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AN EFFICIENT LOGIC PROGRAMMING LANGUAGE
AND ITS APPLICATION TO MUSIC!

Kemal Ebcioglu
IBM, Thomas J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598
(914) 789-7303

Abstract

This paper is about BSL, an efficient Jogic programming language intended for im-
plementing expert systems based on the generate-and-test method. From the exe-
cution viewpoint, BSL is an Algol-class nondeterministic language with a single
assignment restriction; but there is a simple mapping that translates a BSL program
to a first order formula, so that each terminating execution of a BSL program without
free variables amounts to a proof of the corresponding first order sentence. We pro-
vided a de Bakker style formal semantics for BSL, and we obtained a soundness result
which relates BSL and first order logic. BSL has been used for implementing a music
expert system for harmonizing four-part chorales; this application is briefly described
in the paper, and a musical output example is given.

Intreduction

In this paper, we will report on BSL, a new logic programming language intended for
implementing expert systems; and we then will describe the application of BSL to a
music expert system for harmonizing four-part chorales in the style of J.S. Bach.

BSL was born out of our music application. At the outset of our music project, we
decided to use first order logic to represent musical knowledge. First order logic was
felt to be well-suited to the application, because it allowed us to make precise, con-
crete assertions about properties of a piece of music, and because it was more formal
and tractable than some other A.l. paradigms, such as unrestricted production systems
[Forgy and McDermott 77). We initially found over a hundred assertions in first order
predicate calculus which later formed the seed of the knowledge base. These as-
sertions were pot in clausal form, and made free use of existential and universal
quantifiers, e.g., like the assertions one would use to extend English in a formal topic
such as [Rogers 67]. However, the Prolog interpreter then available to us on the VAX
11 architecture did not have a natural way of coding quantifiers, moreover, it did not
offer the most efficient way for utilizing the native resources of a traditional CPU.
On the other band, our music application was well-suited to the native data types and
operations of a traditional architecture, and was also known to be extremely compu-
tation intensive (we did have a fair idea about the potential problems of the applica-
tion because we had previously written a smaller scale 16th century strict counterpoint
program using a similar heuristic search method [Ebcioglu 81]). We were thus led to

! This research was supporied by NSF grant no. DCR-8316665, snd the major portion of it was done
in the department of Computer Science, S.U.N.Y. at Buffalo, under the direction of my advisor Prof.
John Myhill




look for a different logic programming language for implementing our project. Our
requirements were: 1- the language had to have a natural way of coding universal and
existential quantifiers directly; 2- the language had to utilize the native resources of a
traditional architecture efficiently, in a manner competitive with deterministic Algol-
class languages, so that we could use it to produce very high quality music in a rea-
sonable time; 3- the language had to have a natural way of specifying preferred
solutions as well as just correct ones (the musical importance of this will be explained
in the sequel); 4- the language had to have a streamlined design in order to increase
its chances of being theoretically tractable, moreover, we felt that striving to use a
streamlined design was a better way to approach a large project. While we were going
back and forth between the logical assertions and ways of “executing” them, a logic
programming language called BSL was designed, which appears to satisfy each of the
above-mentioned requirements.

The formal basis for BSL

From the execution point of view, BSL is an Algol-class nondeterministic language
where variables cannot be assigned more than once except in controlled contexts. It
bas a Lisp-like syntax and is compiled into efficient backtracking programs in C, via
a compiler written in Lisp. However, BSL differs from existing nondeterministic lan-
guages [e.g., Floyd 67, Smith and Enea 73, Cohen 79) and relates to first order logic
in a special way that we will summarize in this introductory section. Our plan is to
proceed as follows: We will first describe a programming language called L*, which
is a tractable subset of BSL. We then will describe a first order language L, and a
mapping that translates programs of L* to formulas of L. We then will describe a fixed
structure M involving integers, arrays, records and operations on such objects, which
will represent the models we are interested in. The operational semantics of L* will
then be described via a ternary relation ¥, such that ¥(F, 0o, 0) means L* program
F, when started in initial state o,, terminates in state o, where a state is a mapping from
variable names to the universe of M. We will finally cite a soundness result: ifan L*
program terminates in a state o, then the corresponding first order formula of L is true
in o (where the truth of a formula in a state o is evaluated in the interpretation M, after
replacing any free variables x in the formula by o(x)). It will thus be seen that for the
case of L*® programs without free variables, each terminating execution of an L* pro-
gram amounts to a proof of the corresponding first order sentence.

We will begin by describing a programming language L*, which is a tractable subset
of BSL: The basic syntactic building blocks of L* are constants, that consist of inte-
gers such as -2, 0, 3, and record tags, which are identifiers such as ssn, salary; and
variables, which are identifiers such as x, p, 0, or emp (for convenience, we assume
that certain reserved words, such as *‘array” or “integer,” cannot be used as identifiers,
and that variables are distinct from record tags). A record tag intuitively serves to
name a particular field of a record object, like the salary field of an employee record.
An L* term can be a variable or a constant, and if 4, 1, are terms, then (f 4 5,) is also
a term, where f is one of the function symbols +,-,*,/,sub, or dot (sub and dot are
intuitively intended for subscripting an array, and extracting a field of a record, re-
spectively). Examples of L* terms are 0, (* 2 (dot emp salary)), or (+ x 1) (also ab-
breviated as (1+ x)). A L* halue is a term that can appear on the left hand side of
an assignment, and is either a standalone variable x, or a term of the form h (2 (
Ji x ...) ...) ...), where each f, is sub or dot. Lvalues are exemplified by x, (dot emp
salary), or (sub p n) (which can also be abbreviated as (salary emp) or (p n), where
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clear from context). The programs of L* are called formulas, because of their simi-
larity to formulas of first order logic. Assuming /is an Ivalue, and 4, 4, are terms, an
L* atomic formula is defined 10 be either an assignment of the form (:= /4,), or a test
of the form (relop 4 1,), where relop is one of the predicate symbols == (equal), =
(not equal), <, >=, <=, 0r >. An L* atomic formula is an L* SJormula. Assuming
F; and F, are L* formulas, then so are the following: (and F, F,), (or F, F,)?
(Axg (<x) (14 x) F), (Ext (<xt)(1+x) F), and (E ((x bHp)) Fy), where x
is a variable, 4 , 1, are terms where x does not occur, and fHpisan L*type. The L*
types are similar to the type declarations of an Algol-class language, and allow induc-
tively defined integer, array and record declarations. Examples of L* types are: inte-
ger, (array (3) integer), and (record (ssn integer) (salary integer)). A more detailed
definition of types will be given later.3

We will now define a first order language [Shoenfield 67] called L, that will provide a
means (o translate L* programs into first order predicate calculus. The variables of L
are those of L*, and the constants (or 0O-ary function symbols) of L are the elements
of the universe |M| which we will soon describe in detail, and which includes the
integers, record tags, and types of L*, plus other individuals such as array and record
objects. The function symbols of L consist of the L* binary function symbols
+,-,*,/,sub, dot, and the unary function symbol, type (which is intended to return the
type of an object). The predicate symbols of L consist of the binary =,¢, < ,>,<,
and >.

