complex conditional br:nches to arbitrarily many Largets at each cycle, VLIW machines can theoretically have the same power as a
synchronous MIMD arch e: an ideal h MIMD config containing & identical RISC processors each capabie of
excculmg an instruction every cycle, and running k different programs with a,.....a, instructions each. can be transiated to a VLIW

T on with a progr that at most a, x ... x &, instructions. l.c.. each instruction of the VLIW machine represents
the entire state of all the processors in the MIMD computer.

o4

“apse it can simultaneously execute different

mmization techniques that were developed for
~lems that arise in program optimization, such
1own to be computation intensive, or 1o be
Young 78. Rogers 67]. The early approaches
m of minimizing program size and/or exe-
> the optimization of basic blocks. and those
tive methods. for example, [Yau, Schowe and
an optimal schedule for a given straight line
xample [Foster and Riseman 72}, showed that
toms were limited to individual basic blocks.
:nd bound technique may have become prac-
omputing power now available, the early ap-
ch promise of achieving tangible parallelism,

5.

1m basic blocks, J. Fisher {Fisher 79] took the
1 basic blocks, for example. executing oper-
e statement concurrently with the execution
alied rrace scheduling. first chooses, with the
an acvclic flow-graph. It then compacts the
e were a single basic block (taking care not
the trace. so that the program does not give
fier all), and finally makes the necessary ad-
‘ompaction, for example it provides copies of
eaving the original trace. Once the first trace
e is picked and compacted, etc., until no un-
trace scheduling on the inner loop body and
2 boop. which can be done in reducible flow
algorithm can be used [Adam. Chandy, and
adratic in the number of micro-operations in
. but gives good results in practice. A problem
umerical code, is that the probabilities of the
'st be determined by actually running an un-
2s mast have a high probability of branching
does not follow the trace picked first by the
e compacied program may perform poorly,
he scheduler (this is true even for a machine
allowed to move into the trace after the trace
additional technique of unrolling inner ioops
rted to achieve about an order of magnitude
84]. When not aided by loop unrolling, and
ted. we have found in our (very preliminary)
ques can achieve a practically implementable
O fmprove upon.

ction were applied to the paths joining and
Jlified the ideas behind the trace scheduling

archmecture are similar to multiple functional units such
~ubc 67]. But the instruction issue rate available in VLIW
crures. For ple. if we disregard the chai capa-
ay-1 {Russell 78] architectures can still issue a maximum
~ch can operalte in paraliel. (But a CDC/Cray-inspired
s recently been developed |{Goodman et al. 85).)
i mesources and memory ports. and which can perform
W machines can theoretically have the same power as a
comlaining k identical RISC processors each capable of
m,...., instructions each, can be translated 1o a VLIW
L.c.. each instruction of the VLIW machine represents

ol

A VLIW Architecture for Sequential-Natured Software 5

technique and placed them on a more formal basis, by defining a sel of primitive core transformations on the
programs of a microprogramming language for an abstract VLIW machine with infinite resources. He called this
technique percolation scheduling. By applying the core transformations, one can repelitively move
(“*percolate”) operations from one microinstruction to a preceding one, and achieve the effect of overlapping
operations from different basic blocks, and in particular of trace scheduling. However, percolation scheduling
is not limited to compacting operations on a single trace, and so may result in higher performance regardless of
whether a particular trace is followed during execution or not. The main advantage of percolation scheduling
vs. trace scheduling is the following: Given a machine with sufficient resources and proper architectural sup-
port; percolation scheduling. together with renaming optimizations, can be used to parallelize programs with
unpredictable conditional branches, by executing operations on all forthcoming basic blocks past conditional
jumps, as soon as their operands are ready; so a program can perform at a rate close 10 the optimal data flow
speed, regardless of which branch is taken. On the other hand, trace scheduling will tend to perform poorly if
the trace that is picked first by the scheduier is not taken during the actual execution of the program.

We will now discuss some core transformations of percolation scheduling as applied to the VLIW machine we
will be discussing in this paper. But first, let us briefly explain the form of the instructions of our machine, and
their semantics. The instructions of our machine have the form of a directed binary tree as shown below (A
formal description of this computation mechanism was given in [Ebcioﬁlu 87). in this paper. we will strictly
stress the clarity of the exposition rather than formalism).

&)

R2+2 + R2

IF ~CCt

A[R1] » RS

R2<5 » CC3
R1+4 - R1

L3

R7-1~ R2

L2 L2
Li:
((ADD R2 2 R2)
(IF (NOTCCH)
((LTR25CC3)
(IF CC3 ((SUBR71 R2)(GOTOL2))
ELSE ((GOTO L2))))
ELSE ((LOAD A R1 R8) (ADD R1 4 R1) (GOTO L3))))

The root node of the tree is marked with the label of the instruction. On each node other than the root and the
terminal nodes, there is a mark indicating a test on a condition code register (the machine has multiple condition
code registers). The tip nodes of the tree are marked with the labels of other instructions in the program. that
this instruction can branch to. On each directed edge in the tree, there may be zero or more three-register
arithmetic or comparison operations, and memory loads and stores. An instruction is executed in a single clock
cycie, as follows: First, the current (i.e. old) values of the condition code registers are examined and a unique
path through the tree is selected, starting from the root node and ending at a tip node, as follows (a path from
the root 1o a tip node is called an i-branch of the instruction): when a node with a test on a condition code
register is reached (called a tess node), the path continues with the edge that goes to the lefi. if the test is true
for the current value of the condition code register; otherwise, if the test is false, the path continues with the
edge that goes to the right, and so on, until a tip node is encountered. After the path is selected, only the op-
erations and memory loads and memory stores on the selected path are executed (in parallel), using the old
values of the registers as operands or addresses, and the processor branches to the instruction whose label is
indicated at the tip node of the selected path through the tree. The operations and memory loads/stores that

Le4

6 K. Ebciogiu

are not on the selected path are not performed. When there is more than one three-register operation or load
operation that sets the same destination register on the selected path, the result of the operation that is closer
to the tip node takes precedence and actually goes to the destination register at the end of the cycle. A Lisp-list
notation for the same tree is given after the example instruction tree. We will later discuss how this mechanism
is efficiently implemented in hardware with a short cycle, and answer the questions that may to come the read-
er's mind about operations that take longer than a single cycle, etc..

In figure 1, we give an informal list of the percolation scheduling core transformations, re-formulated by us to
fit the conditional execution mechanism of our machine. (Nicolau's original abstract microprogramming lan-
guage for percolation scheduling [Nicolau 85] has essentially the same if-then-else branching mechanism, but
does not have any conditional execution mechanism; all operations are unconditionally executed in Nicolau's
language, i.e., they are al} located in the stub edge of the tree. The ability of our machine to execute operations
conditionally depending on where the instruction is branching to. is a very important architectural feature from
the performance viewpoint; since it allows an instruction to gain headway from the target stream before actually
branching to the target. This technique reduces critical paths and loop iteration issue delays in software pipe-
lining, described later).

INITIAL PROGRAM:
(1):
((IF ccd ((GOTO (2))) ELSE ((GOTO (4)))))
2):
((IF (NOT ccS) ((ADD x 1 x) (GOTO (6)))
ELSE ((ADD x y z) (GOTO (7)))))

MOVE-OP TRANSFORMATION:
(1):
((IF ccd ((ADD-U x y 2) (GOTO (2'))) ELSE ((GOTO (4)))))
{2°):
((IF (NOT ccS) ((ADD x 1 x) (GOTO (6)))
ELSE (GOTO (M)
: old (2) is retained if it still has predecessors

MOVE-CJ TRANSFORMATION:
(1):

(OF cc4 ((ADD-Uxyz)

(IF (NOT cc$5) ((GOTO (2))) ELSE ((GOTO (2')))))
ELSE ((GOTO (4)))))

@7):

((ADD x 1 x) (GOTO (6))
2"):

(GOTO (7))
; old (2') would be retained if it still had other predecessors

DELETE TRANSFORMATION:
(1):

((IF cc4 ((ADD-Uxy2)

(IF (NOT cc5) ((GOTO (27))) ELSE ((GOTO (7))
ELSE ((GOTO (4)))))

(27):

((ADD x 1 x) (GOTO (6))
H{2'): (deleted)

UNIFICATION TRANSFORMATION:
(6):
((UF ¢cc2 ((ADD Yy 1 y)(GOTO (8)))
ELSE ((ADD y 1y) (GOTO (9)))))
becomes
(6):
((ADDy 1y)
(F e2 ((GOTO (8)))
ELSE ((GOTO (9)))))

Figure 1: Percolati heduling core sf (modified by us)

The move-op transformation moves a simple operation, such as (ADD x y z) (meaning x+y-z) in the exampie,
from one instruction (2), to the edge Jeading to a tip node of a predecessor instruction (1). 1f the predecessor

Y

ore than one three-register operation or load
»ath, the result of the operation that is closer
n register at the end of the cycle. A Lisp-list
ee. We will later discuss how this mechanism
wer the guestions that may to come the read-

core transformations, re-formulated by us to
aw's original abstract microprogramming lan-
same if-then-else branching mechanism, but
mns are unconditionally executed in Nicolau's
ability of our machine to execute operations
is a very important architectural feature from
2adway from the target stream before actually
i loop iteration issue delays in software pipe-

mations (medified by us)

ADD x y z) (meaning x+y~2) in the example,
sredecessor instruction (1). If the predecessor

!

