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Kemal Ebcioglu

IBM, Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, New York 10598 USA

Introduction

" In this paper, we report on a rule-based expert sys-
tem called CHORAL, for harmonization and Schen-
kerian analysis of chorales in the style of J. S. Bach.
We first briefly compare our approach with some
current trends in algorithmic composition and mu-
sic analysis, and we then describe the CHORAL
system itself.

Overview of Current Approaches to Algorithmic
Music

Quite a few trends in algorithmic composition to-
day are based on a streamlined formalism, for ex-
ample, in the form of random generation of note
attributes using elegant statistical distributions
(Xenakis 1971}, terse and powerful formal gram-
mars (Jones 1981), elegant mathematical models
(Kendall 1981; Vaggione 1984), or generalizations of
serial composition procedures (Laske 1981). The
economy and elegance of the formal representation
underlying these musical styles (which are not in
the least less respectable than traditional styles of
music), may often have an aesthetic appeal in and
of themselves. On the other hand, traditional music
and most of modern music, which are usually com-
posed without a computer, do not seem to permit
such economical representations. In the traditional
style, the typical basic training the composer has to
go through in harmony, strict counterpoint, fugue,
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appeared in the Proceedings of the 1986 International Computer
Music Conference {San Francisco: Computer Music Association).
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and orchestration already imposes a certain mini-
mal complexity on the amount of knowledge re-
quired to describe such a style.

Also, many will agree that a similar complexity
can be observed in the works of modern “non-
computer” composers like Karlheinz Stockhausen,
Pierre Boulez, Gyorgi Ligeti, Jan Rychlik, and Steve
Reich (his later compositions). It seems that musi-
cal composition is a hard mental task that requires
a substantial amount of knowledge, and any serious
attempt to simulate “noncomputer’” music com-
position on the computer would have to face the
task of constructing a formal model of consider-
able complexity. We have found that even the al-
gorithmic representation of the knowledge under-
lying the seemingly simple Bach chorale style is a
task that already borders the intractable.

As for the music analysis field, the prevailing
trends seem to emphasize selective and unobvious
properties of music; for example, a golden section
in some motets of Dufay (Sandresky 1981), or a
surprising log-normal distribution in the disso-
nances within some chorales of Bach {Knopoff and
Hutchinson 1981). Even the analysis approaches
that capture a profound structure in tonal music,
such as reduction techniques (Schenker 1979;
Lerdahl and Jackendoff 1983), are still based on
finding a selective property (the property that the
piece has a plausible parsing). These properties,
although interesting in their own right, do not
constitute a satisfactory explanation of the music
in question, in the sense that there exist many
“pieces” that have these properties, but that have
no relationship with the style.

An alternative approach that would perhaps pro-
vide a more satisfactory understanding of the mu-
sic, is to attempt to algorithmically generate pieces
in the same approximate style. There have already
been some attempts at this analysis by synthesis
approach to music in some simpler traditional
styles, such as folk melodies (Zaripov 1960), or the
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first two phrases of Bach chorale melodies (Baroni
and Jacoboni 1976). But there are two problems as-
sociated with extending this approach to more sub-
stantial traditional styles. First, it may be difficult
to prevent the designer of such a resynthesis al-
gorithm from introducing traits that would distort
the style in an unscholarly fashion (this unscholar-
liness may be trivially removed by resynthesizing
only the original pieces of the composer in some
interesting way—but we feel that the approach of
synthesizing new pieces is also worthwhile). The
second, and more fundamental problem is that, al-
though there has been good progress in the auto-
mated synthesis of sound {Mathews et al. 1969;
Roads and Strawn 1985), the automated composi-
tion of nontrivial tonal music is to date not suffi-
ctently understood (and is still regarded with some
suspicion in the traditional circles). The present re-
search is an attempt to further our understanding of
the mechanical generation of music, by extending
the analysis by synthesis approach to a more com-
plex style, the style of the Bach chorale harmoniza-
tions. To cope with the complexity of the problem,
we have developed a rule-based approach inspired
from recent research in artificial intelligence, as
well as from a heuristic search method that we had
used in an earlier, smaller-scale strict counterpoint
program (Ebcioglu 1979, 1980).