We inductively define a translation Au{u'] from terms u predicate symbols u function
symbols y formulas of L* to terms u predicate symbols u function symbols u for-
mulas of L as follows: The translation of a constant or variable or function symbol is
itself. The translation of the relational predicate symbols ==, lm, <, S>m, =, >, are
=#,<, 2,5,>, respectively. The assignment symbol := of L* is also translated into
= in L (i.e. both mm and :== are mapped to = in the logical counterpart). The trans-
lation of an L* term or atomic formula (f ¢, #,) is f(7;, /’;) ; but the standard infix
abbreviations may be used in L, moreover, dot(x, v) and sub(y, v) may be abbreviated
as w.vand u[v], respectively. The translations of L*'s lvalues are also called Ivalues
in L. The translation of (and Fy F,) and (or F F;) are [F; & F,), and [F, V F),
respectively. The translation  of (Axty (<x8)(1+x)F) and
(Ext (<xn) (14 x) Fy) are (Yx17; < x < /)IF)), and (3x }7, < x < 73)[F)), re-
spectively.* The translation of (E ((x np)) F)) is (A | type(x) = “typ”)[F’,] (which is
also abbreviated as (3x:0p)(F,] ).

The only models we are interested in for the first order translations of L* formulas
are those that involve integers, arrays, records and operatiops on such objects. Fol-

? If Pisonc of {and, or], then the construct (P F, ... Fio F,  F, ), k > 2,can be used as an abbrevi- -

ation for (P F, ... (P Fou (P Foy £ ))..).

In [Ebcioflu 87), we described a more general version of L*, which allowed the condition (< x 1) and

the increment (14 x) within the quantifiers to be more complex, as in a (possibly non-terminating)

while loop. The reason we are only describing a restricted form of the quantifiers here, is because the
more gencral form tends to kengthen the formal exposition. The full BSL language does allow the
more general form, however.

‘4 The abbreviations (3x | R) F and (Vx}R) F stand for @R & F), and (Vx)[R & F), respectively;
and x < y <z of course stands for [x < y & y <z]. We will also assume the following precedence
(from highest 10 lowest) for binary logical connectives in this paper for avoiding brackets: &, V, &,
->.




lowing the approach of [de Bakker 79], we obtain our results with a fixed interpreta-
tion involving computer data structures; However, an axiomatization can of course
be produced for a corresponding “theory of integers, arrays, and records,” so that our
results concerning the fixed interpretation also bold in all models of such a theory.
We describe here a fixed structure M that is intended to represent data types and op-
erations available to an Algol class language such as BSL. The universe | M| of the
structure consists of the record tags of L*, the special individual 1 which is used for
patching undefined values of functions, objects (which include the integers, arrays and
records), and types (which are constants that are the types of the objects). We will
inductively define the objects and their types together. An object of type “integer”
can either be an integer, or U (called the wnassigned constant). If
Xgn .-+ + X,y (n > 0) are objects of the same type fp, then (xg ... X,_;) is an object
(called an array), and its type is (array (n) p). f x,, ... , x, (n > 0) are objects which
bave types fp,, ... , Op,, and J, ..., y, are distinct record tags, then (4 x; ... Y. X,)
is an object (called a record), and its type is (record (4 Hypy) ... O 9p.)). There are
po further objects, and no further types. Examples of objects are -3, U, which have
type “integer”; “(1 2 U)”, which bas type *“(array (3) integer)”; and
“(ssn 999123456 salary 25000)”, which has type
“(record (ssn integer) (salary integer))”. Objects of type integer are called scalar
objects, the others are called aggregate objects. The binary operations +,-,* (multi-
plication), / (integer division) on the integers are given their traditional meaning in the
structure M, but they yield the constant L when not all of their operands are integers
or when their result would be undefined. Examples: 3°2m6, 14+U=l, 1/0=1
sub(x, y) extracts the y’th element of x when y is a nonnegative integer, and x is an
array object which has a y th element (the elements of an array are numbered 0,1,2,...
in BSL); otherwise sub(x,y) yields 1. Example: sub(*(1 2 U)”,2)=U. The function
dot(x, y), when x is a record (; x; ... ¥, X,), and there exists i, I < i < n, such that y
is the record tag y, , yields the object x,. Otherwise, dot(x,y) yields L Example:
dot(**(ssn 999123456 salary 25000)"salary)=25000. The function type(x) yields
the type of x if x is an object, and 1 otherwise. Example: type(*(U U)”) =
“(array (2) integer)”. The binary predicates = and ¢ have their conventional
meaning. The binary predicates <, <, >, > are defined to be the pairs of integers for
which these predicates would conventionally be true. Examples: 1<2 is true, 1<U is
false, 12U is false.

To describe the semantics of an L* program, we first need a few definitions: We de-
fine a state to be a mapping from variables to elements of the universe |M|. We let
0,00, 0y, ... B0d 7, Tg, 7y, ... Tange over states. We say that a formula F of L is true
in a state o, or that o satisfies F, iff F is true in the interpretation M after replacing
any free variables x in F by o(x). We define the function V(o,!) o yield the value of
the L term 7 in the interpretation M, after replacing any variables x in 7 by o(x) . Let
y be the leftmost variable that occurs in an Ivalue / of L. We define the subslitution
of term 7 for Ivalue / in state o, denoted by o[1/7}, to be that state + which is identical
to o, except that the subpart (or subobject) of a(y) selected by /in o, has been re-
placed by V(o,/) in r(y). Both I and ¢ must evaluate to scalar objects in o, or / must
be a variable, otherwise the substitution is defined to be the identity transformation
on states. Example: let o(a)=*(1 2 U)”, v =o[5/a[2]]; then r(a)=*(1 2 5)”, and
7(x) = o(x) forall x ¢ a.

We will describe the operational semantics of an L* program via a ternary predicate
¥, such that ¥(F, o,, ) means L* program F terminates in final state ¢ when started
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in initial state g, The inductive style of this formal semantics of L* was inspired from
regular dynamic logic [Harel 79]. So here is how an L* program is executed (informal
explanations are given in parentheses):

If Jisan L* lvalue and 7is an L* term,
¥((:= 11), 00, 0) gd [V(0g, ') is U & Voo, 7') is an integer & o = o [ /7]].