A

A VLIW Architecture for Sequenn’al-Nétured Software 7

i-branch of the previous instruction (1) writes into x or y. or if the old value of z is live at the beginning of in-
struction (2) on a path not passing through this particular (ADD x y z) in (2), or if z is used on a path passing
through this (ADD x y z) in (2) by some operation in (2) other than (ADD x y z), or if there is an assignment
10 z between this (ADD x y 2) and the root of (2). then the move of this operation (ADD x y z) cannot be made;
otherwise the move can be made, 10 obtain the result shown in the figure. Note that in the process of moving
a conditionally executed operation such as (ADD x y z) to a preceding instruction, where it will be executed
unconditionally, the operation has to be made uninterruptible (indicated by -U here), in order to prevent an
overflow exception that would not have occurred in the original version of the program.® The move-cj trans-
formation moves a test node such as “IF (NOT cc5) ...”, from an instruction (2°) to a preceding one (1), by
creating two modified copies of (2'): one, labeled (27), that acts as if the test (NOT ccS) were true; and an-
other, labeled (2'). that acts as if the test (NOT cc5) were false. Afier the move-cj, the predecessor i-branch
in (1), instead of branching 10 (2'), branches to (2") if (NOT cc5) is true, and to (27") if (NOT cc5) is false.
If the cc5 register used by the test node is set in the predecessor i-branch of the previous instruction (1), the
move of the test node, of course, cannot be done. In both the move-op and move-cj transformations, if the in-
struction which originally contained the operation or test node had another predecessor i-branch. the original
copy of the instruction has to be retained in order 1o preserve program semantics. Then, the operations in the
original copy can also be percolated upward through the other predecessors. The delete transformation simply
deletes an empty instruction, that has become empty as a result of moving its contents upward. It is the delete
transformation that actually reduces the path lengths and causes speedup. There is another transformation
called the unification transformation. which acts on a single instruction, and which serves to unite several copies
of the same operation after it and its copies have been pushed up along the different branches of. e.g.. an if-
then-else statement. The unification transformation can be done if an operation is present on both of a twin
pair of edges emanating from the same node n in the instruction tree (or if the operation is present on only one
of a twin pair of edges, but an imaginary copy of the operation can be inserted in the edge that does not have
it, without harming program semantics). The operation and its (possibly imaginary) copy are united and are
moved up as a single operation to an edge higher in the tree, namely, the edge coming in to the node n. On-
the-fly incremental applications of classical optimizations, such as dead code elimination, copy propagation. or
common expression elimination, can be combined with percolation scheduling. Assuming that the target archi-
tecture supports conditional operations and if-then-else trees, and that sufficient machine resources are avail-
able, a greedy application of percolation scheduling that takes each operation or conditional jump in the order
it appears in the sequential version of a loop free program, and moves up each operation or conditional jump
as high up as it will go on all paths (attempting unifications before each move-op), will already yield a good
schedule, and is sufficient 10 demonstrate the concept.® But scheduling with finite resources, variable length
operations, etc., and the related correctness, optimality and complexity issues, are Jess easy, and we are contin-
uing to do research on these topics.

A further technique for achieving parallelism in compiled code for VLIW machines is unrolling inner loops a few
times, and applying the scheduling techniques to the unrolled loop body [Fisher 82). There have also been other
improvements to trace scheduling that have been published in the microprogramming workshops since Fisher's
thesis. such as tree compaction, {Lah and Atkins 83], which prevents the proliferation of the new, copied nodes
generated by the trace scheduling process. But we feel that the impending availability of denser main memory
chips, and the use of code explosion control techniques, may at this stage alleviate the code size problem of the
trace scheduling family of compaction techniques.

‘ Actually. even if the old value of z is live on a path through (2). the move can still be made by changing this definition of 7 10 (ADD
x y 2°) If this definition (ADD x y z) of z covers all of its uses, i.e.. cach of its uses use only this particular definition of z, then all
of its uses can be renamed as z': otherwise, a (COPY 2z’ z) operation. that copies 2° back 10 z, can be placed in the old location of
(ADD x y 2) in (2) to preserve program semantics. Also, if the old value of z at the beginning of instruction (2) covers all of its uses.
then the move can again be made by adding a transfer (COPY z 7°) alongside (ADD x y z) in instruction (1), that copies the oid value
of 210 7", and renaming all uses of the old value of z 10 2",

* If an overflow-causing addition actually occurs during (ADD-U x y z). z will be set to the special bit pattern 1 (bottom). but no ex-
ception will take ptace. Then, if the path through the old iocation of (ADD x y z) in (2) is actually taken by the program_ and z (or
the result of any uninterruptible operation that depends on z) is later used as an operand Lo an interruptible operation, an exception
will occur, so some arithmetic error trapping is provided by our archi e. The al of defernng the exception until
the 4 value is stored inlo memory, & not 3 good one, since the exception could be detected 100 late in case many variables are allocated
in registers. We will describe the hardware support [or arithmetic traps later in the paper.
Notice that the code produced by such a greedy appll of pe heduling. does not execute all the operations in the ori-
ginal code, regardiess of whether they are useful or not (doing so would be unacceptably ineffictent. e.g. in a decision tree type code
structure). As soon as it is known that a path is not going to be taken. the code produced by greedy percolation scheduhing stops
executing operations on that path, so resources are wasied precisely on the operations whose operands become ready. before or at the
same time as the condition code(s) that determine the non-necessity of these operations become ready. If the peak parallelism of the
problem is so low (as in system or commercial code) that several h are already p My infinite for the problem,
wasting resources in this controlled (ashion will probably not hurt.

s

8 K. Ebcioglu

State of the art in VLIW architectures

Now let us review the state of the art in VLIW architectures. A VLIW architecture would best be implemented
from scratch, since none of the existing micro-architectures appear to offer the degree of paralielism and flexi-
bility demanded by the task of compiling high level languages. Traditional wide-word microarchitectures like
the internal microarchitectures of traditional mainframes, or even general purpose user microprogrammable
computers like the Nanodata QM-1 [Nanodata 79], or the Kyoto University QA-1 and QA-2 [Hagiwara et al.
80, Tomita et al. 86). or the Floating Point Systems FPS-164 [Charlesworth 81] are in our opinion not too useful
as VLIW’s because these machines seem to have been designed more for hand-coding than for specifically
compiling high-level languages. Perhaps with the exception of the QA-1 and QA-2, such machine tend to have
irregular and non-uniform resources which do not lend themselves well to compiling high level languages.
Moreover, none of these machines have the capability of implementing multiway branching in the form of if-
then-else trees, which is the natural mechanism for executing several ordinary conditional branch instructions
in a single cycle. Nevertheless, until about a year ago, VLIW architectures intended for compiling high level
languages were still in the planning stages. But presently, a company called Multiflow already has a machine;
and there seems to have been a sudden increase in interest in designing VLIW architectures. J. Fisher, when
he was back at Yale, has considered a VLIW architecture called EL1-512, with 8 fixed point and 8 floating point
“clusters” each of which has separate banks of registers, ALUs, multipliers, etc.; and a 512 bit instruction word
[Fisher 82]. The ELI architecture has essentially a crossbar interconnection within a cluster, but timid inter-
connections between clusters, and extra cycles are required to move data between clusters. The multiway
branching capability of the ELI is of the form: if tesr; then goto targer,, else if rest, then goto 1arger,. ... else goto
target,, which is good for compaction of conditional jump operations on a single trace through the code (but
conditional jumps outside the single trace cannot be executed in parallel with the ones in the trace, with this
mechanism.) Fisher is now with Multiflow, whose Trace 28 /200 computer [Coltwell et al. 87} is an ELI-inspired
machine. in the sense that it features I-boards for integer operations and F-boards for floating point operations,
each of which have separate register banks and ALUs. The Trace 28/200 has an instruction cache, multiple
memory banks, a pipelined data memory access technique where a data memory access completes in several
cycles, and pipelined ALUs that complete a floating point operation is several cycles. Memory bank
disambiguation is done primarily through software. We feel that this is an effective configuration especially for
scientific code. A. Nicolau and Kevin Karplus have considered a VLIW architecture called ROPE [Karplus and
Nicolau 85]. that capitalizes on highly interleaved, slow, but low-cost dynamic memory as the instruction
memory. The ROPE architecture does support a multiway branching capability similar to that of percolation
scheduling. but it has a very sequential implementation of this branching mechanism it issues the prefetches
(one per cycle) 1o the separate target instruction streams of a multiway branch, several cycles ahead of the cycle
where the actual multiway branch decision is made for choosing a particular target siream for execution. This
machine’s throughput would consequently not be high on code whose original sequential version is conditional
branch intensive, moreover the ROPE prefetching scheme seems to have considerable engineering complexity
compared to the alternative of sending the correct target address to an instruction cache. Another related ar-
chitecture is the polycyclic architecture designed by B. R. Rau, [Rau and Glaeser 81, Rau, Glaeser and Picard
82]. which is not a conventional microarchitecture, in the sense that it does not have any registers. Instead there
are FIFO-like buffers between the output of every functional unit and the input of every functional unit. The
functional units are pipelined. The FIFO-like buffers are useful for, e.g., allowing an operation of iteration n+1
of a software-pipelined loop to proceed and produce a result, even though the result of the same operation in
iteration n has not yet been consumed by all destinations of that operation.” B.R. Rau is now with a company
called Cydrome, whose Cydra 5 (™) machine is an architecture inspired from the polycyclic architecture
[Cydrome 88]. The Cydra 5 has highly pipelined floating point adder and multiplier units, and a high latency
but pipelined data memory system. The branching capabilities (i.e., conditional branch throughput rate) of this
machine are not clear, but a different compilation technique is used instead to remove conditional branches from
the code: Ilf-then-else statements within loops are eliminated by computing the values calculated at both the
then and else parts and selecting the correct value via a machine operation similar in semantics to the C ex-
pression (test?operand}:operand2). This technique converts the Joop body to an IFless basic block. Stores to
memory in the untaken path of an if-then-else are conditionally disabled. Good software pipelined performance
is possible especially in vectorizable inner loops. But due to the basic block model for the inner loop, a single
iteration initiation interval (i.e., delay between the initiations of two consecutive iterations) is chosen for a given
inner loop during software pipelining (even if the original loop allows different iteration initiation intervals de-
pending on the different paths that may be taken through the loop body). CHoPP [Burke 87] is another sci-
entific supercomputer, which consists of several VLIW processors which share a common memory, where each

' liisi ing to Rau’s techni with the static data flow paradigm [Dennis 80). The data flow paradigm can also achieve
software pipelining by executing operations from i ion n+1 before finishing all the op ¥ of iteration n, but in static data
flow (c.g.. implemented with the “acknowicdge™ method) an operation of iteration n4 1 waits until all the result tokens of the same
operation in iteration n are consumed. Tagged token data flow architectures do not run into this pipeline stailing problem (at the cost
of some overhead).

