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MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC

MADISON 1982

A meeting of the Association for Symbolic Logic was held at the Wisconsin Center, University
of Wisconsin, Madison, on April 16-17, 1982, in conjunction with a meeting of the American
Mathematical Society. There were four invited hour addresses: Ward Henson, Banach space
model theory, David Kueker, Some model-theoretic conjectures and stability, Menachem Magidor,
Countable unions of constructible sets, and John Steel, Determinacy in the Mitchell models. There
were twelve contributed lectures and two contributed papers presented by title. The abstracts
follow.

H. JeroMe KEISLER, Chairman

IRVING H. ANELLIS, Formal arithmetic and the definition of number.

The attempt to construct arithmetic within a formal logical system dates to Frege. The attempt
by Peano [5] to axiomatize arithmetic is weak, since the Peano axiom system fails to provide
an inference rule for deriving formulas (see [6]). Without an inference rule, the arithmetic formulas
in the Peano system can merely be listed, and are not obtained logically; worse, introduction
into Peano arithmetic of inference rules and strong mathematical induction leads to an incon-
sistency (see [1]). The systems of Frege [2], [3], Zermelo [9], and Whitehead and Russell [7] are
rigorous formal systems in which arithmetic can be constructed by introduction into the syntax
of first-order functional calculus of a set of precisely defined operators (addition, multiplication,
identity) and functions (number, and number-generators such as successor and ancestral and
proper ancestral), and at least one constant (zero), while in contrast Peano’s system presents a
recursive definition (Definition 10 of [5]) of number rather than a number-generator. Each system
(but specifically Frege’'s and Whitehead-Russell’s) becomes more felicitous if a second-order
functional calculus is used to develop arithmetic, although familiar difficulties, most notably
the Russell Paradox, obtain for a second-order functional calculus whose semantic interpretation
is extensionalistic (whether Fregean Wertverlauf or Russellian set-theoretic). We will not dwell
upon these difficulties, but rather provide the formalization of arithmetic employing the axioms
of Zermelo.

With a construction of Zermelo arithmetic, the formalization of intuitive arithmetic as primitive
recursive arithmetic completed, we examine the formalizations of Frege and Russell, on the
basis of which it can clearly be shown that such authors as Hambourger [4] who speak of the
““Frege-Russell definition of number” are guilty of conflating two quite distinct constructions.
Finally, elucidating the set-theoretic semantic of Russell, it is shown that the claim by Wittgen-
stein [8], that such statements as ‘two is a number’ are ill-formed and consequently incapable,
as an “illegitimate totality”, of serving as a wff in the system, is erroneous.

Dedicated to Jean van Heijenoort’s Seventieth Birthday.
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PAUL BANKSTON, Semantic preservation by functors of algebras of continuous functions.

We define three first order languages Ly, Lo, Ly as follows: Ly has predicate symbols for
points, sets, and membership (there is a natural semantic relationship (z-satisfaction) between
topological spaces and Ly-sentences); L has symbols representing all continuous finitary opera-
tions on the real line (it is appropriate to consider sets C*(X') of bounded continuous real-valued
functions defined on the space X to be Lc-algebras); and Ly is simply the language of Boolean
algebras (we let B(X) denote the Boolean algebra of clopen subsets of X).

Employing three distinct “‘ultrapower” constructions, we prove the following.

THEOREM 1. Let X and Y be Tichonov spaces satisfying the same Li-sentences. Then B(X) and
B(Y) satisfy the same Lg-sentences, and C*(X) and C*(Y) satisfy the same positive universal
Lc-sentences. (The converses are false.)

THEOREM 2, Let X and Y be strongly O-dimensional Tichonov spaces. If B(X) and B(Y) satisfy
the same Lyg-sentences then C*(X) and C*(Y) satisfy the same positive universal Lc-sentences.

M. BICKFORD and C. F. MILLS, Lowness properties for r.e. sets.

Novation. A is an r.e. set. D, is the finite set with canonical index u. {d,: e € } is an effective
list of truth table (tt-) conditions. We write A < 8 C if there is a B-recursive function / such that
Vr(n € A+ Ci=0dy4,). If B =0 we write just 4 <,,C.

DeFINITION. The A-correct content of W (we write W|A) is W N {u: D, N A= @}.

DEFINITION. A is low if A’ <70’ equiv. A" <,0". 4 is low, if A" <70”.

DEFINITION. S is an e-oracle set for A if S is finite and forsome x € S, W,|4 c W, and if
W, A is finite then W, is finite.