(Thus, an assignment is performed in the conventional manner, but if an attempt is
made 1o assign to an lvalue whose current value is not U, or to use a non-integer right
hand side, the program does not terminate.)

If relop is a relational predicate symbol of L*, and 1, and & are L* terms,

Y((relop 1, 1;), 64, 0) <=
[V(00. 71), Vo, 73) are integers & Voo, 7';) relop’ V(og, /) istrue inM & o = o, ).

(Thus, a test is performed through ordinary comparison; but if any term of a test
evaluates to a non-integer value, or if the test fails, the program does not terminate.
Otherwise, the test acts as a no-op.)

I F, F, are L*formulas,

¥((and F; F,), 00, 0) €= (30,)[¥(F;, 00, 0,) & ¥(F;, 0y, 0)).
(“and” acts like a semicolon; (and F, F,) is executed by first executing F,, then F,.)
¥((or Fy F), 0y, 0) €=p [¥(F,,00,0) V ¥(Fy,000)]).

((or F; F;) is executed by executing one of F; or F,.)
M Fis (E ((x typ)) F;) where x is a variable, np is a type, and F; is an L* formula,

Y (F, 04, 0) a=p
(if,’,‘l’o,‘l’l)
[s = V(o x) &
tis an object of type #p all of whose scalar subparts are U &
7o = aft/x] &
Y(F, 107 &
o = 7,[s/x]}.

((E ((x yp)) F,) is executed by saving x, setting x to an object of type fyp all of whose
scalar subparts are unassigned, executing F;, and finally restoring x. This construct is
similar to a begin-end block with a local variable.)
If Fis (A x 4 (<x 1) (1+ x) F) where x is a variable, 1, , are L* terms that do not
contain occurrences of x, and F; is an L* formula:




Y(F, 64, 0) &>
(3k > 0)(37y, ... 7,)(3s)
[som Wop x) &
Voo, I'y), V(oo (') are integers &
To™ Odr,]/x] &
(Vil0<i<k)@N)x <y istuein 1, & ¥(Fy, 1,7) &7,y = 1lx + 1/x]] &
x</lyisfalseinr, &
o= 1,[s/x]].

((Axf (<x 1) (14 x) Fy) is executed by saving x, setting x to f,, while x is less than
4, repetitively executing F, and incrementing x , and restoring the old value of x when
x is finally not less than ,. This construct is similar to a “for” loop with a local index
variable.)
If Fis (Ex 4 (< x ) (14 x) F,), where x, 4, i, and F are defined as in the case for
(Ax..),

¥(F, 04, 0) €=
(3 2 0)(3rg, ..., 7)(35)
[s=V(cy x) &
W00, 1), V(oo ) are integers &
Tom oglt’y/x] &
(Vil0gi<k)x<lyistrueinr, & 7, = 7fx + 1/x]] &
x<histruein 1, &
@ADY(Fy, 15, 1) &0 = 1[s/x]]).

((Exn (< xp) (1+ x) ) is executed by saving x, setting x to 1, repetitively checking
that x is less than 4, and incrementing x an arbitrary number of times (possibly zero
times), checking that x is less than t, for the last time, executing F,, and finally re-
storing the old value of x. If x is not less than £, at any point along the way, execution
does pot terminate.)

We say that o is an extension of o, iff o is identical to0 o, , except perhaps for some
variables x such that o(x) and a,(x) are objects of the same type, and o(x) and o4(x)
are identical except that there exist one or more scalar subparts of o(x) which are in-
tegers, while the corresponding scalar subparts of o,(x) are “U”. As an example,
consider two states oy and oy, and a variable a, such that o(a) = “(-1 U U)” and
0)(a) = “(=1 7 10)” and oo(y)=o,(y) for all y % 2 Then o, is an extension of o,
We say that o extensibly satisfies F, or F is extensibly true in o, iff o satisfies F, and
for any extension 7 of o, 7 also satisfies F.

The following proposition precisely defines the relationship between the semantics of
a formula of L* as a computer program and the semantics of the corresponding for-
mula of L under the interpretation M.

Proposition: (soundness of L* formula-programs) Let ¥ and Au[u’] be defined as
above. Let g, be any state, and F be a formula of L*. Then for all states o, if
¥ (F, 0y, 0) , then o is an extension of oy, and o extensibly satisfies F’.

Proof: By induction on the complexity of F. See [Ebcioglu 87]. [
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The following table of examples should clarify the intuition behind the relationship
between an L* program and its first order translation, which is true at its termination
states. Notice that when the L* program does not have free variables, as in the last
example, the truth of the corresponding first order sentence is independent of the
value of any variable in the termination state; thus, each successful execution of a
closed L* program is equivalent to constructively proving that the corresponding first
order sentence is true in the interpretation M, or in all models of a suitably
axiomatized “theory of integers, arrays and records” corresponding to M.

L*® program initial assumptions first order can program
translation terminate?

(== x0) x=0 x=0 yes

(== x0) x=] x=0 no

(==x0) x=U =0 no

(:=x0) x=U x=0 yes

(:=x0) x=1 x=0 no

(=x(1+ X)) none X=X41 no

(=xx) none X=X no

(or(:=x0) :=x1)) x=U x=0 V=1l slways yes

(or (== x0) (m=1x1)) x=0 =0 V=] yes (via (== x 0))

(and (= x0) (:=x1)) none x=0& x=1 no

assumptions: emp is initially an array of 100
employee records. Some employec’s salary
is > 35000. ans is initially U.

program: select an employee record, test salary field, first order translation:
then assign ssn field to ans.
(Ei0(<il00) (1+i) (¥ | 0<ic100)

(and (> (salary (emp i)) 35000) (:= ans (ssn (emp i))))) {empli).salary>3 5000 & ans=empli].ssn).
Program terminates if i was incremented the right
number of times for selecting a suitable employee.

assumptlions: none

program: create an array whose ciements are O or 1 first order translation:
(E ((a (array (10) integer)))
(Ai0(<il0) (1+10) (3a:(array (10) integer))
(E ({d imeger)) (vij0<i<10)
(and (or := d 0) (:=d 1)) (:= (2 i) d))))) [(3d:integen)|{[d=0 V d=1] & ai}=d]}.
All exccutions terminate.