caa

LIW architecture would best be implemented
ar to offer the degree of paralielism and flexi-
Traditional wide-word microarchitectures like
en general purpose user microprogrammable
+ University QA-1 and QA-2 [Hagiwara et al.
.rlesworth 81] are in our opinion not too useful
3 more for hand-coding than for specifically
2 QA-1 and QA-2, such machine tend to have
‘tves well to compiling high level languages.
1enting multiway branching in the form of if-
veral ordinary conditional branch instructions
rchitectures intended for compiling high level
pany cailed Multifiow already has a machine;
‘signing VLIW architectures. J. Fisher, when
11-512, with 8 fixed point and 8 floating point
wltipliers, etc.: and a 512 bit instruction word
sroonnection within a cluster, but timid inter-
move data between clusters. The multiway
irgel,. else if test, then goto rarger,. ... else goto
tkons on a single trace through the code (but
. paralle! with the ones in the trace, with this
computer [Colwell et al. 87] is an ELI-inspired
‘ns and F-boards for floating point operations,
we 28/200 has an instruction cache, multiple
e a data memory access completes in several
operation is several cycles. Memory bank
this is an effective configuration especially for
VLIW architecture called ROPE [Karplus and
‘ow-cos! dynamic memory as the instruction
ching capability similar to that of percolation
sranching mechanism: it issues the prefetches
tiway branch. several cycles ahead of the cycle
a particular target stream for execution. This
hose original sequential version is conditional
- to have considerable engineering complexity
- 10 an instruction cache. Another related ar-
Rau and Glaeser 81, Rau. Glaeser and Picard
1at it does not have any registers. Instead there
1t and the input of every functional unit. The
or, e.g., allowing an operation of iteration n+ 1
en though the result of the same operation in
operation.” B.R. Rau is now with a company
ure mspired from the polycyclic architecture
adder and multiplier units, and a high latency
., conditional branch throughput rate) of this
-d instead to remove conditional branches from
vy computing the values calculated at botk the
e operation similar in semantics to the C ex-
loop body to an IFless basic block. Stores to
sabled. Good software pipelined performance
basic biock model for the inner loop, a single
wo consecutive iterations) is chosen for a given
llows different iteration initiation intervals de-
op body). CHoPP [Burke 87] is another sci-
‘s which share a common memory, where each

1gm {Bennis 80). The data flow paradigm can also achieve
ishing all the operations of iteration n. but in static data
#eration n+ 1 waits until all the result 1okens of the same
s #o not Tun into this pipeline stalling probiem (at the cost

A VLIW Architecture for Sequential-Natured Software 9

VLIW processor features a multiport register file with full connectivity to 4 integer ALUs, and another, sepa-
rate, multiport register file with full connectivity to 4 floating point ALUs. apparently two-way conditional
branching. instruction cache, and a single port to the shared memory. So there is certainly a rapidly growing
interest in VLIW architectures, but the targeted software almost always seems 1o be scientific code, rather than
inherently sequentiai code, which is the subject of our architecture research.

The pipeline scheduling technique
We will now describe a new VLIW compilation technigue that we believe could augment the repertoire of
compilation techniques for VLIW architectures.

It is an obvious fact that the speed at which inner loops are executed have a critical effect on the runtime of an
algorithm. When each of the inner loop iterations can be independently executed, then vector instructions can
often be used in a supercomputer, or the iterations can be allocated to different processors on a MIMD archi-
tecture. For loops where some iteration depends on some previous iteration, which appears to be a common
case in real programs, executing the iterations in pipelined fashion, e.g., starting a new iteration every cycle. is
an attractive way to achieve speedup. In the context of microprogrammable architectures, this speedup tech-
nique is called software pipelining. Methods of implementing this technique by hand-coding were discussed in
[Kogge 77] in the context of pipelined array processors; and a technique for pipelining inner loops without any
conditional statements was actually implemented in the FORTRAN compiler for the FPS-164 array processor
[Touzeau 84]. David Kuck’s group at the University of lilinois have suggested a compilation technique called
dopipe [Padua 79, Davies 81] to achieve this sort of pipelining on MIMD computers. This technique divides up
the loop body to pipeline segments (which are taken to be the maximal strongly connected components or pi-
blocks of the data dependence graph of the loop body), and allocates each segment to a different processor.
Another technique. doacross has been proposed by [Cytron 84, Padua 79], which allocates different iterations
of the Joop 1o different processors, where the processor containing iteration i starts executing the Joop body after
a delay proportional to i. Cytron also proved that the problem of deciding whether there exists a semantics-
preserving rearrangement of a given loop body so that a given iteration issue delay can be achieved for the loop
is NP-complete, which suggests that achieving optimal code with finite resources for this sort of pipelined loops
must be computation intensive, although some heuristics have been found, both by [Cytron 84} and also by
[Munshi and Simons 87). But even if we assume that the processors run with the same clock so that the normal
synchronization requirements of MIMD machines are alleviated, these iteration pipelining techniques require
synchronization at least in the case where a loop iteration can take a variable amount of time to produce a value
needed by the next iteration because of conditional statements, and when we do not want to be conservative
by taking the worst case time in computing the iteration issue delay. We will suggest a compilation technique
for inner loops on VLIW machines, that can perform this sort of iteration pipelining and that avoids the syn-
chronization problem. Our technique works on inner loops that do not contain subroutine calls. but which may
contain if-then-else and conditional exit statements. With this technique, called pipeline scheduling. a new iter-
ation of an inner loop can be started on every cycle if dependences and resources permit. Given any inner ioop
body. our algorithm generates the flow graph (actually a multigraph) that represents the possible states of the
pipeline in breadth-first fashion, and ensures that the states start repeating without having to generate 100 many
of them.® Unlike some previous approaches [e.g. Touzeau 84]. which do not allow pauses between the in-
structions of an iteration (i.e., a “‘rigid” pipeline) our technique starts a new iteration as early as it can without
regard to whether the iteration can finish without pausing, and allows arbitrary pauses between the instructions
of an iteration (i.e., a “flexible™ pipeline). Also, iterations may complete out of sequence in our technique, e.g..
if iteration n — 2 takes a long path, and iteration n takes a short path.?® Although the programming details of our

Suppose we call the set consisting of the entry instruction of the generated sofiware-pipelined code, level 1: and we call the successors
of the entry instruction that are not in level 1. level 2. and we call the successors of instructions in level 2 that are not in level 2 or
1.level 3. eic.. Then, the maximum number of levels in the generated software-pipelined code is guaranteed not to exceed the length
of the longest cycie free path starting at the entry instruction of the original loop. A successor of any instruction at the maximum level
is guaranteed 1o belong to the previous levels or to the same Jevel (unless it is an exit). Note that there is no guarantee that such re-
peating pipeline states can be obtained within so few levels by unrolling an inner loop a number of times and naively applying trace
or list scheduling to the unrolied loop.

There have recently been other techniques that have been independently discovered for software pipelining of loops with tests. The
most i ing alternative i (interesting in terms of competence of the resulting code as viewed by a microprogrammer)
scems 10 be A. Aiken and A. Nicolau's Perfect Pipelining method [Aiken and Nicolau 87). which is applicable to uncompacted loop
bodies. The stmple rule technique that they propose for imph ing Perfect Pipelining i unroliing the loop a number of times,
moving up the different iterations in the unrolled code one by one as high up as they can go on all paths. without introducing any
pauses between the instructions of an iteration, and then finding redundant microwords {repeating states) in each path stariing at the
header of the iting d code. and ing these redundant microwords and having the edges that went to these

removed microwords go Lo their copies instead. The simple rule does not allow pauses between the instructions of an iteration, i.e
it produces a rigid pipeline: which may reduce the iteration issue rate (e.p.. iteration n+1 cannot start until iteration n has progressed
10 a stage where iteration n+1 can start execution and continue without pausing on o/l possible paths that iteration n+ | can take
I pauses were allowed. iteration n+ 1 could have been able 10 start earlier and pause on an as-needed basis. and could have allowed
the pipeiined code 10 sustain a higher iteration issue rate). However, zero-cycle delays between the issuing of consecutive iterations
may be achieved with the Perfect Pipelining method (until resources are exhausted) when some paths of the loop have no inter-

sa

10 K. Ebcioglu

scheduling algorithm are themselves easy to understand, the code generated by the algorithm is very parallel and
formidably difficult to understand or imitate by hand-coding even for modest sized loops; so we will just try our
best to explain the method clearly. The input of the algorithm is an already compacted inner loop body with a
distinguished entry instruction labeled (1), and some other instructions internal to the loop with other numerical
labels. The branch target labels that are referred to by instructions in the loop that are not the labels of other
instructions within the loop, are called the exir labels of the loop, and are of the form (E1), (E2),... (EK). The
list of live variables at each exit is also specified with the input. The output of the algorithm is another program
which is a software pipelined version of the given loop body.

The algorithm uses a queue of labels which is initially empty. The instructions of the software-pipelined version of the loop
are placed in a data structure called schedule, which is also initially an empty list. The entry instruction of the pipeline
schedule is a copy of the entry instruction of the loop body, and is also labeled (1), however for each branch target (r)
marking the tip nodes of the first instruction of the schedule, where (r) is ncither (1) nor an exit, we change (r) to (r (1)),
and enqueue the label (r (1)) at the end of the label queue, if it is not already in the queue. Then while the label queue is
not empty. we repetitively pick a label from the front of the label queue, generate a new instruction of the schedule with that
label, and possibly add more labels to the end of the queue during the creation of this new instruction of the schedule

Consider a label (p ¢) picked up from the front of the queue. Here (p) is always the label of an instruction in the loop body.
and q is of the form (g,(g, ... (g,) ...)), z 2 1, where (gq,). ..., (g, _,) are labels of instructions within the loop body, and
(g,) is either the label of an instruction within the loop body, or an exit label. Intuitively. (p) is the label of an instruction
that belongs to the “‘current” iteration, and gq is either an exit label or the label of a cluster of loop instructions already in
the schedule. which belong 10 ““future™ iterations.