BSL: An Efficient Logic Programming Language

Perhaps because of its inherent difficulty, the gen-
eration of nontrivial tonal music appears ta require
large computational resources. In typical comput-
ing environments, artificial intelligence {Al) lan-
guages such as Prolog or Lisp tend to be too slow
for implementing our particular approach to the
algorithmic generation of music. More efficient
languages such as C or Fortran are not viable altcr-
natives, since they in turn tend to be too low-level
for the task of coding a large music expert system.
At the outset of our research, we decided to repre-
sent musical knowledge using first-order predicate
calculus; and in order to cope with the large com-
putational requircments of tonal music generation,
we have designed BSL {Backtracking Specification
Language) (Ebcioglu 1986, 1987a, 1987b, 1988), a
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new and efficient logic programming language that
is fundamentally different from Prolog. From the
execution viewpoint, BSL is a nondeterministic
Algol-class language where variables cannot be as-
signed more than once except in controlled con-
texts. However, BSL has a desirable relationship
with first-order predicate calculus that makes it a
new kind of logic programming language: namely,
each BSL program corresponds to an assertion in
first-order logic, and executing the BSL program
amounts to proving the corresponding assertion.
More precisely, the semantics of a BSL program F is
defined via a ternary relation ¥, such that ¥V(F, o, 7)
means program F leads to final state r when started
in initial state o, where a state is a mapping from
variable names to elements of a “computer’” uni-
verse, consisting of integers, arrays, records, and so
on. There is a simple mapping Au{u’| that trans-
lates a BSL program to a formula of a first-order lan-
guage, such that if a BSL program F terminates in
some state o, then the corresponding first order for-
mula F’ is true in o {where the truth of a formula in
a given state o is evaluated in a fixed “computer”
interpretation involving integers, arrays, records,
and operations on these, after replacing any free
variables x in the formula by o(x)). Thus, success-
fully executing a BSL program without free vari-
ables amounts to constructively proving that the
corresponding first-order sentence is true in the
fixed “computer” interpretation, or in all models of
a suitably axiomatized theory of integers, arrays,
and records.

A formal and rigorous description of BSL, in a
style inspired from (de Bakker 1979), can be found
in {Ebcioglu 1987a). To implement BSL on real com-
puters, we wrote a compiler, in Lisp, that translates
BSL programs into efficient backtracking programs
in C. Except for a few C routines for reading in the
melody and for graphics, the CHORAL expert sys-
tem has been coded entirely in BSL.

A Knowledge Representation Technique for
Music

An ambitious music expert system somehow has
to deal with the problem of representing a large
amount of complex musical knowledge. Even when
one has avoided the approach of coding the rules
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directly in a conventional language, and one has
chosen to represent musical knowledge declara-
tively, in logic, the complexity of the knowledge
base may still be far from being conquered. To rep-
resent substantial amounts of musical knowledge
in first-order logic, it appears necessary to divide up
the logical assertions into groups that observe the
music from multiple viewpoints. Using a small and
nonredundant set of primitive functions and predi-
cates to represent music, although mathematically
appealing, does not seem to be suitable for express-
ing all the required viewpoints of the music in a
natural way. For example, a set of primitive func-
tions {p,a,d}, that observe each voice as a linear se-
quence of notes, such that p{0,v), p(1,v}, . . ., a{0,v),
a(l,v],...,d{0,v],d(l,v},...are the pitches, acci-
dentals and durations of the notes of voice v, would
certainly be sufficient to describe a simple vocal
piece, and would also be suitable for expressing
horizontal, melodic relationships in each voice; but
the same primitives would be somewhat clumsy for
expressing vertical, harmonic relationships be-
tween voices, since the ith note of one voice ob-
viously does not in general line up with the ith
note of another voice. Similarly, a large-scale work
may require several hierarchical viewpoints that
may constitute successively refined plans of the
piece. So we opted for a knowledge representation
that used multiple sets of logical primitives to rep-
resent the different viewpoints of the music. Each
set of primitives was deliberately made richer than
required, by incorporating all the musical attributes
that we felt we could need while writing rules.

The viewpoints used by our CHORAL system in-,
clude one that observes the chord skeleton of the
chorale, one that observes the individual melodic
lines of the different voices, and another one that
observes the Schenkerian voice leading within the
descant and bass. The need for using multiple view-
points of the “solution object” has arisen in expert
systems in other domains as well: For example, the
Hearsay-Il speech understanding system {Erman
et al. 1980) observed the input utterance as mutu-
ally consistent streams of syllables, words, and
word sequences, and the constraints system ot
(Sussman and Steele 1980) used cquivalent circuits
for observing a given fragment of an clectrical cir-
cuit from more than one viewpoint.