Although the direct translation from a multiple assignment Algol-class language to
first order logic has previously been studied by [Hehner 84] from a program correct-
ness viewpoint, our approach of equating the execution of a program of a single as-
signment nondeterministic Algol-class language to a proof, appears to be original 3

Some further language features

The L* language discussed above is only a subset of BSL. The full BSL language has
a few more, but not many more features; we tried to keep BSL small. These are
mainly user defined predicates and functions, global variables, enumeration type de-

s But [Voda 86) has independently found a logic programming language called nondeterministic Pascal,
which has language constructs similar to BSL. Like us, Voda has chosen a fixed intcrpretation, his
being a simple one involving Lisp S-expressions and operations on these, which he has axiomatized
via s “theory of pairs.” But Voda’s language proves assertions directly through Gentzen-style infer-
ence rather than through the state transformation paradigm as in BSL; in particular, the choice be-
tween assignment and equality test is delayed 10 run time in Voda’s language, which should probably
have a negative impact on that language’s efficiency.
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finitions, and macro and constant definitions. We will now give a0 informal overview
of these features by going through a small BSL. program for proving that Semele has
an ancestor (similar to a problem in [Kowalski 79]):

(& P_SIZES)
(6 mythological (HARMONIA APHRODITE ARES HERA SEMELE DIONYSUS CADMUS ZEUS))

(dx p (armay (P__SIZE) (record (p__child mythological) (p__parent mythological))) ;parent relation
(HARMONIA APHRODITE ARES HERA SEMELE HARMONIA
DIONYSUS  SEMELE HARMONIA  ARES ARES ZEUS
SEMELE CADMUS DIONYSUS  ZEUS))

(dp parent ((OUT x mythological) (OUTy mythological)) iy is a parentof xif ...
(Ei0 (<iP_SIZE) (1+ i) (and (== X @ child (p i))) (= y (p_parent @)

(dp ancestor ((OUTx mythological) (OUTy mythological)) |y is an ancestorof x if ...
(E(z mythological)) (and (parent x2) (oF (:= y z) (ancestor z )

(E ((u mythological)) (ancestor SEMELE u)) ;main formula

The dc (define constant) statement at tbe beginning of the program above allows the
programmer to use symbolic abbreviations instead of integers. The dt (define enu-
meration type) statement is also a constant definition facility that associates the sym-
bolic enumeration constants with consecutive integers (or user specified values if
given); and the type name is subsequently taken o be an abbreviation for “integer.”
(It is possible to read and write enumeration constants in symbolic form, however.)
The dx (define global variable) statement specifies the defined variable’s name, type,
and optional initial values. The dp (define predicate) statements are essentially pro-
cedure declarations that each consist of a formal parameter list and a procedure body.
A BSL program always ends with a “main formula.”

A BSL program is executed nondeterministically, by first setting all scalar subparts of
the global variables to U or to the specified initial values if given, and then executing
the main formula. The main formula is executed like an L* formula, as described in
the previous section; except that predicate calls occurring in the context of an atomic
formula are executed by dynamically replacing the call by the body of the predicate
definition, after substituting the arguments of the call for the corresponding formal
parameters in the body. In case a variable y occurring in an argument of the call would
become enclosed in a quantified construct (Ay.)(Ey .Yor (E(»y .2)) .)in the
predicate body, the offending y’s are renamed by a fresh name throughout the quan-
tified construct, before the substitution takes place.

Now suppose we are given any BSL formula F, along with definitions for the predi-
cates directly or indirectly called from F. Assume that L and Aufu'] have been ex-
tended to include these additional predicate symbols, so that BSL formulas with calls
to the given predicates can be translated to first order assertions, and so that a BSL
predicate definition for a predicate p with formal parameters Xy, -.- » X is translated to

. The subscript expressions in the arg must eval 1o an integer at the time of 8 predicate or
function call, otherwise execution docs not terminate. This restriction, plus single assignment, allows
this call by name technique [Naur 63] to be implemented through call by reference (if 3 subscript i
already defined at call time, then it cannot change during predicate execution because of the single
assignment rule). There is also 3 call by value tech ique which is obtai "byaniningthc“OUT‘
indication from the desired predicate parameters.




‘ormal overview
that Semele has

ADMUS ZEUS))

rent relation
IMONIA
1S

ove allows the

(define enu-
iates the sym-
ified values if
for “integer.”
rm, however.)
’s name, type,
ssentially pro-
>edure body.

ar subparts of
aen executing
s described in
of an atomic
the predicate
nding formal
he call would
.)) ...) in the
it the quan-

or the predi-
ave been ex-
las with calls
» that a BSL
translated to

f 8 predicate or
ignment, allows
if & subscript is
sc of the single
ing the “OUT™

521

an axiom of the form: [for all x;, ..., x, of the specified types [the assertion corre-
sponding to the predicate body = p(x,, ..., x,) Il Suppose we adopt, for our truth
evaluations, an arbitrary extension of the interpretation M, obtained by adding arbi-
trary relations of appropriate arity to M for each predicate called directly or indirectly
from F. Tben, we claim that F has the following property: for any state o, if F ter-
minates in a, rhen {the conjunction of the axioms for the predicate definitions =» F']
is extensibly true in 0.7 It follows that a BSL program including global variables,
predicate definitions and a main formula, also bas a corresponding assertion which is
true when it terminates. This assertion is [There exist global variables of the specified
types, equal to their initial values if given, such that [the conjunction of the axioms of
the predicate definitions & the assertion corresponding to the main formula]]. This
happens to be a sentence, since free (undeclared) variables are not aliowed at the
complete BSL program level. Thus, each terminating execution of the example pro-
gram above amounts to showing that the following first order sentence is true in any
extension of M that contains relations for “ancestor” and “parent’:

@p)p="((p_child HARMONIA p__parcnt APHRODITE) (p_child ARES p__parent HERA) ..)" &

[[(vx,y:mythological)
[i1 0<i<P__SIZE){x=pli].p__child & y=pli}p__parent]
« parent(x,y)] &

(vx,y:mythological)

{(3z:mythological)[parent(x,z) & [y=2z V ancestor (2.y)]}
« ancestor(x,y)]]

« (3u:mythological){ancestor(SEMELE,u)]]].

(Note that we will be using the abbreviations made available by the constant, enu-
meration type, and macro definitions of a BSL program in its logical counterpart as
well.)

Otber language features of BSL include user-defined functions. For example, the
unary function “add1” could be defined as (df add1 ((OUT x integer) (OUT y inte-
ger)) (:= y (14 x))), which would be, just like a predicate, associated with an axiom:
(vx,y:integer)[y=x+1 & add1(x)=y]. The extra Jast parameter of a function defi-
nition is called the return variable. A function call is evaluated (assuming call by
pame) by substituting the arguments of the call for the parameters in the function
body after suitable renaming, executing the body, and finally collecting the value of
the return variable as the result of the call. Functions bodies must pormally not assign
to the global variables or the arguments, and must not produce choice points when
compiled, which means that they must return at most a single result for any given set
of arguments (there may still be “‘or”s in a function body, bowever). BSL also has
macro definitions that allow access to the full procedural capabilities of Lisp. A lim-
ited form of the “not” connective is defined as a macro, which is expanded by moving
the “not”s in front of the tests via de Morgan like transformations, and then elimi-
nating the “not"s by changing (not (s x 0)) to (= x 0), etc.. There are also “if-
then-else” and “case” constructs whose nondeterministic semantics are defined
through and, or, not; but which are compiled in tbe conventional efficient way. A
predicate with a side-effect free body (P ...) can be negated by defining an equivalent
0-1 valued function f, which returns 1 if (P ...) succeeds, or returns 0 if (ot (P ...)) ~

i But for brevity we will sometimes say “F’ is true (false) in o™ for “[relevant axioms & Flis true
(false) in o,” where this is clear from context.
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succeeds; and by adopting the convention that (f ...) occurring in an atomic formula
context is an abbreviation for (= (f...) 0).