To construct the instruction labeled (p). we first make a copy of the instruction labeled (p) in the loop body. Then. to each
tip node in this copy. we try 10 append a copy of the instruction labeled g, (which is always already in the schedule. unless
q is an exit label). depending on the § possible cases:

Let (r) be the target label that marks this tip node of this copy of (p)

if (r) is an exit label
then leave this tip node intact
else if (r) is (1),
if ¢ is not an exit and g is OK to execute concurrently with this i-branch of (p)'°, and resource constraints, heuristics
are satisfied
append a copy of g to this tip (by deleting the tip node, and the root node of the copy of ¢. and connecting to-
gether the edge that comes in 1o the tip node and the edge that goes out of the root node of the copy of ¢).
eise
change the target label (r) to g in this tip node
end
else /* (r) is neither (1) nor an exit label ¢/
if ¢ is not an exit and g is OK 10 execute concurrently with this i-branch of (p), and resource constraints/heuristics are
satisfied,
append a copy of g to this tip. Change each target label s of this copy of ¢ appended to the tip, 1o (7 5), and add
(r 5) to the end of the queue, if it is not already in the queue or schedule.
else
change the target label (r) to (r g) in this tip node. Add (r ¢) to the end of the queue. if it not already in the queue
or schedule.
end
end

Once all tip nodes in the the copy of the instruction (p) have been modified this way. the modified instruction (p) is added
1o the schedule, after changing its label to (p ¢) . And then. another label is picked from the front of the queue. and another
schedule instruction which has that label is generated. elc., and the whole process is repeated until the queue is emply.
Pipeline scheduling is (ormally described in detail, and its termination, and the ic equivalence of its output to the input
loop, are proved in [Ebcioflu 87).

Often, the only reason that the cluster of instructions q in the schedule belonging to future iterations cannot be
executed concurrently with the particular i-branch of the loop body instruction (p) is because g is writing into
some register 1 whose old value will still be used during the current iteration. In this case, if an extra register 1’

(In our where the ileration issue delay cannot be less than one cycle, such zero-cycle delays may
be achieved not directly, but by unroliing the loop a number of Limes, compacting the unrolled code, and then applying pipeline
scheduling)

For the case of register dependences only. ¢ is OK 10 execute concurrently with a particular i-branch of (p). iff g does not wrile a
register that is read of writlen on a cycie free path in the loop body starting al the Larget (r) of this i-branch and ending at (1) or an
exit; and ¢ does not read a register that is written on this i-branch or on a cycle free path in the loop body starting al the target (r)
of this i-branch and ending at (1) or an exit.

Lea

- generated by the algorithm is very paraliel and
n for modest sized loops; so we will just try our
s an already compacied inner loop body with a
.ctions internal 1o the loop with other numerical
ons in the loop that are not the labels of other
. and are of the form (E1), (E2),... (EX). The
The autput of the algorithm is another program

actions of the software-pipelined version of the loop
n empty list. The entry instruction of the pipeline
so labeied (1). however for each branch target (r)
- s neither (1) nor an exit, we change (r) 10 (£ (1)),
already in the queue. Then while the label queue is
generate a new mstruction of the scheduie with that
Teation of this new instruction of the schedule.

:s always the label of an instruction in the foop body.
are abels of instructions within the loop body. and
t label. Intuitively, (p) is the label of an instruction
the dabel of a cluster of loop instructions aiready in

straction labeled (p) in the loop body. Then, 10 each
d ¢. (which is always already in the schedule. unless

-branch of (p)'’. and resource constraints/heuristics

3 the voot nade of the copy of g. and connecting to-
hat goes out of the root nade of the copy of g).

yramch of (p). and resource constraints /heuristics are

{ this copy of g appended to the tip, 10 (r 5). and add
: or scheduie.

. 20 the end of the queue. if it not already in the queue

dified this way, the modified instruction (p) is added
el 1s picked from the front of the queue. and another
whole process is repeated until the queue is empty.
nd the semantic equivalence of its output 10 the input

-hedule belonging to future iterations cannot be
body instruction (p) is because g is writing into
-emt iteration. In this case, if an extra register //

canmot be less than one cycle, such zero-cycle delays may
cowpacting the unrolled code, and then applying pipeline

ety with a particular i-branch of (p). iff ¢ does not write 2
g at the Larget (r) of this i-branch and ending at (1) or an
a cycle free path in the loop body siarting at the targel (r)

A VLIW Architecture for Sequential-Natured Software 11

is available, and if this i-branch of (p) has no definitions of i, and if an imaginary definition (COPY 11) of 1 at
this tip edge of (p) would cover all of its uses, i.e. no other definitions of 7 would reach these uses, then these
uses of 7 in the loop body or exits can be renamed as /', and a transfer (COPY 1 /') (meaning 1 - ') can be added
to this tip edge of (p). After these changes, the copy of g can be added harmlessly to this branch of (p). even
though g clobbers 1. This renaming transformation can be crucial in obtaining a short iteration issue rate: and
can be done on-the-fly during the pipeline scheduling algorithm, whenever a pipeline stall is noticed by the al-
gorithm which appears to be fixable by renaming. In the worst case. with infinite resources, the pipeline
scheduling technique may generate O((n — 1)!) schedule instructions for a given loop of n instructions. But
code explosion is prevented 10 a good extent because of the resource limitations on the size of the microwords.

The appendix gives an example of pipeline scheduling, on a loop that finds the maximum and minimum elements
of an array. This loop, taken from [Jensen and Wirth 74] examines two elements of an array in each iteration,
and updates the running maximum and running minimum of the array, if they need to be updated. First we give
the sequential intermediate code for the inner loop, followed by the same code compacted using greedy
percolation scheduling. Finally the compacied loop body is scheduled using pipeline scheduling technique. but
assuming infinite resources, in order to demonstrate the available parallelism. As the reader can see, in the
steady state part of the loop, the software-pipelined loop throughputs one iteration per cycle except when the
minimum or maximum is updated, in which case the pipeline stalls for one cycle. It should be noted that this
degree of paralielism is rather good for this sequential-natured algorithm. The technique described above is
likely to extract parallelism that is limited only by the number of operation elements. It is superior to loop un-
rolling {Fisher 82] in serial loops where iteration n + 1 has some dependency on iteration n, because if such a
loop is unrolled & times and then scheduled with an existing technique like trace scheduling, then the k iterations
contained within the loop may indeed be pipelined but the initial pipeline filling delays will be incurred on every
k iterations. Such delays are incurred only once in the pipeline scheduling technique. Moreover, large numbers
of loop unrolling can generate more code than the code generated by our technique.

Proposed machine architecture

The architecture of the proposed machine has been purposefully designed 10 be streamlined. in the tradition of
the 801 and RISC [Patterson 81, Radin 82, Hennessy et al. 82]. However, unlike the single-chip RISC ap-
proach, we have decided to make ample use of VLSI for implementing a very high degree of connectivity and
easy-to-schedule resources in our machine. We will give a preliminary description of our design ideas below.
For architectural features such as the number or registers or ALUs, we will not specify a specific number, but
a symbolic constant, since a synchronous computer design is essentially a hard-wired parallel program for in-
terpreting instructions; and we feel that it is not a good idea to use specific numbers in programs, or to proclaim
a fixed number for the available amount for an architectural resource and have the software become dependent
on this fixed number. We will give after each symbolic constant, in parentheses, what its value will be in the first

prototype.

The proposed architecture (which currently does not have a name) consists of N, ¢ (8) identical ALUs, each
capable of executing a usual repertoire of integer, logical, shifting. field extraction, and floating point operations,
as well as conversion operations between integer and floating point. The floating point format is IEEE single
precision, and the integer format is 32 bit two’s complement and 32 bit unsigned. However, every operation
yields a result: There is a special bit pattern 4, called “bottom™ (obtained via an additional exception tag bit -
a 33rd bit) analogous to the bottom element in lattice theory or in Backus's FP language, that is the resuit of
operations that would normally cause an exception. If an operation would normally cause an exception (such
as integer overflow), or if one of the operands of the operation is 4. the result is 4. There are interruptible
(exception-raising) and uninterruptible versions of each operation. The interruptible version causes an excep-
tion when the result is 1, the uninterruptible version never causes an exception even when the result is 1. This
type of architecture is required in order to aggressively execute operations ahead of time. without fear of in-
curring e.g., an overflow or division by zero exception which would not have happened in the sequential version
of the program.

The main communication scheme between the ALUs is a 3N, s (24) port register file consisting of Nggqs (64)
33-bit registers (counting the exception tag bit). At the beginning of every clock period a given ALU can read
any two registers as input and can transfer its result to any register (conceptually) at the end of the same clock
period. If more than one ALU result is simultaneously written into a register, the written value is architecturally
undefined (however, the values are or'ed together in the present implementation proposal). RISC-like pipelin-
ing techniques with bypass paths (similar to those described in [Agerwala and Cocke 87]) are used to reduce
cycle time."!' Non-pipelined versions of multiport register files with this organization (but with a small number

" The result of an ALU goes into a dedicated ALU output register at the end of the current cycle. and is stored into the destination
register on the next cycle. The data is iaken from the dedicated repisier if another ALU tries 10 read the new value of the destination
vegister during the next cycke. This invoives too many bypass paths, but register file design is pin-limited. not arca limited

cea

Pt A P R ST

12 K. Ebcioglu

of ports) were previously used in the Nanodata QM-1 [Nanodata 79] and the Kyoto university QA-1 and QA-2
machines [Hagiwara et al. 80, Tomita et al. 86).

The ALUs are combinatorial: integer addition, subtraction, logical operation and shifting can be done in a single
cycle. For operations that cannot be done in a single cycle, the inputs must be held constant and the result will
be valid after a predetermined number of cycles. A multiple-cycle ALU operation can be spread out over se-
veral consecutive instructions as long as the inputs of the ALU are kept constant; the other AL Us can perform
many single-cycle operations during this time. Sequential operations such as division also appear combinatorial
(e.g.. as implemented in the BIT ALU), and their inputs must also be held constant throughout the entire op-
eration. The reason we chose combinatorial, rather than pipelined floating point operations is because they
simplify the design, they are more amenable to precise interrupts, and they tend to provide faster execution in
inherently sequential code, e.g. pipelined loops where iteration n+1 depends on a result from iteration n.