We say A has singleton (resp. 4, 23, 2%) oracle sets if there is a recursive function, £, such that
for every e, {f(e)} (resp. Dy, Wiy, W) is an e-oracle set for A.

THEOREM 1. (a) (Soare) A" <, 0" «— A has singleton oracle sets.

(b) A" <, 0" — A has & oracle sets.

(¢c) A" <% 0" « A has 3% oracle sets.

(d) A" <1 0" « A has I3 oracle sets.

REMARK. (a) and (d) characterize low and low, sets respectively. We call sets satisfying
(c) sober and those satisfying (b) depressed. These classes are all distinct.

THEOREM 2. Low & depressed & sober S Low,.

In the proof of Theorem 2 we use the relativization of

THEOREM 3. The following are equivalent.

(a) A’ 5,0 (we call such sets abject).

(b) There are recursive f, g such that for every e W, < W,and | W ol <gle)andif W, | A
#*#Dthen Wy, | A+ O@.

We have many results concerning abject sets. For example,

THEOREM 4. (a) There are abject sets A and B such that K <; A ® B.

(b) If A is abject, and Br.e.and K <., A ® B, then K <. B.

Finally, we have the following jump interpolation theorem.

THEOREM 5. If B <1 C are r.e. sets and X is a set such that B’ <. X <, C', then there is an r.e.
set A such that B<r A <rCand X <, A’ <t X.
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G.M. BRENNER, A technique for constructing Boolean algebras from trees, so that properties
of the trees are inherited.

Given the well-founded tree T, <r),we letfor all t€ T, ST = {ue T: u >1t); then define
the tree algebra generated by T, By, as the closure of {(S7: t € T} under finite set unions and com-
plementation relative to the set 7. It is interesting to note that Br inherits a number of the proper-
ties of T.

THEOREM 1. For all t € T we let A, denote the number of immediate successors to t in T. If a
tree T satisfies A. height T = w, B. for all t € T, card A, is regular and uncountable, and C. for
all distinct u, t € T, card A, # card A,, then By is rigid (i.e. has no nonidentity automorphisms).

THEOREM 2 (BRENNER AND MONK). If K is a regular, uncountable cardinal and T does not have
a (well-ordered) chain of length K, then Br does not have a well-ordered chain of length K.

THEOREM 3. If T, embeds in T,, then By, embeds in By,.

THEOREM 4. Given tree T, we let T* denote the tree extending T by the addition of a node at
the end of each partial branch C (C is a partial branch iff C is a subset of a branch satisfying u €
C At S u=t €C) of limit length. The Stone space of By is isomorphic to the set T* under the
topology with basis {ST" ~ Tge;Ss: Jis a finite subset of Tand t € J).

We have investigated the closure properties of the class of tree algebras under homomorphic
image, substructure and other operations as well as the relation of tree algebras to interval al-
gebras. These topics will be covered in other papers.

MIKE CANJAR, Model-theoretic properties of countable ultraproducts without CH.

We examine model-theoretic properties of U-Prod N where U is a nonprincipal ultrafilter
on w, and N is the structure w together with all its finitary functions and relations. This structure
is w,-saturated, hence saturated if CH holds. We examine what can occur in models of ZFC +
-CH.

Cohen model. Add k Cohen reals to a model of ZFC + GCH. We show that for all regular
uncountable cardinals a, b < k there exist ultrafilters U,,, so that the nonstandard part of U-
Prod(w, <) has coinitiality = a and cofinality = . We show how to make these ultrafilters
selective if a = b. Alternatively these ultrafilters can be constructed so that U-Prod N has no
least sky. For a = b = k we can construct the ultrafilter so that U-Prod N is saturated. These
ultrafilters can be amalgamated in order to obtain infinitely many nonisomorphic ultraproducts
of (w, <). When k > w,, there will be continuum many of these. Moreover when k > w, we
can get continuum many ultrafilters whose ultraproducts of (w, +, *) are nonisomorphic. (Under
CH, all such uvlitraproducts are isomorphic.)

Random real model. Add k random reals to a model of ZFC + GCH. It is easy to see that all
uttraproducts in this model will have cofinality = @,, which precludes saturation. We prove
the existence of ultraproducts with the following saturation property: they consist of a saturated
model of the theory of N plus a top sky. The properties of these ultrafilters are discussed. This
seems to be the maximal amount of saturation possible in this model: There are Dedekind
cuts in the top sky of every ultraproduct where the cofinality of the lower segment and the
coinitiality of the upper segment are both ,. Also we show that in this model there are, for any
uncountable regular a, ultrafilters U so that a is the coinitiality of the nonstandard part of
U-Prod(w, <).