The implementation of BSL on a real computer

" A BSL program whose main formula is of the form (E ((x #yp)) F) is implemented on
"areal, deterministic computer via a modified backtracking method, which in principle

attempts to simulate all possible executions of the main formula, and prints out the
value of x just before the end of every execution that turns out to be successful.
Whenever a choice has to be made between executing F; and executing F, in the
context (or F; F,), the current state is pushed down to enable restarting by executing
F,, and F, is executed. Whenever a choice has to be made between executing F; and
setting n to (1+ n) in the context (E n 1, (< n 1,) (14 n) F;), the current state is pushed
down to enable restarting by setting n to (1+ n), and F, is executed. Whenever a test
(relop t 1,) is found to be false, or if (< n4) is found to be false in the context
(Enf (< nt) (14 n) Fy), and each time after the top level (E ((x #p)) ...) is suc-
cessfully executed and x is printed, the state that existed at the most recent choice
point is popped from the stack, and simulation restarts at that choice point. Explicit
assignment to a scalar variable or scalar subpart of a variable when its old value is not
U, or the use of such a variable while its current value is still U, are considered errors
and cause the simulation to be aborted; but run-time checks for detecting such error
conditions may be omitted for efficiency reasons. Simulation begins with an empty
choice-point stack and ends when an attempt is made to pop something from an empty
stack.

A modification is made to this basic backtracking technique for the case of side effect
free formulas F; in the context (or F, F,), or (E n ... F;). (A side effect is taken to be
an assignment or a predicate call.) After a formula F; in such a context is successfully
executed, the most recent choice point on the stack is discarded (which would be the
choice point for restarting at F,, or F; with a different value of n, assuming the mod-
ification is uniformly applied). This convention, similar to the ‘“cut” operation of
Prolog, serves to prevent duplicate solutions for x from being printed out (or redun-
dant failures from occurring) when in a particular state F’; and F', do not express
mutually exclusive conditions, or when F'; is true for more than one 2 in its quantifier
range.? To see why this modification is reasonable, consider the less obvious example
(or (m=x0) (:= y 1)). If the program successfully went through (== x 0) and then
failed, then there is no point in backtracking to (:= y 1) and trying again by going
through (:= y 1), since after going through (:e y 1), the program would either attempt
to re-assign to y and cause an error, or would fail in exactly the same way as the first
failure, because the first failure could not have depended on y (which should have
been U at the time (== x 0) was successfully executed).

Since backtracking is a notoriously inefficient search algorithm, we had to be careful
about its implementation in BSL, in the hope of making the language usable on sub-
stantial problems. The present implementation of BSL omits the run-time checks
about single assignment, and uses an aggressive method of saving and restoring vari-

' But in Prolog, the *“cut” in the first of s pair of clauses analogous to a BSL (or F, F,) must be manually
supplied, and is not built-in. {Debray and Warren 86] propose 3 method for supplying the “cut™
through a compiler when this wouid not change the original semantics of the program, e.g. when the
clauscs are already mutually exclusive.
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ables that relies on the assumption that the program is correct, in the sense that in any
execution of the program, no scalar variable or scalar part of an aggregate variable
will be explicitly re-assigned when it already has an integer value, or used while it still
bas the unassigned value. In a choice point, the following facts apply to a typical
variable:® If the variable is already assigned, then we need not save it, because it will
pot be re-assigned during the continuation of execution (because the program follows
the single assignment rule), and because its storage space will not be deallocated while
it is still needed (by a special storage allocation scheme - see [Ebcioflu 87], this
scheme reduces to static allocation (zero creation and destruction overhead) for the
L* subset of BSL). On the other hand, if the variable is not currently assigned, then
no program path starting at the current point can use the old value of that variable
{because the program follows the no-use-before-set rule), so we stili do not have to
save it and restore it, even though the variable may contain a garbage value assigned
during a failed path when a backtracking return is made to this choice point. This
technique is as unsafe as omitting subscript range checks in Fortran, but appears to
provide tbe highest performance. The second optimization relies on using whenever
possible the ordinary compare-and-branch compilation techique for Boolean ex-
pressions of Algol-class languages [Aho, Sethi, and Ullman 86), extended in an obvi-
ous way to bounded quantifiers, via iteration. For side effect free subformulas F; in
the context (or F; F;) and (E n ... F;), the BSL compiler produces efficient compare
and branch and looping statements,! instead of implementing the equivalent but in-
efficient semantics of first pushing down a choice point and then discarding it when
F, is successful. This technique is also extended to the case where F; contains side
effects, by insisting on emitting compare and branches using the ordinary Boolean
compilation technique as long as possible, until a side effect is actually encountered
within Fj, in which case the required pushdown operation(s) are emitted, the back-
tracking return point label is established, and the restore operations following that la-
bel (if any), are emitted. The motivation here is to increase the chance that, e.g. within
(or F; F,), F, will fail and branch directly to F, before a choice point needs to be
pushed. While this compilation technique is straightforward for the case where Fis
entirely side effect free, generation of efficient code for “(or ...)” and “(E n I e
containing side effects at arbitrary points is more involved, and a compilation algo-
rithm for the general case is given in [Ebciofiu 87].1 A further optimization used in

* The only variabies to which these facts do not apply at a choice point are precisely the variables which
are declared within the scope of 3 universal quantifier (A ...), and which are at the same time lexically
known at the choice point (e.g. have been declared in quantificrs enclosing the choice point). Such
variables are pushed down and restored by the present implementation, but they are usually limited
10 one or 1wo quantifier indices in practice.

bod As a concrete example, for (or (Ei 0 (< in) (1+ i) (and (>= (31) 0) (<= (2D) (1+ DN F, ), where
the (E ...) is clearly side-effect free, the compiler generates efficient compare and branch and looping
instructions to execute the following: *if not (3i | 0gi<n)[a[i)20 & a[i]<i+ 1] then goto the code for
F,, else goto the continuation of (or (E...) F,).”