Implementing Multiple Points of View

We now describe one possible way of implementing
multiple viewpoints of the music in BSL. In this
method, which was used in the CHORAL system,
each viewpoint is represented by a different data
structure, typically an array of records (called the
solution array of that viewpoint), which serves as a
rich set of primitive pseudofunctions and predicates
for that view. This multiple view paradigm has the
following procedural aspect: It is convenient to vi-
sualize a separate process for each viewpoint, which
incrementally constructs (assigns to) its solution ar-
ray, in close interaction with other processes con-
structing their respective solution arrays. Each
process executes a series of generate-and-test steps.
At the nth generate-and-test step of a process, n =
0,1, ..., avalue is selected and assigned to the
nth element of the solution array of the viewpoint,
depending on the elements 0, . . ., n — 1 of the
same solution array, the currently assigned ele-
ments of the solution arrays of other viewpoints,
and the program input. The processes behave some-
what like the multiple processes that are scheduled
on a single hardware processor in a timesharing
operating system. They are arranged in a round-
robin scheduling chain. Each process (implemented
as a BSL predicate), whenever it becomes active {is
given the CPU), first attempts to execute zero or
more generate-and-test steps until all of its inputs
are exhausted, and then gets blocked, relinquishing
the CPU to the next process in the chain. Among
the processes, there is a specially designated clock
process, which executes exactly one step when it is
scheduled; all other processes depend on inputs
produced by this process, and thus become blocked
whenever they need an input that has not yet been
produced by the clock process. Thus, cach step of
the clock process determines the total amount of
work done in one complete trip around the round-
robin scheduling chain. The process scheduling
paradigm described here is backtrackable, as cx-
plained later.

Knowledge Base of the Viewpoints

The knowledge base of each viewpoint is expressed
in three groups of logic assertions {BSL subformu-

Ebcioglu 45

e




las}, which determine the way in which the nth
generate-and-test step is executed. (1) Production
rules: These are the formal analogs of the produc-
tion rules that would be found in a production sys-
tem for a generate-and-test application, such as
Stefik’s GA1 system, which solves a search prob-
lem in molecular genetics (Stefik 1978}. The infor-
mal meaning of a production rule is ““IF certain
conditions are true about the partial solution (ele-
ments 0, . . ., n — 1, and the already assigned at-
tributes of element n) and external data structures,
THEN a certain value can be added to the partial
solution (assigned to a group of attributes of ele-
ment n1}.”” Their procedural effect is to generate the
possible assignments to element n of the solution
array. (2) Constraints: These side-effect-free subfor-
mulas assert absolute rules about elements O, . . .,
n of the solution array, and external data structures.
They have the procedural effect of rejecting certain
assignments to element n of the solution array (this
effect is also called early pruning in Al literature
[Hayes-Roth, Waterman, and Lenat 1983], since it
removes certain paths from the search tree that are
guaranteed not to lead to any solution). {3) Heuris-
tics: These side-effect-free subformulas assert desir-
able properties of the solution elements 0, . . ., n
and external data structures. They have the proce-
dural effect of having certain assignments to ele-
ment n of the solution array tried before others are.
The purpose of the heuristics is to guide the search
so that the solution first found is a good solution.
Here is how the nth generate-and-test step of a pro-
cess is executed: First, all possible assignments to
the nth element of the solution array are generated
via the production rules. If a candidate assignment
does not comply with the constraints, it is thrown
away, otherwise its worth is computed by summing
the weights of the heuristics that it makes true (the
heuristics are weighted by different powers of two,
with the most important heuristic having the great-
est weight, etc.). Assuming that at least one choice
was found tor the nth element, the generate-and-
test step is then completed by assigning the best
choice to the nth element of the solution array
{with ties being resolved randomly). But at the same
time, the current state of all the processes, and the
list of remaining choices for this generate-and-test
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step, are pushed down; so that the current state of
all the processes can later be recovered and the exe-
cution of the current process can be restarted, by
choosing the next best alternative for this generate-
and-test step. Later on, if an impasse is encoun-
tered, that is, some process fails to find any accept-
able values for an element of its solution array,
control returns to the most recent step among the
history of the steps of all the processes, which is
estimated to be responsible for the failure. This is
not necessarily the immediately preceding step,
which could be irrelevant to the failure; BSL uses
an intelligent backtracking algorithm. Execution
then continues with the next best choice at the
step where the return has been made to (assuming
that there is a remaining choice at this step. If there
is none, further backtracking occurs).