The data memory address is 32 bits long and indicates a byte address. A store operation can write 32-bit
fullwords, aligned 16-bit halfwords, or 8-bit bytes. A read operation can only read a fullword, which can be
broken apart by a subsequent operation. Fullword memory operations can also be done uninterruptibly, in
which case a read of a non-existent or protected location will return the special L value, and a store operation
will store 4 in memory without causing an exception. Memory access is achieved by N,, /2 (4) aliernating
address and data ports to memory. The left input of ALU 0 and the output of ALU 1 constitute the address and
data paths of memory port 0. Memory ports 1,2,3,.... (N, s/2) — 1 are similarly defined for the remaining pairs
of ALUs. There are N,,.,s (8) independent banks in the prototype memory, such that consecutive words are
in consecutive banks. Memory operations take a single cycle in the absence of bank conflicts. When there is
a request from more than one port for a given bank. the requests are satisfied in increasing port order, and the
instruction clock is held until all requests are satisfied. We felt that such hardware assist had 1o be provided
since memory bank disambiguation at compile time is less successful for non-numerical code than it is is for
paraliel scientific code. Note that the data to be stored is taken from the output of an ALU, so there is no time
to really store it in the same cycle. A buffering technique is used instead, which nevertheless allows the new
value of the memory location 1o be read on the cycle immediately following the “‘store.”” via a bypass path from
the buffer register.

The instruction word is 537 bits wide. For each ALU an operation, two sources and a destination is specified.
Each input of an ALU can be taken from either a register or from one of the N,,,,, (6) 32-bit immediate fields
in the microword (some of the same immediate fields can also be read as sign extended 16-bit fields). The
destination is specified as a register number, and a Ny ,zg, 75 (4) bit transfer enable mask. (The machine can dq
a multiway branch to Nz, 75 target instructions). Suppose that at the beginning of an instruction, the current
values of the condition code registers are such that the instruction branches to target 1, 0 < i € Ny geers— 1 .
Then, the transfer 1o the destination register of this ALU takes place only if i 'th bit of the transfer enable mask
for this ALU is 1. The purpose of this mechanism is to allow the conditional execution mechanism of the deci-
sion tree shaped instructions described above. For example, assume that an ALU operation occurs (in a non-
overridden position) on the first two i-branches of the instruction-tree; but not in the remaining i-branches.
The compiler will then set bits 0 and 1 of the operation’s transfer enable mask to 1, and will set the remaining
bits of its transfer enable mask to 0. In addition to the ALU parcels and immediate fields in the microword,
there also are memory port parcels for each memory port, and branch control masks for conditional branching.

The conditional branch mechanism was designed to support the if-then-else tree multiway branching mech-
anism, and to allow nonsense comparisons (such as comparing the result of a division by zero to an integer) to
be executed ahead of time, as long as they do not affect a subsequent branching decision. There are N, ¢ 2-bit
condition code registers, one for each ALU. Comparison operations (such as GT, LT, EQ for two's comple-
ment comparisons, and their unsigned and floating point variants) set the condition code register for the par-
ticular ALU. The possible values for a condition code register are true (01), false (00), and error (1X).
Comparisons that involve the special L value as an operand set the error condition code, and also cause an ex-
ception if done interruptibly. Three valued logic (true, false, error) is used for next address selection.!2 For each
branch target i, 0 € i < Ny pgers — 1, there is a pair of N, «-bit masks in the microword, 4, . and B,, which
specify two arbitrary subsets of the condition code (cc) registers. At the beginning of the instruction, for each
branch target /, 0 € i < Ny pcers — 1, a three-valued logic signal called 1arger, is computed as foliows: If A, and
B, are disjoint, and each cc in A, is true and each cc in B, is false, then 1argey, is true, otherwise if 4, and B, are
not disjoint, or at least one cc in A, is false or at least one cc in B, is true, then arger, is false, otherwise, 1arget,
is error. After computing these signals, the machine finds the first 7 such that targey, is not false (it better be true,
otherwise a branching error exception occurs); and then selects the absolute address of the next instruction from
immediate field #/. But if all target signals are false, then the next instruction address is taken to be the address

” with the relevant truth 1abie entries being (F and E)=F, (T and E)=E, (E and E)=E. (T or E)=T. (F or E)=E. (E or E)=E, (not
E)=E. {tis interesting to note that [Kieene 52] has used a three-valued logic with the same (ruth tables as the ones used here. for
representing the values of computable predicates. with the third truth value reserved for the case where the program implementing
the predicate does not terminate.

e T s R Ao . s B A7 20 - iGN SN .,

P L

‘aia 79] and the Kyoto university QA-1 and QA-2

oical operation and shifting can be done in a single
e inputs must be held constant and the result will
-cvcle ALU operation can be spread out over se-
7 are kept constant; the other ALUs can perform
rations such as division also appear combinatorial
.1 also be held constant throughout the entire op-
nelined floating point operations is because they
apls, and they tend to provide faster execution in
1 n+ 1 depends on a result from iteration n.

vie address. A store operation can write 32-bit
yperation can only read a fullword. which can be
operations can also be done uninterrupltibly. in
i return the special 4 value. and a store operation
-y access is achieved by N,;, /2 (4) alternating
1d the output of ALU 1 constitute the address and
1) — 1 are similarly defined for the remaining pairs
notype memory. such that consecutive words are
in the absence of bank conflicts. When there is
eslts are satisfied in increasing port order. and the
eht that such hardware assist had to be provided
accessful for non-numerical code than it is is for
2n from the output of an ALU. so there is no time
used instead. which nevertheless allows the new
1ely foliowing the “'store,” via a bypass path from

ration, iwo sources and a destination is specified.
from one of the N, (6} 32-bit immediate fields
tso be read as sign extended 16-bit fields). The
4) bit transfer enable mask. (The machine can do
-hat at the beginning of an instruction. the current
.ction branches to target i, 0 € 7 € Nrporrs— 1.
s place only if i 'th bit of the transfer enable mask
the conditional execution mechanism of the deci-
assume that an ALU operation occurs (in a non-
uction-tree; but not in the remaining i-branches.
wsfer enable mask to 1, and will set the remaining
J parcels and immediate fields in the microword,
1 branch control masks for conditional branching.

the if-then-else tree multiway branching mech-
.g the result of a division by zero to an integer) to
sequent branching decision. There are N,; s 2-bit
erations (such as GT, LT, EQ for two's comple-
iants) set the condition code register for the par-
qister are true (01), false (00). and error (1X).
et the error condition code, and also cause an ex-
‘rror) is used for next address selection.’? For each
¢bit masks in the microword, 4, . and B, which
.ers. At the beginning of the instruction, for each
nal called farger, is computed as follows: 1f 4, and
alse, then targer, is true, otherwise if 4, and B, are
in B, is true, then rarger, is false. otherwise, rarger,
first i such that rarger, is not false (it better be true,
-s the absolute address of the next instruction from
next instruction address is taken to be the address

= (E and E)=E, (Tor E)=T. (F or E)=E. (E or E)=E. (not
aed dogic with the same truth tables as the ones used here, for
value reserved for the case where the program implementing

A VLIW Architecture for Sequential-Natured Software 13

of the next sequential instruction, which is considered to be target number Ny ,p.75s —1. All of this is to enable
the paraliel execution of Boolean expressions such as (y'=0 && x/y>3) in C, where x/y>3 can be computed
without having to wait for y'=0 to complete, and where the condition codes resulting from y!=0 and x/y>3 can
be tested simultaneously without incurring a branching error exception, even if y is indeed 0.'* Unconditional
branch is obtained by placing an always true patiern (null sets) in the first pair of masks, no-branch is achieved
by placing an always false pattern (intersecting sets) in all the pairs of masks. In addition to the Ny ,z.r75 POs-
sible targets, an additional escape pattern in the masks forces the next address to be taken from the output of
ALU 1. This is necessary for performing computed goto, returning from subroutines, and calling functions
passed as parameters.

Protection is provided through supervisor and user modes. When an interrupt is detected, control branches to
location O+some offset determined by the type of interrupt. Interrupts are disabled and processor is forced to
supervisor mode. If an interrupt logically occurs during instruction n, it is detected at the beginning of instruc-
tion n+1, and the updating of the register file by instruction n is inhibited (remember that the register file is
updated late, due 10 pipelining), and the privileged “‘oldpsw" register is loaded with the address of instruction
n. plus the condition codes and other process state registers as they existed in the beginning of instruction n.'
All 1/0 is memory mapped. and 1/0 accesses are possible only in supervisor mode. A return from an interrupt
(load PSW) is accomplished in the supervisor mode by a special variant of the branch-to-ALU-1 instruction that
also loads the condition code registers and other process state registers from the output of ALU-3 (and of
ALU-5, ALU-7.... as determined by the PSW length implied by the architecture parameters). and stretches the
clock during the next instruction if necessary, so that any interrupted long combinatorial operations are started
from scratch and are given ample time to complete.

Note that the architecture described so far does not define any virtual memory mechanism, cache, or 170 sys-
tem. but clearly allows precise interrupts. and provides the primitives so that some memory hierarchy can be
designed. To make the project realizable. we wish 10 decouple the design of the caches, virtual memory mech-
anism, and 1/0 system from the CPU design. At this point we only want to study the behavior-of the CPU with
infinite cache performance. So we will only build a version with a small amount of fast memory (16K words
(~1M bytes) of instruction memory and 128K words (512K bytes) of data memory). which will be attached to
an IBM PC/AT through an interface card. This interface card will be able to start, stop. and single-step the
clock of the VLIW machine, read and write all of its internal registers through a scan ring. read and write its
memories, and exchange interrupts with it. This way we will be able to download and run some small
benchmarks in the VLIW machine. As for the software side, we plan to develop a compactor that takes the
intermediate code output from the C version of the PL.8 compiler [Warren et. al 86]. and the assembly language
output from the FORTVS2 Fortran compiler, re-performs certain traditional optimizations to compensate for
architectural differences between the IBM 370 and the VLIW machine, and then applies percolation and pipe-
line scheduling to obtain compacted VLIW machine code.

For the prototype, we are planning to use LSI Logic CMOS compacted arrays with high I/0 pin count, com-
mercially available ALUs from Bipolar Integrated Technology. and 17ns 16K*4 CMOS static RAMs. The
24-port register file will be implemented as two-bit slices of the entire register file per chip (17 copies will be
used), and will also include the immediate field multiplexers for the ALU inputs. Another chip. the next address
multipiexer (4 copies), will incorporate the irregular logic of the CPU involving interrupts and the PSW, as well
as the next instruction address multiplexer. A third chip, the memory crossbar switch (8 copies), will handle the
traffic between memory ports and banks and arbitration. Presently. for the path: register file access - ALU
operation - dedicated register setup: and the path: compute and drive next address - instruction memory
RAM access time - instruction register setup; designing for a 50ns cycle time looks possible. The path: register
file access - memory crossbar switch = RAM access time - crossbar switch = dedicated register setup is
slower, because of two extra chip crossings; and we are considering alternative organizations (such as making
true multiport RAMs that can later be used as a building block in a direct mapped cache) to remedy this. Thus,
assuming we count the actions of each of the 8 ALUs, each of the 4 memory accesses, and each of the 3 con-
ditional branches (4 branch targets = 3 test nodes in the if-then-else tree) as the equivalent of a RISC instruc-
tion, the architecture will be able to execute a maximum of 15 RISC instructions per cycle. However, we fecl
that it is not very wise to proclaim peak MIPS ratings, especially for nonexistent machines.