" Notc that the use of the code gencration technique for Boolean expressions with bounded quantifiers
is a compiler optimization applicable in limited cases, and has nothing to do with BSL's language jevel
semantics, where programs are executed for side effects and not for returning truth valucs, as is the
case in Boolean expressions. SETL [Schwartz 73] is an example of a deterministic, multiple assign-
ment language that extends Boolean expressions with bounded quantifiers at the language semantics
Jevel. Also of relevance is the subset of first order logic called “Jogic of cuttable formulas,” described
in [Gergely and Szots 84), where formulas are compiled into programs that consist only of Boolean
expressions extended with bounded quantificrs, and where the exccution of 3 Boolean expression re-
turning “true” is shown 1o be equivalent to a proof of the corresponding first order formula. The
programs of the cuttable formulas language are essentially a subset of the compiled backtracking

programs of BSL.
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BSL is a very low overhead, compiled intelligent backtracking technigue, which can
be triggered by a compiler option. However, we will not be able discuss this technique
in the scope of the present paper.

Another language feature that relates to the implementation of BSL on a deterministic
computer is the beuristics feature. The backtracking algorithm of BSL is suitable for
applications where all scotrect” solutions of a problem must be found, as in the mo-
Jecular genetics problem described in [Stefik 78]; bowever, for the music application,
the list of all “correct” solutions is either impractically long or very boring. Itis a
known fact that absolute rules such as treatise rules expressed in first order predicate
calculus are pot sufficient for producing beautiful music. Composers use much addi-
tional knowledge for choosing among the “correct” extensions of a partial composi-
tion at each stage of the compositional process. While our limited powers of
introspection prevent us from replicating the thought process of such choices in an
algorithm, we conjecture that a good algorithmic approximation can be obtained by
using a large number of prioritized heuristics, or recommendations, based on style-
specific musical knowledge (cf. the work of [Lenat 76] for beuristics on the equally
intangible topic of *interesting” mathematical conjectures). The order of enumeration
of the termination states of a BSL formula F can be controlled by enclosing it in the
construct (H F (x; x5 ...) F, ... Fg), which is itself a BSL formula. x, , X;,... are a list of
Ivalues that must include those that are assigned within F, and F, ,..., F, are heuristics,
which must be side effect free BSL formulas. After each terminating execution of F,
a worth is assigned to the current termination state by summing the weights of the
heuristics whose corresponding assertions are true in that state, and the state (as re-
presented by the current values of the Ivalues X, , X,,...) is saved in a list. Heuristics
are weighted by decreasing powers of 2: the weightof F,,0 S i kis defined to be
2. If and when the ways to execute F are exhausted, (H F ...) terminates with the best
termination state of F, i.e. the assignment L0 X;, X,... with the highest worth (with ties
being resolved randomly), and then, if backtracking occurs to this (H F ...), with the
pext best termination state of F, etc.. More formally, (H F ...) attains the termination
states of F in an order oy, ... 6,, Which satisfies:

(vijlogijsm

(@m0 < m<k)
[(VI1k 2 I > m)|F  has the same truth value in both o, and o} & F', is true in o, & F' is fabse in o))

»i<j)

The assertion F’ corresponding to F is of course true in all the termination states o, ,
i=0,...,n Asforthe nondeterministic semantics of (H F ...), we adopt the con-
vention that it is executed merely by executing F, and its logical translation is taken
to be F ; i.e., heuristics are ignored in the pondeterministic semantics of the program.
Notice that when an (H ...) construct occurs as an appropriate subformula of a pro-
gram, as shown in the expert system example in the next section; it will have the effect
of guiding the backtracking search toward desirable paths. Heuristics are used for
determining the best continuation of a partial chorale in our music expert system.

We ran a number of programs to see how BSL’s performance compares with Prolog
and Lisp, using the language implementations available to us on the IBM 3090 under
CMS, namely the VM/Prolog interpreter, the VM/Lisp compiler, and a C compiler
derived from the PL.8 optimizing compiler [Warren et al. 86) (the BSL compiler itself
is written in VM/Lisp and generates C code). All available optimizations such as it-
eration (do) constructs, unchecked fixed arithmetic, eq instead of equal, unchecked
car/cdr operations, and noninterruptible code for VM/Lisp, and static clauses for
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VM/Prolog, were used.’? The table below lists the results of the comparisons, along
with the logical translations of the BSL programs used in the benchmarks. The Lisp
and Prolog versions of the “queens” benchmark are also given, in order to provide
concrete examples of what we are comparing. These programs are all naive search
algorithms derived directly from a logical specification (without any refinement).
Faster algorithms are certainly known for these problems, for example, in the queens
problem, keeping a record of the taken diagonals will achicve an obvious speedup.
But the benchmarks should still give an idea about the raw search capability of the
different language implementations, which is a very important capability for the design
of complex and computation-intensive expert systems, where one usually has to opt
for the simplest specifications anyway, and where hand-optimization of individual
parts of the system is usually impractical. The same naive algorithms are used in all
three languages, but the solution, when it is of an array type in BSL, is represented as
a list of integers in the Lisp and Prolog programs, which only needs to be accessed
sequentially, in order not to aggravate the differences due to array vs. list represent-
ations. The times given are the IBM 3090-200 virtual cpu time in seconds to exhaust
the search space, without printing results.

program BSL VM/Lisp Lisp/BSL VM/Prolog Prolog/BSL
time time ratio time ratio
debruijn 238 10.84 4.55 785 33.0
tnangle 7.86 14.60 1.86 1923 245
permute 8.26 19.64 238 1721 20.8
queens 2.95 9.54 323 87.1 29.5
dslalpha 2.75 12.37 4.50 19.5 7.09

debruijn: enumerate all de Bruijn scquences {Ralston 82], circular strings of length M**N composed of
digits 0,...,M-1, where every N digit Jong substring is distinct. An array d of SIZE=M**N+N-1 elements
that begins with N M-1’s (and hence ends with N-1 M-1's) is used to represent the circular string. Here
Ms=2 and N=5. Note: in the following logical translations, the assignments have been Jeft intact, so that
the original BSL programs can be recovered directly.

(3d: (array (SIZE) integer))

(vn| 0<n<SIZE)
@il 0gj<M){d[n):=j & [n<N & d[n}=M-1] & (VK[ n-12k> N-1)(F | 0<i<N)[d[n-i] £ d[k-i]].

triangle: enumerate all triples of integers x,y.Z, 0<x<y<z<400, such that x**2+y**2=2°"2 (Pythagorcan
numbers).