The generate-and-test method described here
is based on the idea of producing the solution in-
crementally, and backing up where necessary. An
alternative search technique in the field of algorith-
mic music is to repetitively generate {with a non-
backtracking algorithm) a new random solution and
test it, until an acceptable solution is found (e.g.,
Baroni and jacoboni 1976); but this latter technique
is difficult to use when the acceptable solutions are
extremely few in comparison to the generable so-
lutions, which we feel is a common situation in
complex styles of music. Generate-and-test is a ba-
sic search technique used in expert system design
(Hayes-Roth, Waterman, and Lenat 1983). Studies
on other relevant search techniques of artificial in-
telligence can be found {e.g., Nilsson 1971; Pearl
1983). This style of incorporating heuristics in a
generate-and-test method for producing music, was
used in our earlier strict counterpoint program (Eb-
cioglu 1979, 1980) and was also independently used
by B. Schottstaedt in another, larger-scale strict
counterpoint program (Schottstaedt 1984). (Ames
1983) used a similar technique for generating music
in a more contemporary contrapuntal style.

In certain cases a viewpoint may be completely
dependent on another, that 1s, it may not introduce
new choices on its own. In the case of such redun-
dant views, it is possible to maintain several views
{solution arrays] in a single process, provided that
one master view is chosen to execute the process
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step and comply with the paradigm. This can be
done as follows: As soon as a possible assignment
to the nth element of the solution array of the mas-
ter viewpoint is generated via the production rules
of the master viewpoint, the subordinate views are
tentatively updated according to this new element
of the master viewpoint. The subordinate views
can advance by zero, one, or more than one steps,

- even though the master view advances by one step.

Then the constraints and heuristics of the subordi-
nate views are used in conjunction with the con-
straints and heuristics of the master view in order
to determine the acceptability of the current tenta-
tive assignment to the nth element of the master
view, and to compute how desirable this assign-
ment is. Note that the subordinate views do not
have production rules, since the new addition to the
master view completely determines all attributes of
the new element(s) of the subordinate views.

In the generate-and-test technique described here,
the heuristics constitute the most crucial ingre-
dient for obtaining musical results. It is known that
absolute rules, such as those found in a treatise, are
not sufficient for producing beautiful music. Com-
posers use much additional knowledge (roughly
termed as ““talent”) for choosing among the “cor-
rect” extensions of a partial composition at each
stage of the compositional process. While our lim-
ited powers of introspection prevent us from rep-
licating the thought process of such choices in an
algorithm, we conjecture that a good algorithmic
approximation can be obtained by using a large
number of prioritized heuristics, or recommenda-
tions, based on style-specific musical knowledge. .
The heuristics used in our music generation al-
gorithm help to prevent the search process from
taking “correct” but unmusical paths (these paths
could easily be followed if absolute rules and ran-
dom search were used alone), and they guide the
music in the preferred direction.

The Viewpoints of the CHORAL System

We are now in a position to discuss the knowledge
models, or viewpoints of the CHORAL system. The
CHORAL system knowledge base, which was de-

veloped over a period of several years, is based on
our study of the Bach chorales {Terry 1964), our
personal intuitions, and traditional theoretical
treatises such as {Louis and Thuille 1906; Koechlin
1928). We will give here only a brief overview of the
knowledge base of CHORAL, which is in reality
very long and complex. The CHORAL system uses
the backtrackable process scheduling technique de-
scribed above to implement the following view-
points of the chorale.