Note that in the sequentia! semantics of C, first y'=s0 is computed within (y'=0 && x/y>3). and if y'=0 is false. x/y>3 s not com-
puted.

This technique obviously helps to reduce the cycle time. Also. 2 multiport direct mapped cache can use this mechanism to send pos-
sibly wrong data to the CPU during instruction n without checking the cache directory conlents. and then signaling a delayed-
interrupt ai the beginning of instruction n+1 which will restore the machine state as it cxisted at the beginning of instruction n. The
memory mechanism will have (0 arrange that the fetching of the interrupt routine instruction (which will just return from the inter-
rupt) does nol cause a cache miss. Upon return from interrupt. instruction n will be recxecuted, and the cache miss mechanism can
then supply correct data for all requests from the memory ports, hoiding the clock until the cache miss processing is complete, if
necessary. This can allow very short cache sccess times when there is no cache miss. But so far we have no immediate plans for
making a cache.

P

14 K. Ebcioglu

Preliminary performance predictions

To get a rough estimate of the performance of the proposed machine, we hand-compiled the less complex
Lawrence Livermore Loops benchmarks for the proposed machine. using greedy percolation scheduling that
takes operations in the order of appearance in the program and moves them up on all paths as far as they can
go. followed by pipeline scheduling, which we feel we can implement in a VLIW compiler.’* Since these loops
are short, il is possible to calculate the execution time by hand. We have assumed that floating point add. sub-
tract and multiply. and integer multiply. have been combinatoriaily implemented and take 2 cycles each (100ns
for a 50ns clock - this is a conservative assumption); and that the slowest operation in 2 microword just stalis
the other operations. We have also hand-compiled 4 (embarrassingly) simple C programs to estimate per-
formance on very sequential-natured software: a program 1o sum the elements of an integer array. an insertion
sort program that sorts ten integers, a merging program that takes two ten element sorted integer arrays and
merges them into a third 20-element integer array, and a recursive factorial program that finds 10'. We will first
present some comparisons of the performance of the machine against a similarly constructed RISC which can
execute only one three-register operation, or one memory load or store, or one conditional or unconditional
branch in a single cycle (but floating point operations also take 2 cycles on the RISC machine). We will com-
pare the number of cycles required to finish a program segment on this RISC and on the VLIW in order to get
an abstract measure of inherent parallelism that can be captured by these compilation technigues. In the table
below. the number of cycles in the inner loop of each program is given, except for kerne) 21 (matrix multiply
for 25*25 matrices). insertion sort, and recursive factorial, where the number of cycles for the entire program
is given. As we can see, percolation scheduling, as modified by us, already gives a speedup of about 3.0. The
addition of the pipeline scheduling on top of percolation scheduling gives a parallelism of about 4.9 and up 10
6.7 in some sequential-natured programs. Notice that more traditional paralielism extraction techniques such
as loop unrolling or recurrence breaking (e.g. for the inner product computation in Kernel 3) have not been used
to obtain these results (such techniques could yield additiona! paralielism).

prog RISC VLIW VLIW speedup speedup
cycles cycles cycles compac. pipel.
compac. pipel.
kerneli 21 9 4 233 5.28
kernel3 11 s 2 2.20 5.50 N
kerncls 13 5 4 2.60 3.25 '
kernell) 9 3 2 3.00 4.50
kernel2 | 197052 82627 35752 2.3% 5.51
kernel24 10 4 3 2.50 333
ins. sort 497 173 74 2.87 6.72
merge 15.5 3 3 517 517
rec. factorial 235 65 65 3.62 3.62
arraysum 6 2 1 3.00 6.00
average 2.97 4.89

In the appendix. we give an example of one of the programs used here: the merge program, its RISC assembly
code version, and its VLIW machine code version. Pipeline scheduling does not work for this sequential merg-
ing algorithm because the first instruction of iteration n+1 uses a register set by the last instruction of iteration
n: nevertheless, ordinary percolation scheduling is able to achieve some speedup. It should be noted that al-
though the speedup is about 5 on this program, an average of about 7 operations/conditional jumps are being
exeeuted in cach instruction of the program: it seems that some extra operations/conditional jumps that belong
o uniaken paths have to be executed ahead of time or conditionally, to achieve speedup on this kind of non-
numerical codc.

Now. a well designed RISC will have a cycle time that is somewhat shorter in a given technology (for example,
the VLIW cycle time would be about 30% longer than the bypass path of a four stage pipelined RISC in
AS-TTL). and the RISC could overlap branches with arithmetic operations so that unconditional branches take
zero time | Ditzel and McLellan 7). So this speedup value must be derated for a realistic comparison. But it
is difficult to make a comparison to a hypothetical machine. Since future RISC's will undoubted!y approach
supercomputer speeds. we have instead collected some statistics that compare the VLIW architecture 1o a real

" W are past the hand-compiling stage at present. We presently have a working preliminary version of the compiler back-end (coded
by Mauricio Bretemits) that perfoems pereolation and pipeline scheduling (including the ion). gate level sche-
autes for the protype. and 3 cycke-simulalor written in C, that accurately models every signal. bus and fip-fiop in the machine
We will therefore report more accuralte predictions about the performance of our machine in future papers.

=d machine. we hand-compiled the less complex
achine, using greedy percolation scheduling that
nd moves them up on all paths as far as they can
wplement in a VLIW compiler.'* Since these loops
d. We have assumed that floating point add. sub-
yrially implemented and take 2 cycles each (100ns
at the slowest operation in a microword just stalis
‘arrassingly) simple C programs 1o estimate per-
sum the elements of an integer array. an insertion
. takes two ten element sorted integer arrays and
rsive factorial program that finds 10!. We will first
e against a similarly constructed RISC which can
oad or store. or one conditional or unconditional
ke 2 cycles on the RISC machine). We will com-
ent on this RISC and on the VLIW in order to get
ired by these compilation techniques. In the table
am 1s given, except for kerne] 21 (matrix multiply
vhere the number of cycles for the entire program
{ by us, already gives a speedup of about 3.0. The
eduling gives a paralielism of about 4.9 and up to
traditional parallelism extraction techniques such
»duct computation in Kernel 3) have not been used
. parallelism).

N speedup speedup

N compac. pipel
233 5.25
2.20 5.50
2.60 325
3.00 4.50
2.38 5.51
2.50 3.33
2.R7 6.72
5.17 5.17
3.62 3.62
3.00 6.00
297 4.89

~» wsed here: the merge program, its RISC assembly
scheduling does not work for this sequential merg-
1ses a register set by the last instruction of iteration
ichieve some speedup. It should be noted that al-
of about 7 operations/conditional jumps are being
yme extra operations/conditional jumps that belong
ditionally. to achieve speedup on this kind of non-

newhat shorter in a given technology (for example,
he bypass path of a four stage pipelined RISC in
netic operations so that unconditional branches take
must be derated for a realistic comparison. But it
e. Since future RISC’s will undoubtedly approach
rstacs that compare the VLIW architecture to a real

: a working preleminary version of the compiier back-end (coded

duhing (including the r ing i). gate level sche-
iccurately modets every signal. bus and flip-flop in the machine
mance of our machinc in future papers.

— e prgp—— - o~

A VLIW Architecture for Sequential-Natured Software 15

supercomputer, the 3090.' Listed below are the execution times in ns for each inner loop iteration (complete
program execution time for kernel 21, insertion sort. and recursive factorial) for the 1BM 3090 and the proposed
VLIW machine (in terms of the VLIW cycle time c). On the 3090 the Fortvs2 Fortran compiler. and the C
version of the PL.8 compiler were used, with all optimizations and vectorizations turned on. Both of thesc
compilers are probably the best optimizing compilers available on the architecture for these languages. Note
that since the programs access little data, and were timed by executing them miliions of times in a loop and then
reading the virtual cpu time, we can reasonably assume that we are comparing the infinite cache performance
of the 3090 against the infinite cache performance of the VLIW. There is a wide variation in the performance
ratio (for example the VLIW requires a cycle time of 18ns to catch up with the 3090 on the vectorized matrix
multiply kernel. but 278ns on the merging program), mainly because of some vectorizable loops where the 3090
is very fast. The finite cache performance of this VLIW machine will of course depend critically on the sizes
of the instruction and data caches and the line miss mechanism. But large caches are quite possible Lo imple-
ment, for virtual memory systems designed from scratch. if the cache is made visible to the operating system
software.

prog. VLIW 3090 ratio

time time

(ns) (ns)
kernell 4c 142(V) 36/¢c
kernel3 2¢ 82(V) 41/c
kernel5 4c 242 61°¢c
kernelll 2c 223 112:¢c
kernel21 35752¢ 650000(V) 18 ¢
kernel24 3¢ 260 R7 ¢
ins. sort T4c 14200 1927¢
merge 3c 834 2787¢
rec. factorial 65¢ 11000 169 ¢
arraysum 1c 150 150.¢
average 114/¢

(V) = vectorized loop

Conclusions

We have described our current progress with a VLIW architecture intended for paraliel execution of sequential,
non-numerical code as well as scientific code. The degree of success of VLIW architectures intended for exe-
cuting parallel scientific code is more or less known at this stage. The present proposal is a research experiment
to probe the effectiveness of VLIW architectures and compilation techniques for sequential-natured sofiware.
Much work still has 1o be done to investigate the usefulness of the ideas presented herein. and it is too early to
jump to hard conclusions: but VLIW machines seem to be a promising research area to pursue in computer ar-
chitecture, and seem to offer novel possibilities for speeding up inherently sequential code. which cannot be
adequately speeded up by multiprocessors or vector supercomputers. An effort is now underway at the IBM
Thomas J. Watson Research Center to build a prototype of this machine, and we will report on our progress in
future papers.