@, y.z:integer) @i | 1<i<398)(3j1i+1<j<399) @k | j+1ck<400)[i*i+jjmk 'k & x:mi & y:mj & z:=k].
Note: PL.8 does not move up (i*i+j*j) from the innermost quantificr, because the “inner loop” is re-entered
in the middle after 8 backtracking return.

permute: enumerste sll permutations of the digits 0,1....,8
@p:(ammay (9) integer))(Vn | 0<n<9) @j 0<j< (VK | n-12k > 0)jep[k]] & p{n]:=j).

queens: find all solutions to the 11-queens problem. The rows and columns sre numbered as 0,1.,...,10, and
the array elements p{0].....p{ 10] represent the column no. of the queen on row 0,...,10, respectively. The
Lisp and Prolog versions are also given.
(3p:(armay (11) integer))

(Vn]0sn<11)@j| 0<j<I DYk n-12k>0)[j¥#p{k] & j-pik]#n-k & plk]-j#n-k] & p[n]:=j].

u Without the equal->eq, fixed arithmetic, unchecked operation and noninterruptible code optimizs-
tions, VM/Lisp slows down by a factor of 9.8-16.4 (5.7 in dslalpha); and without the static clause
optimization VM/Prolog is slowed down by a factor of 1.37-1.86 (1.07 on triangic); on these par-
ticular programs.



(compile *(queens] (lambda (n s)
(cond ((not (gslessp n 11)) (use 5))
(t (do ((j O (gsincl j))) ({not (gslessp j 11)))
(cond ((do((k (gsdec] n) (gsdec] k)) (x5 (qedr x)))
((or(null x)
(eq (qearx) j)
{eq (gsdifference j (qcar x)) (gsdifference n k))
(eq (gsdifference (gcar x) j) (gsdifference n k)))
(null x)))
(queens] (gsincl n) (cons j5))))))N)))
(compile *(queens (lambda nil (queens? 0 nil))))
(compile *(use (lambda (x) ail)))

1,%5.*x) <- N(*L*)) & range1(*i,*j.*x).
*i).
range1(*i*},°x) <- sum(*i,1,*ip1) & t(*ipl.*j) & range1(*ip1,*},*x).
queenl(11,°x,°x) <- /(.
queenl(®n,*x,°z) <-range(0,11,%j) & check(*x,%j,1) & sum(*n,1,°npl) & queenl(*npl,*j.*x,*z).
check(nil,*,*).
check(*pk.*rest,*j.*nminusk) <- ne(*j,°pk) & -diff(*j,*pk,*nminusk) & -diff(*pk,*j*nminusk) &
sum{*nminusk,},*newnmk) & check(®rest,*j,* newnmk).
queens() <- queenl(0.nil,*x) & fail().

dslalpha: enumerate the names of the suppliers who supply all parts. Executed 100,000 times. Taken from
3 DSL ALPHA query for the supplicrs-parts database in {Date 77}. VM/Prolog is doing well here appar-
ently because of clause indexing
@s.p.sp)

[s="((s__sno S1s__sname SMITH s__status 20 s__city LONDON) ...)" &

p="((p_pno P1 p_ pname NUT p__color RED p__weight 12 p__city LONDON) ..)" &

sp="((sp__sno S1sp_ pnoPlsp_ qiy300)..)"&

(3ans:snametype)

(3In | 0<n<S__SIZE)

[(vi| 0<i<P__SIZE)(3j| 0<j<SP__SIZE){splil.sp__sno=s[n].s__sno & spjl.sp__pno=plil.p__pno]
& ans:=s[n).s__sname]].

There are many factors that contribute to the efficiency of BSL on a traditional ar-
chitecture vs. Lisp and Prolog. In BSL, the choice between assignment and equality
test is made at compile time, unlike Prolog’s unification algorithm, which often re-
quires that the choice be deferred to run time (but the practical gain from this ineffi-
ciency in Prolog is relational programming, which is admittedly very flexible and useful
for certain applications). BSL directly uses the native data types of a traditional ar-
chitecture, such as integers, unlike Lisp and Prolog, which often have to manipulate
machine words containing both data and tags. A considerable amount of push down
and restore operations are eliminated in BSL because of the optimizations for side-
effect free subformulas; and when there has to be backtracking, BSL saves and re-
stores very little state because of the backtracking optimization described above (By
contrast, some Prolog implementations may push down a choice point right in the be-
ginning of the execution of a clause via a “try” instruction, or may have to use
backtrackable assignment [Fagin and Dobry 85, Turk 86).) Bounded quantifiers are
implemented in BSL via inline code (often simple loops), rather than via clauses as in
Prolog, and this increases the chances of applying traditional compiler transformations
to BSL code. Some of these optimizations can be of course be implemented in Prolog
and Lisp;!? so it is difficult to reach a conclusion about the inherent speeds of the

E.g.. mode declarations or automatic mode inference in Prolog can allow the choice between assign-
ment and equality test 10 be made at compile time, and, ¢.g., {[Kranz et al. 86} describe an optimizing
compiler for Lisp that could approach C/Fortran performance in consless code. Considerably more
performance can also be achieved by compiling Prolog: [Kurokawa et al. 86] report a Prolog compiler
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languages. But nevertheless, BSL appears to achieve good utilization of the resources
of a traditional architecture.

One parallel architecture most suited to BSL seems to be the emerging Very Long
Instruction Word architecture [Ellis 86, Nicolau 85). The newer VLIW machine
compilation techniques for general sequential programs are not in the least daunted
by the sequential backtracking semantics of BSL; in fact, the extraction of parallelism
is simplified because of BSL’s single assignment nature. The VLIW architecture can
achieve only a modest speedup for BSL’s backtracking execution, but a tightly coupled
VLIW machine can incur much less communication delays than some proposed par-
allel architectures for Prolog (e.g. communication via packets [Onai et al. 85]), which
is an advantage for applications where the inberent parallelism is not very high.

Designing expert systems in BSL

The problem with BSL is that it does not support multiple assignment as in impure
Lisp or C, consequently, conventional algorithms of Algol-class languages are difficult
to translate directly into BSL.} BSL also does not support list processing: it is limited
to problems that allow an abstraction using Pascal-PLI-C style data types. Thus, BSL
is not a replacement for Lisp or Prolog; one would choose Lisp or Prolog rather than
BSL, for easily implementing an application such as a compiler, where list processing
seems inevitable. Nevertheless, BSL does have an important application area, where
neither its lack of multiple assignment nor its lack of list processing is a drawback; we
found out this fact through our own application. BSL can be used for writing the rules
of a generate-and-lest expert system in a declarative style, thinking first in Jogic. In
this declarative style, one virtually never feels a need o set, e.g., x:=x+1, since that
would be tantamount to asserting x=x+1. Moreover, while implementing such an
expert system, BSL can achieve very good utilization of the hardware resources of a
traditional supercomputer, thus allowing the concepts of logic programming to be ap-
plied to large, computation intensive problems. We feel that BSL can be used for any
computation intensive generate-and-test application where a natural abstraction with
Pascal style data types is feasible: the molecular genetics problem described in [Stefik
78] is one such example. There is of course an occasional need for conventional pro-
gramming in any project, which can always be done by calling C procedures from
BSL. We did so for interactive graphics in our music expert system. The formal analog
of an expert system based on the generate-and-test method can be implemented in
BSL via a very long formula of the following form:

for the IBM 3090 which has a performance of 1.42 megalips on “append”™ (This compiler is probably
4.6-6.2 times faster than VM/Prolog with static clauses, according to our estimate based on the
benchmarks given in that paper). On the other hand, BSL is not doing its best with an intervening
C compiler, e.g., the traditional code motion optimization is occasionally inhibited because of the
non-structured style of the C code generated by BSL.