The chord skeleton view observes the chorale as
a sequence of rhythmless chords and fermatas, with
some unconventional symbols underneath them,
indicating key and degree within key. This is the
clock process, and produces one chord per step. The
primitives of this view allow referencing attributes
such as the pitch and accidental of a voice v of any
chord n in the sequence of skeletal chords. Al-
though some harmony treatises tend to omit rules
about degree transitions (e.g., Dubois 1921}, keep-
ing track of the key and degree within key, and im-
posing careful rules for the transitions between the
different degrees, were found to be necessary for
maintaining a solid sense of tonality early during
our research. Without key and degree information,
progressions tend to sound ‘““Gregorian.” Similarly,
implementing modulations turned out to be no
simple matter, and a literal implementation of the
definition of modulation as in a treatise was found
to be too permissive, yielding unacceptable results.
Instead, we have implemented a complex set of pro-
duction rules for generating a set of style-specific
modulating progressions, constraints for filtering
out the unacceptable modulating progressions, and
heuristics for choosing the desirable modulating
progressions. In the chord skeleton view we place,
tfor example, the production rules that enumerate
the possible ways of modulating to a new key, con-
straints about the preparation and resolution of a
seventh in a seventh chord, and heuristics that pre-
fer “Bachian’ cadences.

The fill-in view observes the chorale as four
interacting automata that change states in lock-
step, generating the actual notes of the chorale in
the form of suspensions, passing tones, and simi-
lar ornamentations, depending on the underlying
chord skeleton. For each voice v at fill-in step n,
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the primitives allow referencing attributes of voice
v at a weak eighth beat and an immediately follow-
ing strong eighth beat, and the new state that voice
v enters at fill-in step n (states are suspension, de-
scending passing tone, and normal). At each of its
steps, the fill-in view generates the cross product
of all possible inessential notes (passing tones,
neighbor notes, suspensions, other chorale-specific
ornamentations) in all the voices, discards the un-
acceptable combinations of inessential notes, and
selects the desirable combinations, via a complex
set of production rules, constraints, and heuristics.

We felt that bold clashes of simultaneous ines-
sential notes were indispensable for achieving the
effect of a “Bachian’ harmonic-melodic flow. The
harmonization task would have been greatly sim-
plified if we had avoided simultaneous inessential
notes, but we felt that we then probably would not
obtain music. Note that precise rules about simul-
taneous inessential notes were not at all readily
available. The typical treatise on school harmony
gives precise rules on severely restricted forms of
simultancous inessential notes (e.g., Bitsch 1957).
In other traditional studies on passing notes in
Bach, (c.g., Koechlin 1922; McHose 1947} authors
tend to merely give examples of clashes of simulta-
neous inessential notes from Bach, which the tal-
ented music student will nevertheless digest in an
unconscious way, but which are not of suitable pre-
cision for programming.

The fill-in view reads the chord skeleton output.
In this view we place, for example, the production
rules for enumerating the long list of possible in-
essential note patterns that enable the desirable
bold clashes of passing tones, a constraint about
not sounding the resolution of a suspension above
the suspension, and a heuristic on following a sus-
pension by another in the same voice (a Bachian
cliché/.

The time-slice view observes the chorale as a se-
quence of vertical time-slices, cach of which has a
duration of an eighth-note, and imposes harmonic
constraints. This view is redundant with and subor-
dinate to fill-in. The primitives of this view allow
reterencing attributes such as the pitch and acci-
dental of a voice v at any time-slice i, and whether
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a new note of voice v is struck at that time-slice. In
this view we place, for example, a constraint about
consecutive octaves and fifths.

The melodic string view observes the sequence
of individual notes of the different voices from
a purely melodic standpoint. The primitives of
this view allow referencing attributes such as the
pitch and accidental of any note i of a voice v.
The merged melodic string view is similar to the
melodic string view, except that the repeated adja-
cent pitches are merged into a single note. The
merged melodic string view was necessary for rec-
ognizing and advising against bad melodic patterns
which are not alleviated even when there are re-
peating notes in the pattern. These views are also
redundant with, and subordinate to fill-in. In these
views we place, for example, a constraint about
sevenths or ninths spanned in three notes, a heuris-
tic about continuing an ongoing linear progression
in a given voice, and some other highly difficult
constraints for enforcing “‘melodic interest” in the
inner voices. {The melodic interest constraint of
the merged melodic string view indicates that in
any voice, when a note has occurred as a high cor-
ner [1s sandwiched between two notes of lower
pitch|, then it cannot occur as a high corner for at
least two measures. Notes that occur in high-corner
positions are perceived to be more salient than
notes which are, e.g., in the middle of a linear pro-
gression. This rule prevents the monotony arising
from the repetition of the same pitch in the salient
high-corner positions.)