Acknowledgements

I'am grateful to Fran Allen, Mauricio Breternitz, Michael Burke, John Cocke, Ron Cytron, Monty Denneau,
Dave George, Manoj Kumar, and George Radin for their helpful comments on the architecture and compilation
techniques described in this paper.

References

Adam, T.L., Chandy, K.M., and Dickson, J.R. (74) “A Comparison of List Schedules for Parallel Processing
Systems™ Communications of the ACM 17, 12, December 1974.

Agerwala, T. (76) “Microprogram Optimization: A Survey" IEEE Transactions on Computers 25. October
1976.

Agerwala, T. and Cocke, J. (87) ““High Performance Reduced Instruction Set Computers™ research report no.
RC 12434, IBM Thomas J. Watson Research Center, Yorktown Heights, 1987.

and should defi y not be construed as any official indication of the performance of an

These are my own informal
IBM product.

oy

16 K. Ebcioglu

Aiken, A. and Nicolau, A. (87) “Perfect Pipelining: A New Loop Paralielization Technique” TR 87-873, Dept.
of Computer Science, Cornell University, October 1987.

Allen, R.A, and Kennedy, K. (84) “*Automatic Translation of Fortran Programs to Vector Form" Rice Tech-
nical Report No. TR84-9, Dept. of Computer Science, Rice University, July 1984.

Arnould, E., Kung, HT., Menzilcioglu, O., Sarocky, K., (85) ““A Systolic Array Computer™ Proc. of the 1985
International Conference on Acoustics, Speech, and Signal Processing (March 1985).

Arvind, and lanucci, R.A. (83) “*A Critique of Multiprocessing von Neumann Style™ Proc. 10th Annua! Inter-
national Conference on Computer Architecture, 1983.

Beetem.)., Denneau, M., and Weingarten, D. (85) *“The GF11 Supercomputer” The 12th Annual International
Symposium on Computer Architecture, June 1985.

Burke, G.R. (87) **A Multiport Register File Chip for the CHoPP Supercomputer” VLSI Systems Design, Au-
gust 1987,

Charlesworth, A.E. (81) “An Approach to Scientific Array Processing: The Architectural Design of the
AP-120B/FPS-164 Family” IEEE Computer, September 1981.

Colwell, R.P., Nix, R.P., O'Donnell, 1.J., Papworth, D.B., and Rodman, P.K. “A VLIW Architecture for a
Trace Scheduling Compiler” Proc. ASPLOS 1987.

Cydrome Inc. (88). "Cydra 5 Directed Dataflow Architecture: Summary” Milpitas, California, 1988.

Cytron, R.G. (84) “Compile-time Scheduling and Optimization for Asynchronous Machines™ Report no.
UIUCDCS-R-84-1177, Dept. of Computer Science, University of 1llinois at Urbana-Champaign, October
19%4.

Davies, J.R.B.(81) “*Parallel Loop Constructs For Multiprocessors™ Report no. UIUDCS-R-81-1070, Dept. of
Computer Science, University of 1llinois at Urbana-Champaign, May 1981.

Dennis, J.B. (74) “First Version of a Data Fiow Language™ Proceedings. Colloque sur la Programmation,
Lecture Notes in Computer Science 19, April 1974,

Dennis, J.B. (80) “Data Flow Supercomputers™ Computer 13(11), November 1980.

Ditzel. D.R., and McLellan, H.R. (87) “Branch Folding in the CRISP microprocessor: Reducing Branch Delay
to Zero" Proceedings of the 14th Annual International Symposium on Computer Architecture, June 1987.

Ebcioglu. K. (87) *A Compilation Technique for Software Pipelining of Loops with Conditional Jumps™ Proc.
MICRO-20, ACM Press, December 1987.

Fisher, J. A. (79) ““The Optimization of Horizontal Microcode within and beyond Basic Blocks: An Application
of Processor Scheduling with Resources™ Ph.D. Thesis, Dept. of Computer Science, New York University,
October 1979. !

Fisher, J.A. (83) ""Very Long Instruction Word Architectures and the ELI-512" Proc. 10th Annual Symposium
on Computer Architecture, June 1983.

Fisher, J.A. and O'Donnell, J.J. (84) *“VLIW Machines: Multiprocessors We Can Actually Program™ Proc.
Compcon 84, February 1984.

Flynn, M.J. (66) “*Very High Speed Computer Systems" Proc. of the IEEE, Vol. 54, No. 12, December 1966.

Foster. C.C.. and Riseman, M.R. (72) *‘Percolation of Code to Enhance Parallel Dispatching and Execution™
IEEE Transactions on Computers, December 1972, B

Gajski, D.D., Padua, D.A., Kuck, D.J., Kuhn, R.H. (85) *“A Second Opinion on Data Flow Machines and H
Architectures™ IEEE Computer, Vol. 15, No. 2, February 1982. '

Goodman, J.R., Hsieh, J.T., Liou, K., Pleszkun, A.R., Schechter, P.B,, Young. H.C. (85), “PIPE: A VLSI De-
coupled Architecture™ The 12th Annual International Symposium on Computer Architecture, June 1985.

Hagiwara, H., Tomita, S., Oyanagi, S., Shibayama, K. (80) *‘A Dynamically Microprogrammable Computer
with Low-level Parallelism™ IEEE Transactions on Computers, Vol C-29, no. 7, July 1980.

Hennessy et al. (82) “*The MIPS Machine” Digest of Papers - Compcon Spring 82, February 1982.

Jensen, K. and Wirth, N. (74) “Pascal User Manual and Report™ Springer-Verlag, 1974.

Karplus, K., and Nicolau, A. (85), “Efficient Hardware for Multi-way Branches and Pre-fetches” Proc. of the
I8th Annual Workshop on Microprogramming, 1985. :

Kicene, S.C. (52) “Introduction to Metamathematics™ Van Nostrand and Company, 1952. 3

Kogge. P.M. (77) "The Microprogramming of Pipelined Processors” Fourth Annual Symposium on Computer
Archilecture, 1977.

Kuck. D.J. (78) “The Structure of Computers and Computations™ Vol. 1, John Wiley and Sons, 1978.

Lah, J. and Atkins, D.E. (83) “Tree compaction of Microprograms™ Proc. 16th Annual Microprogramming
Workshop. October 1983.

Lee. G.. Kruskal, C.P.. and Kuck, D.J. (85) “The Effectiveness of Automatic Structuring on Nonnumerical
Programs™ Proc. 1985 International Conference on Parallel Processing, 1985.

Machtcy. M., and Young, P. (78) “An Introduction to the General Theory of Algorithms™ Academic Press,
1978.

Munshi. A.A., and Simons. B. (87) “*Scheduling Loops on Processors: Algorithms and Complexity” Research
report no. RJ 5546, IBM Thomas J. Watson Research Center, Yorktown Heights, March 1987.

Nanodata Computer Corporation (79) “*QM-1 Hardware Level User's Manual” Buffalo, New York, 1979.

RPN

PR

»op Paralielization Technique™ TR 87-873, Dept.

¢ Fortran Programs to Vector Form™ Rice Tech-
¢ University, July 1984,

“A Systolic Array Computer™ Proc. of the 1985
1 Processing (March 1985).
1g von Neumann Style” Proc. 10th Annual Inter-

| Supercomputer™ The 12th Annual International
oPP Supercomputer™ VLS Systems Design, Au-

v Processing: The Architectural Design of the
1981.
nd Rodman. P.K. “A VLIW Architecture for a

Summary™ Milpitas. California. 1988.
ation for Asynchronous Machines™ Report no.
ersity of Illinois at Urbana-Champaign. October

ssors™ Report no. UITUDCS-R-81-1070, Dept. of
paign. May 1981.
~ Proceedings, Colloque sur la Programmation,

(11). November 1980.

CRISP microprocessor: Reducing Branch Delay
mposium on Computer Architecture, June 1987.
pelining of Loops with Conditional Jumps™ Proc.

: within and beyond Basic Blocks: An Application
ept. of Computer Science, New York University,

and the ELI-512" Proc. 10th Annual Symposium
ultiprocessors We Can Actually Program™ Proc.

. of the IEEE. Vol. 54, No. 12, December 1966.
to Enhance Paraliel Dispatching and Execution™

A Second Opinion on Data Flow Machines and
1982.
ter, P.B., Young. H.C. (85). “PIPE: A VLSI De-
aposium on Computer Architecture, June 198S.
“*A Dynamically Microprogrammable Computer
uters. Vol C-29, no. 7, July 1980.
Compcon Spring 82, February 1982.
m"” Springer-Verlag, 1974.
Anilti-way Branches and Pre-fetches™ Proc. of the

osirand and Company, 1952.
essors” Fourth Annual Symposium on Computer

.ons™ Vol. 1, John Wiley and Sons, 1978.
‘rograms” Proc. 16th Annua! Microprogramming

mess of Automatic Structuring on Nonnumerical
iel Processing, 1985.
General Theory of Algorithms™ Academic Press,

‘ocessors: Algorithms and Complexity” Research
nter, Yorktown Heights, March 1987.
vel User’s Manua!l™ Buffalo, New York, 1979.

A VLIW Architecture for Sequential-Natured Software 17

Nicolau, A. (85) “Percolation Scheduling: A Parallel Compilation Technigue™ TR 85-678, Dept. of Computer
Science, Cornell University, May 1985.

Padua-Haiek, D.A. (79) *“Multiprocessors: Discussion of Some Theoretical and Practical Problems™ Report no.
UIUCDCS-R-79-990. University of lilinois at Urbana-Champaign, November 1979.

Patterson, D.A., et al. (81) “RISC-I: A Reduced Instruction Set VLSI Computer™ Eighth Annual Symposium
in Computer Architecture, May 1981.

Rau, B.R.. Glaeser, C.D. (81) “Some Scheduling Techniques and an Easily Schedulable Horizontal Architecture
for High-performance Scientific Computing™ Proc. 14th Annual Microprogramming Workshop. October
1981.

Rau. B.R., Glaeser, C.D., and Picard, R.L. (82) “Efficient Code Generation for Horizontal Architectures:
Compiler Techniques and Architectural Support” Proc. 9th Symposium on Computer Architecture, April
1982.