1 For example, for summing the elements of an array a in BSL, one method would be to use an addi-
tional array dimension to represent the values of the sum variable at successive times, and to code the
program as follows: [s{0]:=0 & (Vi| O<i<n)(sli+1):=ali]+si]] & ans:=s[n]}; where the array s
consumes unnecessary space. Actually, since for each i in the backtracking execution of this code,
0 < i < n, s[i) and s[i+ 1] are never simultaneously live; it does not Jook difficult to design a compiler
transformation 1o “coalesce™ the whole array s into a single scalar variable [as in Chaitin et al. 81],
but we have not attempted such a transfonmation in the present compiler.



528

(E ((s (armay (N) 0p))))
(E ((inp 0P.))
(and “initialize inp™
(AnO(<nN)(1+n)

(L]
(and
(or (and conditions, actions,)
; generste section
(and conditions, actions,)) 3
constrainly H
- ; test section
constraint,) H
((sm))
heuristic, :
; recommendations section
heuristic,))))) :

In the generate-and-test paradigm of BSL, the computation proceeds by “‘generate-
and-test steps,” where each step consists of selecting and assigning an acceptable
value to the n’th element of the solution array s depending on the elements o,...,n-1,
and on the given input data structure “inp”. The condition-action pairs given here are
the formal analogs of production rules [Davis and King 76}, as they are used in a
generate-and-test application. The conditions are side effect free subformulas that
perform certain tests about elements 0,...,n-1 of the solution array and the program
input, and the actions are subformulas that involve assignments to element n of the
solution array. Thus a condition-action pair has the informal meaning “IF the condi-
tions are true about the partial solution, THEN a new element as described by the
actions can be added to the partial solution.” The constraints are side effect free sub-
formulas whose logical translations assert absolute rules about the elements O,....n of
the solution array and the program input. They have the procedural effect of rejecting
certain assignments to element n (this effect is also called early pruning [Hayes-Roth,
Waterman and Lenat 83]). The heuristics are side effect free formulas whose logical
translations assert desirable properties of the elements O,...,n of the solution array and
the program input. They have the procedural effect of having certain assignments to
element n tried before others are, and they thus bias the search so that the solution
first found is bopefully a good one. The attributes of each element of the solution
array will often be subdivided into several groups which will be selected in sequence,
in which case the “generate section” shown in the formula above will have some more

structure.

An application of BSL: The CHORAL system

The limitation of the generate-and-test paradigm described above is that it allows only
one view of the solution object, as defined by the attributes of the solution array. In
complex expert systems, a need often arises for representing knowledge from multiple
viewpoints (e.g., as in [Erman et al. 80, Sussman and Steele 80]). In fact, our music
expert system, whose name is CHORAL, and whose purpose is to harmonize chorale
melodies, maintains several viewpoints of its solution object, the chorale
barmonization:1$ The chord skeleton view observes the chorale as a sequence of
rhythmless chords and fermatas. The fill-in view observes the chorale as four inter-

ung by 8 choir consisting of men’s and women’s voices.
alto, tenor, bass) which arc sung together; the soprano
the process of composing the alto, tenor and bass parts

" A chorale is a short musical piece that is s
There are four parts in a chorale (soprano,
part is the main melody. Harmonization is
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acting automata that change states in lockstep, geperating the actual notes of the
chorale in the form of suspensions, passing tones and other ornamentations, depend-
ing on the underlying chord skeleton. The time-slice view observes the chorale as a
sequence vertical time-slices each of which has a duration of an eighth note, and im-
poses harmonic constraints. The melodic string view observes the sequence of notes
of the individual voices from a purely melodic point of view. The Schenkerian analysis
view observes the chorale as the sequence of steps of two bottom up parsers that at-
tempt to assign a hierarchical voice leading structure to the chorale, according to our
hierarchical voice leading theory inspired from [Schenker 79]. Each viewpoint of the
chorale is conceptually defined through a different set of primitive functions and
predicates, which is then implemented through a solution array. However, the differ-
ent solution arrays of the viewpoints are constructed in parallel, as if a dedicated
generate-and-test process just like the program above were in control of each view-
point ({Ebcioglu 87] gives further details). The knowledge base of the system is gen-
erally very complex and computation bungry; some factors contributing to the
computational and conceptual complexity being the production rules and constraints
about the bold clashes of multiple simultaneous passing notes, neighbor potes, and
suspensions, (without which the hafmonizations would reduce to uninteresting student
exercises), the long list of production rules for style-specific modulations and idiomatic
cadences, and the difficult constraints on maintaining melodic interest in the inner
voices.

The CHORAL system and BSL were originally implemented on VAX 11/750 and
780 computers under Franz Lisp and UNIX.'¢ We have presently ported BSL and the
CHORAL system to the 3081 and 3090 computers at the IBM Thomas J. Watson
Research Center, they now run under VM/Lisp and CMS. The program takes an al-
phanumeric encoding of the chorale melody as input, and outputs the barmonization
in conventional notation. The system presently incorporates over 350 production
rules, constraints, and heuristics, which were found through empirical studies of the
Bach chorales, personal intuitions, and traditional music treatises. It takes typically
under balf an bour of 3081 CPU time to harmonize a chorale, although some
barmonizations require more time. At the end of the paper, we give a recent output
example produced by the system, an harmonization of chorale no. 68 {Terry 64]. It
has to be transposed to be singable. Many more output examples of similar quality,
and the list of rules of the system can be found in [Ebcioflu 87]. The program’s
harmonizations are very encouraging, but their resemblance to Bach is limited to pat-
terns such as idiomatic cadences; they certainly lack the austere overall texture of
Bach. Nevertheless, the CHORAL system seems to provide evidence that BSL can
be useful for at least one substantial application, and we hope that our work with BSL
will be of use to researchers looking for ways of applying the concepts of first order
logic to large-scale problems.
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