The Schenkerian analysis view is based on our
formal theory of hierarchical voice leading, inspired
from (Schenker 1979) and also from (Lerdahl and
Jackendoff 1983). The core of this theory consists
of a set of rewriting rules which, when repeatedly
applied to a starting pattern, can generate the bass
and descant lines of a chorale. The Schenkerian
analysis view uses our rewriting rules to find sepa-
rate parsc trees for the bass and descant lines of the
chorale, employing a bottom up parsing method,
and using many heuristics for choosing {among the
alternative possible actions at cach parser step) the
action that would hopetully fcad to the musicaily
most plausible parsing. Unlike Lerdahl and Jacken-
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doft’s theory, which is based on a hierarchy of indi-
vidual musical events (e.g., chords, noteheads), our
theory is based on a hierarchy of slurs, and is more
in line with Schenker’s theory. The discussion of
our voice-leading theory is beyond the scope of this
paper, and the details can be found in (Ebcioglu
1987a).

The Schenkerian analysis view observes the cho-
rale as the sequence of steps of two nondeterminis-
tic bottom-up parsers for the descant and bass. This
view reads the fill-in output. The primitives of this
view allow referencing the output symbols of a
parser step n, the new state that is entered after
exccuting step n, and the action on the stack at
parser step n. The rules and heuristics of this view
belong to a new paradigm of automated hierarchi-
cal music analysis, and do not correspond to any
rules that would be found in a traditional music
theory treatise. In this view we place, for example,
the production rules that enumerate the possible
parser actions that can be done in a given state, a
constraint about the agreement between the funda-
mental line accidentals and the key of the chorale,
and a heuristic for proper recognition of shallow
occurrences of the Schenkerian D-C-B-C ending
pattern.

The fill-in, time-slice, and melodic string views
are embedded in the same process, with fill-in as
the master view among them.

The order or scheduling of processes is cyclically:
chord skeleton, fill-in, Schenker-bass, Schenker-
descant. Each time chord skeleton is scheduled, it
adds a new chord to the chorale, each time fill-in
is scheduled, it fills in the available chords, and .
produces quarterbeats of the actual music until no
more chords are available. Each time a Schenker
process is scheduled, it executes parser steps until
the parser input pointer is less than a lookahead
window away trom the end of the currently avail-
able notes for the descant or bass. [The lookahcead
window gradually grew bigger as our ideas evolved,
and in the recent versions, for the sake of reducing
modulc sizes, we have tound it expedient to place
the Schenker processes in a separate postprocessing
program that reads its input trom a file produced by
the other views.] When a process does not have any

available inputs to enable it to execute any steps
when it is scheduled, it simply schedules the next
process in the chain without doing anything. The
chorale melody is given as input to the program.

Resuits and Conclusions

BSL and the CHORAL system are presently run-
ning on the IBM 3081-3090 computers at the [BM
Thomas J. Watson Research Center, under CMS and
Lisp/ VM and the AT& T C compiler. The program
takes as input an alphanumeric encoding of the
chorale melody, and outputs the harmonization in
conventional music notation, and the hierarchical
voice-leading analysis in slur-and-notehead no-
tation. The output can be viewed on a graphics
screen or can be printed. The inputs typically take
3-30 min of IBM 3081 CPU time to get harmo-
nized, but some chorales have taken several hours.
Figures 1 and 2 show two output examples, har-
monizations of chorales no. 286 and no. 75 {Terry
1964). In these harmonizations, the voices are not
in the proper ranges; but the program writes the
harmonizations in such a way that there exists a
transposition interval that will bring them to the
proper ranges. Note that the parallel fifths between
the soprano and tenor accompanying the anticipa-
tion pattern in the soprano at the end of the second
phrase of no. 75, are allowable in the Bach chorale
style (see, e.g., no. 383 [Terry 1964|). Many more
output examples, and the complete list of rules of
the program, can be found in (Ebcioglu 1987a). The
program has presently been tested on over 70 cho-
rale melodies, and has reached an acceptable level
of competence in its harmonization capability; we
can say that its competence approaches that of a
talented student of music who has studied the Bach
chorales. While the heuristically guided generate-
and-test method described in this paper is not nec-
essarily an accurate cognitive model of the human
compositional process, it seems to work, and it
seems to be capable of producing musical results.
We hope that our techniques will be ot use to re-
searchers in algorithmic composition who may be
seeking alternative approaches.
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Chorale no. 286
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