JOHN CASE, KEMAL EBCIOGLU and MARK FULK, R.c. inseparable general and sub-
recursive index sets.

For A and B disjoint sets, A is r.e. inseparable from B iff every r.e. superset of 4 meets B. A
is effectively r.e. inseparable from B iff one can recursively find from any r.e. index x, a counter-
example to the separation of 4 from B by W,.

On the general recursive level two main theorems are obtained. The first provides a strong
sufficient condition for one index set to be effectively r.e. inseparable from another. It is proved
by Kleene’s Parametric Recursion Theorem and actually yields a characterization if the first
index set is for a singleton class. It also immediately implies Rice’s Theorem, its extensions in-
cluding the Rice-Shapiro-Myhill-McNaughton Theorem [Ro 67}, and improvements of the
so-called relative solvability results of Rogers [Ro 67, p. 44]. The second theorem provides a



1236 ABSTRACTS MADISON 1982

stronger sufficient condition, but for not necessarily effective, r.e. inseparability. This theorem
is proved by the k-ary recursion theorem.

Also examined are various subrecursive analogs of the above theorems. These are somewhat
in the spirit of Kozen’s subrecursive version of Rice’s Theorem [Ko 80]. Here the subrecursive
forms of the appropriate recursion theorems are employed: the recursion theoretic methods
descend into the subrecursive at least down to reasonable indexings for simultaneous linear
time and log space [RC 82].

Finally concrete analysis of a special case of a subrecursive analog casts serious doubt on
an informal philosophical argument of Putnam [Pu 80, pp. 200-291] that the syntax of a certain
logical language possesses an intrinsic fast, short grammar or decision procedure which parallels
the corresponding truth definition.
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J.C.E. DEKKER, Isols and balanced block designs with A = 1.

The word “‘number” stands for nonnegative integer, ““set”” for collection of numbers and *class™
for collection of sets. A BBD on a finite set o of cardinality > 2 is a class I” of subsets of o (called
blocks) for which there exist positive numbers k, r, 4 such that & > 2 and (i) all blocks have
cardinality k, (ii) every element of ¢ occurs in exactly r blocks, and (iii) every two distinct elements
of ¢ occur together in exactly A blocks. The numbers v = card g, b = card I', k, r and 2 are the
parameters of I". The basic relations between the parameters of a BBD are: bk = vrand r(k — 1)=
A(v — 1). Using partial recursive functions we generalize the notion of a BBD on a finite set
to that of an «w-BBD on an isolated set. We then prove BK = VR and R(K — 1) = AV - 1),
where V, B, K, R are isols instead of numbers, while 4 remains finite. As examples we discuss
the cases K = 3, 1 = 1 (Steiner triple systems) and ¥ = B, K = R, A = 1 (projective planes).
Let ¢ denote the cardinality of the continuum. While there are only denumerably many BBDs
on finite sets, there are ¢ w-BBDs on isolated sets. Among these there are ¢ Steiner triple systems
(whose orders need not be = 1 or 3 modulo 6) and ¢ projective planes.

STEVE GRANTHAM, Galvin's tree game.

Let G be the class of trees without infinite branches. For S, T in G, the Galvin game (S: T)
is played as follows: a white pawn is placed at the root of S, a black pawn at the root of T, and
players white and black alternately move either pawn from the node it is on to any immediate
successor node; the winner is that player whose pawn reaches a terminal node (‘‘queens™) first.
White moves first. Galvin showed white wins (T: T) for any 7. We extend this result to the case
in which black is given infinitely many copies of the tree by defining valuation functions on the
nodes of these trees which enable an explicit strategy to be given. We also define an equivalence
relation on G and a well-ordering of the equivalence classes in terms of Galvin’s game and use
the valuation functions to study the properties of this well-ordering, e.g., there are only 8, equiv-
alence classes of countable trees, even though there are 2™ nonisomorphic countable trees
(no matter how large 2* is). Furthermore, there is a countable tree whose predecessors in the
well-ordering have order type ON (the type of the ordinals).

MATT KAUFMANN, Blunt and ropless end extensions.
If % is a model of ZFC, say that cof () > w if its class of ordinals has uncountable cofinality.