Radin, G. (82) “The 801 Minicomputer” Proc. ACM Symposium on Architecture Support for Programming
Languages and Operating Systems, March 1982.

Rogers, H. (67) “Theory of Recursive Functions and Effective Computability™ Prentice-Hall. 1967.

Russell, R. M. (78) “The Cray-1 Computer System’ Communications of the ACM, vol. 21. no. 1. January 1978.

Thornton, R.E. (64) **Paraliel Operation in the Control Data 6600 AFIPS Proc. FJCC. pt. 2, vol. 26, 1964.

Tomasulo. R.M. (67) *“An Efficient Algorithm for Exploiting Muitiple Arithmetic Units™ IBM Journal of Re-
search and Development, vol. 11, January 1967.

Tomita, S., Shibayama. K., Toshiyuki, N., Yuasa, S., and Hagiwara. H. (86) "A Computer with Low-Level
Paralielism QA-2" Proc. 13th Annual International Symposium on Computer Architecture, 1986.

Veidenbaum, A. (85) “Compiler Optimizations and Architecture Design Issues for Muitiprocessors™ Ph.D.
thesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign, May 1985.

Warren. S.H., Auslander, M.A .| Chaitin, G.J., Chibib. A.C., Hopkins, M.E., and MacKay. A.L. (86) “'Final
Code Generation in the PL.8 Compiler” research report RC11974, IBM Thomas J. Watson Research
Center, 1986.

Yau, S.S.. Schowe, A.C.. and Tsuchiya, M. (74) “On Storage Optimization of Horizontal Microprograms™
MICRO-7, Sept. 1974.

s

18 K. Ebcioglu

APPENDIX: CODE EXAMPLES
PIPELINE SCHEDULING EXAMPLE

Y% % From Jensen and Wirth 74, Pascal User Manual and Report. p. 37
%% find the largest and the smallest number in a given list

Yo .

Yo% mini= al 1]: max:= min: i;= 2;

Y% % while i < ndo

%% begin ui=ali]; vi=ali+1];

960 il u>v then

“ata begin if u>max then max:=u;
D% if v<min then min:=v
Yot end else

Yo begin if v>max then max:= v;
Yo if u<min then min:= u
Yo% end:

Calo b i42;

<ot end

AT TR

Three address code for inner loop

LOOP
(LT AL AILIM CC0)
{F (NOT CC0) (GOTO EXIT))
(LOAD A Al L)
(LOAD A A1 V)
(GTUVCCl)
(F (NOT CC1) (GOTO L1))
(GT UMAX CC2)
(IF (NOT CC2) (GOTO L2))
(COPY U MAX)

L2
(LT VMIN CC3)
(IF (NOT CC3) (GOTO L5))
(COPY V MIN)
(GOTOLS)

L
(GT V MAX CC4)
(F (NOT CC4) (GOTO L3))
(COPY V MAX)

L3
(LT U MIN CCS)
(IF (NOT CCS5) (GOTO LS))
(COPY U MIN)

LS
(ADD Al 8 Al)
(ADD Al & All)
(GOTO LOOP)

Pereolation scheduling result:

The percolation scheduling result already reduces the loop 1o three cycles: it performs the loads from memory of the two
array clements and compares the loop index to the ioop bound in the first instruction (1), then it performs the five
comparisons involving these two array eilements and min and max in the second instruction (2). and then it finally per-

forms the conditional update of min or max in the third instruction (3).

o)

(LT Al AILIM CCO) (LOAD A Al U) (LOAD A All V) (ADD Al 8 Al) (ADD Al1 8 All)

(GOTO (21))
Q)

(GT UV CCH) (GT UMAX CC2) (LT V MIN CC3) (GT V MAX CC4) (LT U MIN CCS5)
AF (NOT CC0) ((GOTO (E1))) ELSE ((COPY U U__P) (COPY V V__P) (GOTO (3)))))

[RIN
({3

(NOT CCI)

((F

ces

37

veles: it performs the loads from memory of the two
the first instruction (1), then it performs the five

1 the second instruction (2), and then it finally per-
3).

'D Al 8 Al) (ADD All 8 All)

MAX CC3a) (LT U MIN CC5)
IPY VV__P)(GOTO (3)))))

TR

~—— e

A VLIW Architecture for Sequential-Natured Software 19
(NOT CC4)
((IF (NOT CCS$) ((GOTO (1))) ELSE ((COPY U__P MIN) (GOTO (1)))))
ELSE

((COPY V__P MAX)
(IF (NOT CC5) ((GOTO (1))) ELSE ((COPY U__P MIN) (GOTO (1))))
)
ELSE
((F
(NOT CC2)
((IF (NOT CC3) ((GOTO (1)) ELSE ((COPY V__P MIN) (GOTO (1)))))
ELSE
((COPY U_P MAX)
(IF (NOT CC3) ((GOTO (1))) ELSE ((COPY V__P MIN) (GOTO (1))))))
»
(E1):

Pipeline scheduling result:

The pipeline scheduling result executes instruction (1) of the first iteration during its first instruction. and instructions
(2) and (1) of iterations 1 and 2, respectively, during its second instruction (2 (1)). The third pipeline schedule in-
struction (3 (2 (1)) is entered in state where iterations n, n+1. n+2 are expecting 1o execute instructions (3). (2), (1)
respectively (this expeciarion siare is notated as n:(3). n+1:(2), n+2:(1)). 1f (3) of iteration n does not update min or
max, all of the expected instructions are executed and a branch is taken back to (3 (2 (1))) with the expectation state
n+1:(3), n+2:(2), n+3:(1): otherwise, iterations n+1 and n+2 wait (since. e.g., instruction (2) of iteration n+ 1 needs
the new values of min and max to do its comparisons). and iteration n executes (3) alone, and a branch is taken 10 (2
(1)) with the expectation state n+1:(2). n+2:(1). (2 (1)) will then branch back to (3 (2 (1)}) with expecmllon state
n+1:(3), n4+2:(2). n+3:(1). always assuming that the loop is not exited.

(1):
((LT Al AILIM CC0) (LOAD A Al U) (LOAD A All V) (ADD Al § Al) (ADD All 8 All)
(GOTO (2 (L))

.a

(2(1)):
((GTUVCC1) (GT UMAX CC2) (LT V MIN CC3) (GT V MAX CC4) (LT U MIN CC5)
(IF
(NOT CC0)
((GOTO (E}))
ELSE
((COPY U U__P)(COPY VV__P) (LT Al AILIM CC0) (LOAD A Al U) (LOAD A All V)
(ADD Al § AT} (ADD All 8 AT1) (GOTO (3 (2 mmn)

3 @ay):
((F
(NOT CC1)
((F
{NOT CC4)
(QF
(NOT CC5)
“((GT UV CC1) (GT UMAX CC2) (LT V MIN CC3) (GT V MAX CC4)
(LT U MIN CC5)
aF
(NOT CC0)
((GOTO (E1)))
ELSE
((COPY U U_P) (COPY V V__P} (LT Al AILIM CCO) (LOAD A Al U)
(LOAD A AIT V) (ADD Al 8 A1) (ADD Al1 8 All)
(GOTO (3 (2(1))))))
ELSE
((COPY U__P MIN) (GOTO (2 (D)))
ELSE
((COPY V__P MAX)
(IF
(NOT CC5)
((GOTO (2 (1))
ELSE

((COPY U__P MIN) (GOTO 2 (D)) D))
ELSE
((F

20 K. Ebcioglu

(NOT CC2)
((IF
(NOT CC3)
((GT UV CC1) (GT UMAX CC2) (LT V MIN CC3) (GT VMAX CC4)
(LT U MIN CCS5)
3F
(NOT CC0)
((GOTO (E1)))
ELSE
((COPY UU__P) (COPY V V__P) (LT Al AILIM CCO) (LOAD A Al L)
(LOAD A Al V) (ADD Al 8 Al) (ADD All 8 All) ~ .
(GOTO (3 (2¢1)N)N)
ELSE
((COPY V__P MIN} (GOTO (2 (1))
ELSE
((COPY U__P MAX)
F
(NOT CC3)
((GOTO (2 (1NN
ELSE
((COPY V__P MIN) (GOTO (2(1)))) N)))

MERGE: C CODE

merge(a.b.eon)
int a}l.b] }J.c[).n:
}
intij.k;
i=0:j=0;
for(k=0:k<2*n:k++)
§
if (i>=n | | j<n && ali}>b[j]) {clk]=blj++]:}
else {cikl=ali++):}

s

{
Three address code for inner loop

LOOP
(LT CK LIMK CC1)
(IF (NOT CC1) (GOTO EXIT))
(LT Al LIMI CC2)
(IF (NOT CC2) (GOTO L1))
(LT BJ LIMJ CC3)
(IF (NOT CC3) (GOTO L2))
(LLOAD A AIT2)
(LOADBBJT3)
(GTT2T3ICCH
(IF (NOT CC4) (GOTO L2))
Lt
{L.OAD B B) T4)
(STOREC T4 CK C)
(ADD B} 4 B))
(GOTO L3)
1.2
(LOAD A AITS)
(STOREC TS CK C)
(ADD Al 4 A])
1.3
(ADD CK 4 CK)
- (GOTO LOOP)

Percolation scheduling result

o)
(LT CK LIMK CC1)
(LT AL LIMICCY)
(LT BJ LIMJ CC3)
(HLOAD A AT T2)

GT V MAX CC4)

CO) (LOAD A Al U)

A VLIW Architecture for Sequential-Natured Software 2]

(LOAD B BJ T3)
(GOTO (2)))
2):

((GT T2 T3 CC4)
(IF
(NOT CC1)
((GOTO (EN)
ELSE
((IF
(NOT CC2)
((STORE C T3 CK C) (ADD BJ 4 B}) (ADD CK 4 CK) (GOTO (1))
ELSE
((JF
(NOT CC3)
((STORE C T2 CK C) (ADD Al 4 Al) (ADD CK 4 CK) (GOTO (1))
ELSE
«GOTO 3N NN
3):
((ADD CK 4 CK)
(IF
(NOT CC4)
((STORE C T2 CK C) (ADD Al 4 Al) (GOTO (1)))
ELSE

((STORE C T3 CK C) (ADD BJ 4 BJ) (GOTO (1)))))
(E1):

..

